
PHYSICAL REVIEW B 67, 165301 ~2003!
Location of crossings in the Floquet spectrum of a driven two-level system
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The calculation of the Floquet quasi-energies of a system driven by a time-periodic field is an efficient way
to understand its dynamics. In particular, the phenomenon of dynamical localization can be related to the
presence of close approaches between quasienergies~either crossings or avoided crossings!. Here we consider
a driven two-level system and study how the locations of crossings in the quasienergy spectrum alter as the
field parameters are changed. A perturbational scheme provides a direct connection between the form of the
driving field and the quasienergies which is exact in the limit of high frequencies. We first obtain relations for
the quasienergies for some common types of applied field in the high-frequency limit, and then show how the
locations of the crossings drift as the frequency is reduced. We find a simple empirical formula which describes
this drift extremely well in general, and which we conjecture is exact for the specific case of square-wave
driving.
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I. INTRODUCTION

The two-level system is a simple model which has be
applied to a great variety of physical problems. One appli
tion of growing importance is that of quantum computing1

since any quantum two-level system has the potential to
as a quantum bit. For this reason the coherent contro
quantum states in these systems has recently become th
cus of intense investigation.2,3 A concrete example of such
two-level system is provided by a particle tunneling betwe
two potential wells, which can be experimentally realized
confining an electron to a pair of coupled quantum do4

One method of controlling such a system, without destroy
its coherence, is to apply oscillatory electric fields.5 Such
fields are able to produce the phenomenon known ascoher-
ent destruction of tunneling~CDT!, in which the tunneling of
the particle is suppressed when the parameters of the field
tuned to various ‘‘magic’’ values. As the applied field is tim
periodic, Floquet analysis6 has been applied to explain th
non-intuitive result, and it has been shown7,8 that CDT is
closely related to the presence of crossings or avoided cr
ings in the spectrum of Floquet quasienergies.

The driving field most frequently considered is of sin
soidal form, and studies using CDT as a means of quan
control have generally concentrated on varying either
envelope9 or frequency10 of a sinusoidal signal. In this work
however, we instead consider the effect of altering the s
nal’s waveform. By using a perturbational method we fir
show how the waveform can be directly related to t
quasienergy spectrum, and give analytic results for si
soidal, square-wave, and triangular waveforms. These re
are precise in the limit of high frequency. As the frequency
reduced, however, the locations of the crossings drift aw
from these values. This effect is extremely difficult to tre
analytically, and such efforts11–13 produce complicated re
sults which are difficult to interpret. Empirically, howeve
we find a simple formula which describes the drifting wi
good accuracy for many waveforms, and appears to beexact
for the case of the square wave. We thus provide a mean
0163-1829/2003/67~16!/165301~6!/$20.00 67 1653
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predicting the locations of quasienergy crossings for a gi
driving field in both high and low frequency regimes.

II. METHOD

A. Model Hamiltonian

We consider a charged particle confined to a dou
quantum-dot system, described by the Hamiltonian

H5 t̃ ~cL
†cR1H.c.!1@EL~ t !nL1ER~ t !nR#, ~1!

where the subscriptL/R denotes the left/right quantum do
cj

† and cj are creation and annihilation operators for a p
ticle in dot j, andnj5cj

†cj is the usual number operator. Th
tunneling between the two dots is described by the hopp
parametert̃ , andEj (t) is the electrical potential of the ex
ternal driving field. Clearly only the potential difference b
tween the two dots is physically of importance, and so
can use the symmetric parametrization,

EL5
E

2
f ~ t !, ER52

E

2
f ~ t ! ~2!

where E is the potential of the driving field andf (t) is a
T-periodic function describing its waveform. Hamiltonian~1!
has been written using a basis oflocalizedstates, but it may
be easily transformed to the standard two-level form via
SU~2! rotation, yielding the result

H5
D

2
sz1

E

2
f ~ t !sx , ~3!

wheres i are the standard Pauli matrices. In this represen
tion the basis states used areextendedstates, formed by sym
metric and anti-symmetric combinations of the localiz
states. In the absence of a driving field (E50) it is clear that
the two eigenstates of this Hamiltonian consist of a symm
ric ground state, and an excited antisymmetric state.
©2003 The American Physical Society01-1
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splitting between these two levels is given byD, which is
related to the interdot tunneling viaD52 t̃ .

B. Floquet theory

As the functionf (t) is periodic in time, the Floquet theo
rem may be used to write solutions of the time-depend
Schrödinger equation asc(t)5exp@2iejt#fj(t), wheref j (t)
is a function with the same periodicity asf (t) and is called a
Floquet state, ande j is termed the quasienergy. Althoug
Floquet states have an explicit time dependence, their p
odicity means that the dynamics of the system on time sc
much larger than the period of the driving field is effective
given only by the quasienergies. In particular, if the tw
quasi-energies approach degeneracy, the dynamics of
system on this time scale will appear to be frozen, produc
the effect of CDT. Consequently, determining the qua
energies provides a simple and direct way of studying
long time-scale behavior of the system, and indica
whether CDT can occur.14 In this work we restrict our atten
tion to driving functions which possess the symmetryf (t)
52 f (t1T/2). Imposing this restriction means that Ham
tonian~1! is invariant under the generalized parity operati
x→2x,t→t1T/2, and as a consequence the two Floq
states will also possess this symmetry, one being even
the other being odd. The von Neumann–Wigner theore15

thus allows the two quasienergies to cross as an exte
parameter, such as the field strength, is varied. Breaking
symmetry by choosing an alternative form for the drivi
field would mean that the quasi-energies would be forbid
to cross, and thus close approaches between the q
energies could only consist of avoided crossings.

The Floquet states and their quasienergies may be co
niently obtained from the eigenvalue equation

FH~ t !2 i
]

]t Gf j~ t !5e jf j~ t !. ~4!

To obtain approximate solutions to this equation we follow
perturbation scheme introduced originally by Holthaus16 to
treat both the two-level system and driven superlattices,
which was generalized recently to also include the effects
inter-particle interactions17. In this approach Hamiltonian~1!
is divided into two parts:Ht which contains the tunneling
terms, andHI which holds the electric field terms. We the
find the eigensystem of the operatorHI(t)5HI2 i ]/]t by
working in an extendedHilbert space of time-periodic
functions,18 and apply the tunneling Hamiltonian as a pertu
bation. A consequence of dividing the Hamiltonian in th
way is that the perturbation theory works well in the hig
frequency limitv@ t̃ , but breaks down in the opposite lim
when the tunneling provides the dominant energy-scale
the problem.8

For the Hamiltonian given in Eq.~1!, the problem of find-
ing the eigensystem ofHI(t) simply requires the solution o
two uncoupled differential equations:

S 2
E

2
f ~ t !2 i

d

dtDf1~ t !5e1f1~ t !, ~5!
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S E

2
f ~ t !2 i

d

dtDf2~ t !5e2f2~ t !. ~6!

These can be integrated immediately, giving the solution

f6~ t !5exp@6 iEF~ t !/2#exp@ i e6t#, ~7!

where

F~ t !5E
0

t

f ~ t8!dt8. ~8!

The periodicity of the Floquet states clearly requires t
e650 modv. Without loss of generality we can restrict th
quasi-energies to lie in the ‘‘first Brillouin zone’’ (2v/2
<e,v/2), and thus to lowest order in the perturbatio
theory they are degenerate and zero. Standard degen
perturbation theory can now be used to evaluate the fi
order correction to the quasienergies, requiring only that
work in the extended Hilbert space ofT-periodic functions
by defining an appropriate scalar product,

^^fmufn&&T5
1

TE0

T

^fm~ t8!ufn~ t8!&dt8, ~9!

where^•u•& is the usual scalar product for the spatial comp
nent of the wave functions, and̂•u•&T denotes the integra
tion over the compact time coordinate.

As the tunneling component of the HamiltonianHt is act-
ing as the perturbation, the first-order approximation of
quasienergies is given by the eigenvalues of the perturb
matrix:

^^Ht&&T5S 0 t̃ ^f2
2 &T

t̃ ^f1
2 &T 0

D . ~10!

Comparing this expression with the original tunnelin
Hamiltonian@Eq. ~1!# reveals that the action of the applie
field is to renormalize the tunneling terms by the facto
^f6

2 &T . As f1 is the complex conjugate off2 , the
quasienergies take the simple form

e656
D

2
u^f1

2 &Tu, ~11!

where

^f1
2 &T5

1

TE0

T

exp@ iEF~ t !#dt, ~12!

andF(t) is defined in Eq.~8!. Clearly the quasi-energies ca
only become degenerate when they are both equal to z
and we can note from Eq.~10! that this corresponds, as ex
pected, to the destruction of the effective tunneling.

III. RESULTS

To obtain the Floquet quasienergies for comparison w
the prediction of Eq.~12!, the numerical technique describe
in Ref. 17 was used. This involves evaluating the unita
evolution operator for one period of the fieldU(T,0) and
1-2
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obtaining its eigenvalues, which are related to the quasie
gies via l j5exp@2iejT#. Using this method to obtain th
quasienergies, a standard bisection algorithm could then
used to find the location of the quasienergy crossings t
high degree of accuracy.

The dynamical behavior of the system was also exami
directly by integrating it over long time-periods, with th
particle initially located in the left quantum dot. To quanti
to what extent the tunneling between the left and right qu
tum dots was destroyed, the probability that the particle w
in the left quantum dot@PL(t)# was measured throughout th
time evolution. We denote the minimum value ofPL attained
during this period to be the ‘‘localization,’’ and thus hig
values of localization correspond to the presence of C
while low values reveal that the particle is able to tunn
from one side to the other, and is therefore delocalized.

A. Sinusoidal driving

We begin with the most familiar case, when the drivi
field has the formf (t)5cosvt. The procedure outlined in
Sec. II B can be followed straightforwardly, leading to t
result that

^f1
2 &T5

1

TE0

T

exp@ iE sin~vt !/v#dt. ~13!

By making use of the standard identity

exp@ iE sin~vt !/v#5 (
m52`

`

Jm~E/v!exp@ imvt# ~14!

this expression can be substantially simplified, yielding
final result thate656(D/2)J0(E/v). This reproduces the
well-known result that for sinusoidal driving CDT occu
when the ratio of the field strength to its frequency is eq
to a root of the Bessel functionJ0 . In Fig. 1~a! the locations
of the quasienergies are shown for a fixed frequencyv58 as
a function ofE/v. It can be seen that the perturbative res
works extremely well in this regime~high-frequency!. Figure
1~b! shows the localization produced by the field, as defin
above. As expected, at the points where the quasiene
cross the tunneling dynamics of the system is block
producing sharp spikes in the localization, centered on
crossings.

To investigate how the crossings move away from th
points as the driving frequency is reduced, their locations
shown as a function of 1/v in Fig. 2~a!. In accordance with
the von Neumann–Wigner theorem8,15 we can readily see
that the set of crossings form one-dimensional manifolds.
v tends to infinity the crossings occur at the roots ofJ0 , as
predicted by the perturbation theory, and this remains a g
approximation for frequencies as low asv5D. Below this
value, however, the crossings smoothly drift away from th
locations, and evolve towards the pointsD/v52n ~wheren
is a positive integer!, as was seen earlier in Ref. 8. Th
limiting behavior in the low-frequency regime was also p
dicted in Ref. 19, where a similar pattern of crossing-d
was observed in an investigation of a related model. T
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form of Fig. 2~a! immediately suggests fitting the manifold
of crossings with quadrants of ellipses,

S E/v

yn
D 2

1S D/v

2n D 2

51, ~15!

whereyn is then-th root of J0(y). It can be seen in Fig. 3
that this simple parametrization fits the results extrem
well for the first crossing manifold, and that the differen
between the exact location of the crossing and the fitt
function (Ef it /v2Eexact/v) never exceeds a value of 0.0
The degree of deviation becomes larger as the order of
crossing increases, but nonetheless is only visible in Fig.~a!
for the fourth and fifth crossing-manifolds.

In Fig. 4 the localization is plotted asv is reduced from a
high value toward zero, withE set to hold the ratioE/v on a
crossing manifold. For each point the system was evol
over 200 periods of the driving field to study how effective
the field could maintain a localized state. For the hig
frequency regime,v>D, the localization is excellent at al
the crossings, with less than 0.1 of the particle density le

FIG. 1. ~a! Quasienergies for a sinusoidal driving field, o
frequencyv58. Circles indicate exact results, lines the perturb
tive result 6(D/2)J0(E/v). ~b! Localization in the driven sys-
tem. Spikes in the localization are centered on crossings of
quasienergies.

FIG. 2. Location of crossings of quasienergies, in each case
crossings fall on one-dimensional manifolds.~a! Sinusoidal driving.
~b! Square-wave driving.~c! Triangular driving. Dotted lines indi-
cate the empirical fitting function@Eq. ~15!#.
1-3
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C. E. CREFFIELD PHYSICAL REVIEW B67, 165301 ~2003!
ing across to the right-side dot during the time evolution.
can be expected, the high-order crossings, which occu
higher values ofE, can maintain better levels of localizatio
than the low-order crossings.8 This difference becomes mor
pronounced as the frequency is reduced, and although
localization in all cases decays smoothly to zero, the loc
ization at the higher-order crossings decays much m
slowly. For frequencies as low asv50.4D, however, the in-
hibiting effect of CDT is still evident for all the crossings
indicating that even low-frequency fields may serve a use
role in stabilizing electron-leakage from quantum d
devices.

FIG. 3. Deviation of the first crossing manifold from the empi
cal fitting function. The solid line indicates sinusoidal driving, t
dashed line square-wave driving, and the dotted line triangular d
ing. For the square wave the deviation is smaller than 1027. The
dot-dashed line gives the deviation for the Fourier expansion of
square wave, truncated at two terms.

FIG. 4. Localization produced by a sinusoidal field, for (E,v)
coordinates lying on the first three crossing manifolds.
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B. Square-wave driving

Square-wave driving has been considered to a lesser
tent than the sinusoidal case, although it is also an ea
realizable waveform in experiment. Reference 20 inve
gated the case of a superlattice driven by a square-wave fi
and found that for suitable choices of parameters CDT wo
indeed occur, while sinusoidal driving of this system cou
only produce partial CDT.21 Recently in Ref. 22 it was
shown that in a superlattice CDT can only be produced if
crossings of the quasienergies areequally spaced, which
clearly does not occur for sinusoidal driving. For this reas
it is of interest to derive the behavior of the quasienergies
square-wave driving to see explicitly how this condition
fulfilled.

We consider the square-wave driving fieldf (t)5Q(t)
22Q(t2T/2), defined over the interval 0<t,T. The inte-
grations required to obtain the quasienergies may again
done straightforwardly, giving the result that

e656
D

2

sin~pE/2v!

pE/2v
. ~16!

From this it is immediately clear that the crossings a
equally spaced as required, being given by the condit
E/v52n where n is a positive integer. In Fig. 5~a! the
quasienergies obtained for a frequency ofv58 are shown in
comparison with the above result, and it can be clearly s
that the agreement is excellent. Below this figure is plot
the localization produced by the field, and as for the case
sinusoidal driving, the crossings of the quasienergies co
spond to sharp spikes in the localization, verifying that CD
is indeed occurring.

In Fig. 2~b! the drifting of the crossings as the frequen
is reduced is shown. The behavior is strikingly similar to th
observed for sinusoidal driving, and accordingly we use
same functional form@Eq. ~15!# to fit the crossing manifolds

v-

e

FIG. 5. ~a! Quasienergies for a square-wave driving field,
frequencyv58. Circles indicate exact results, lines the perturbat
result @Eq. ~16!#. ~b! Localization produced by the driving field.
1-4
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with the y intersections now given byyn52n. The fit is so
good that on this plot no differences can be seen between
exact results and the fits. This is corroborated by Fig.
where the deviation from the exact result for the low
manifold can be seen to be negligible in comparison with
sinusoidal case, and within the accuracy of the numer
procedures the fit isidenticalwith the exact result. We there
fore conjecture that this fitting is, in fact, exact for the case
square-wave driving. In this plot we also show the res
obtained for a bandwidth-limited square-wave, obtained
truncating its Fourier expansion at two terms. We see that
addition of just the second term to the sinusoidal drivi
already reduces the deviation of the fit from the exact re
considerably. Truncating the series at higher points produ
steady improvements in the fit, strongly supporting the c
jecture that the fit is exact when all terms are included.

C. Triangular driving

We now consider another easily obtainable form of dr
ing, the triangular waveform:

f ~ t !5H 124t/T for 0<t<T/2

2314t/T, T/2,t<T.
~17!

For this case a closed form solution can again be obtained
the behavior of the quasienergies, involving the Fresnel s
and cosine functions,S(x) andC(x). The full expression for
the quasienergies is given by

e65
D

A2x
@cos~xp/4!C~Ax/2!1sin~xp/4!S~Ax/2!#, ~18!

wherex5E/v. In Fig. 6 it can be seen that this function
indeed an excellent approximation to the true quasi-energ
and that CDT again occurs at the points of quasiene

FIG. 6. ~a! Quasienergies for a triangular driving field, of fre
quencyv58. Circles indicate exact results, lines the perturbat
result @Eq. ~18!#. ~b! Localization produced by the driving field.
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crossings. The roots of Eq.~18! may be found numerically,
yielding the result that the first three crossings occur wh
E/v52.92519, 7.02525, and 10.9864. Observing the beh
ior of the Fresnel functions23 reveals that forx.1 they both
make small amplitude, decaying oscillations about a value
0.5, which allows the condition for crossings to be written
the simpler, though approximate, form tan(xp/4).21. The
crossing condition therefore reduces to the simple re
E/v.4n21, as may be seen from the exact values giv
above, which becomes increasingly accurate for larger va
of E/v.

In Fig. 2~c! it can be seen that the crossing-manifolds
this form of driving have a similar elliptical form to the
previous cases. Using the same fitting function@Eq. ~15!# as
before, with they intercepts given by the roots of Eq.~18!,
gives an accurate description of their behavior, as may
seen in Fig. 3. Although the fit is not as good as for t
sinusoidal case, the maximum deviation is still less th
0.04. As seen previously, the fit is best for the lowest-or
manifolds, with small deviations being visible in the highe
order manifolds. Nonetheless, in all cases the fitting fu
tion gives an impressively accurate approximation to
true result.

IV. CONCLUSIONS

In summary, it has been shown how changing the wa
form of a periodic driving field can be used to modify th
location of the quasienergies of a two-level system. A pro
dure has been given which relates the waveform explicitly
the quasienergy spectrum, allowing the positions of
quasienergy crossings to be located exactly in the limit
high frequency. For various driving fields, including th
cases we consider here, an analytic form can be obtained
the quasienergies, and in other cases they may be obta
numerically with little difficulty. This gives the prospect o
designing the waveform to create a desired behavior of
quasienergy spectrum in a direct and straightforward wa

It has also been shown how the positions of the quas
ergy crossings drift as the frequency is reduced from
high-frequency limit. For the driving fields considered he
the crossings fall approximately onto elliptical manifold
and for the case of square-wave driving it appears that
description is exact. We have examined this behavior
many other waveforms, and we conclude that this form
the crossing manifolds is very general. Using the pertur
tion theory to find the crossings in the high-frequency lim
and then making use of this drifting behavior, allows t
positions of the quasienergy crossing to be accurately loc
in all regimes of driving. This gives more flexibility in ex
periment, as the high-field regime may either be difficult
attain, or may induce undesirable transitions to higher ene
levels, breaking the two-level approximation. Although t
degree of localization that the field can maintain is reduc
in the low-frequency regime, it can still produce a use
reduction of the leakage from quantum dot devices, a
thereby enhance their decoherence time, which has m
possible applications to the coherent control of mesosco
systems.

e
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