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Location of crossings in the Floquet spectrum of a driven two-level system
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The calculation of the Floquet quasi-energies of a system driven by a time-periodic field is an efficient way
to understand its dynamics. In particular, the phenomenon of dynamical localization can be related to the
presence of close approaches between quasienéeifiesr crossings or avoided crossipgdere we consider
a driven two-level system and study how the locations of crossings in the quasienergy spectrum alter as the
field parameters are changed. A perturbational scheme provides a direct connection between the form of the
driving field and the quasienergies which is exact in the limit of high frequencies. We first obtain relations for
the quasienergies for some common types of applied field in the high-frequency limit, and then show how the
locations of the crossings drift as the frequency is reduced. We find a simple empirical formula which describes
this drift extremely well in general, and which we conjecture is exact for the specific case of square-wave
driving.
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I. INTRODUCTION predicting the locations of quasienergy crossings for a given
driving field in both high and low frequency regimes.
The two-level system is a simple model which has been
applied to a great variety of physical problems. One applica- Il. METHOD
tion of growing importance is that of quantum computing,
since any quantum two-level system has the potential to act
as a quantum bit. For this reason the coherent control of We consider a charged particle confined to a double

guantum states in these systems has recently become the tpsantum-dot system, described by the Hamiltonian
cus of intense investigatidt A concrete example of such a

two-level system is provided by a particle tunneling between H=T(CICR+H.C.)+[EL(t)nL+ Ex(DNg], 1)

two potential wells, which can be experimentally realized by

confining an electron to a pair of coupled quantum dots. here the subscript/R denotes the left/right quantum dot,
One method of controlling such a system, without destroying:* gnq c; are creation and annihilation operators for a par-
its coherence, is to apply oscillatory electric fietdSuch tii:le in dotj, andnj=cJ-Tc]- is the usual number operator. The
fields are able to produce the phenomenon KNOWOGHET- 4,y eling hetween the two dots is described by the hopping

ent destruction of tunnelingCDT), in which the tunneling of - dE.(1) is the electrical potential of th
the particle is suppressed when the parameters of the field aparametet, an i(t) is the electrical po ential of the ex-
ternal driving field. Clearly only the potential difference be-

tuned to various “magic” values. As the applied field is time—t the two dots is phvsically of | : d
periodic, Floquet analysishas been applied to explain this ween the two dols I1s physically of Importance, and so we
can use the symmetric parametrization,

non-intuitive result, and it has been shdWfirthat CDT is
closely related to the presence of crossings or avoided cross-
ings in the spectrum of Floguet quasienergies. E =Ef(t) Eo=— Ef(t) @)

The driving field most frequently considered is of sinu- L2 ' R 2
soidal form, and studies using CDT as a means of quantum ) ) o ) _
control have generally concentrated on varying either thavhereE is the potential of the driving field and(t) is a
envelopé@ or frequencyP of a sinusoidal signal. In this work, T-Periodic function describing its waveform. Hamiltoniei)
however, we instead consider the effect of altering the sighas been written using a basislotalizedstates, but it may
nal’'s waveform By using a perturbational method we first P€ easily transformed to the standard two-level form via a
show how the waveform can be directly related to theSU(2) rotation, yielding the result
guasienergy spectrum, and give analytic results for sinu-
soidal, square-wave, and triangular waveforms. These results H— é n Ef ¢ 3)
are precise in the limit of high frequency. As the frequency is 2773 (o,
reduced, however, the locations of the crossings drift away
from these values. This effect is extremely difficult to treatwhereo; are the standard Pauli matrices. In this representa-
analytically, and such efforts™*® produce complicated re- tion the basis states used adendedtates, formed by sym-
sults which are difficult to interpret. Empirically, however, metric and anti-symmetric combinations of the localized
we find a simple formula which describes the drifting with states. In the absence of a driving fiel= 0) it is clear that
good accuracy for many waveforms, and appears texaet  the two eigenstates of this Hamiltonian consist of a symmet-
for the case of the square wave. We thus provide a means foic ground state, and an excited antisymmetric state. The

A. Model Hamiltonian
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splitting between these two levels is given hy which is E d
related to the interdot tunneling via= 2t. (gf(t)_' a) ¢-()=€e_¢_(1). (6)

B. Floguet theory These can be integrated immediately, giving the solutions:

As the functionf (t) is periodic in time, the Floquet theo- - ()=exgd £IEF(t)/2]exdie 1], (7)
rem may be used to write solutions of the time-depender\;\lhere
Schralinger equation ag(t) =exd —iejt]¢;(t), whereo;(t)
is a function with the same periodicity &&t) and is called a t
Floquet state, and; is termed the quasienergy. Although F(t)=f f(t")dt". (8)
Floquet states have an explicit time dependence, their peri- 0
odicity means that the dynamics of the system on time scaleshe periodicity of the Floquet states clearly requires that
much larger than the period of the driving field is effectively ¢, =0 modw. Without loss of generality we can restrict the
given only by the quasienergies. In particular, if the two quasi-energies to lie in the “first Brillouin zone” w/2
quasi-energies approach degeneracy, the dynamics of thee<w/2), and thus to lowest order in the perturbation
system on this time scale will appear to be frozen, producingheory they are degenerate and zero. Standard degenerate
the effect of CDT. Consequently, determining the quasiperturbation theory can now be used to evaluate the first-
energies provides a simple and direct way of studying therder correction to the quasienergies, requiring only that we
long time-scale behavior of the system, and indicatesyvork in the extended Hilbert space @periodic functions
whether CDT can occuf In this work we restrict our atten- by defining an appropriate scalar product,
tion to driving functions which possess the symmet(y)
=—f(t+T/2). Imposing this restriction means that Hamil- (T , , ,
tonian (1) is invariant under the generalized parity operation {((bml ¢’n>>T:$L (dm(t")]dn(t"))dt’, 9
x——Xx,t—t+T/2, and as a consequence the two Floquet
states will also possess this symmetry, one being even arthere(:|-) is the usual scalar product for the spatial compo-
the other being odd. The von Neumann—Wigner thedfem nent of the wave functions, and|- )+ denotes the integra-
thus allows the two quasienergies to cross as an externdpn over the compact time coordinate.
parameter, such as the field strength, is varied. Breaking this As the tunneling component of the Hamiltonibin is act-
symmetry by choosing an alternative form for the drivinging as the perturbation, the first-order approximation of the
field would mean that the quasi-energies would be forbiddeguasienergies is given by the eigenvalues of the perturbing
to cross, and thus close approaches between the quashatrix:
energies could only consist of avoided crossings. -

The Floquet states and their quasienergies may be conve- 0 t <¢2—>T
niently obtained from the eigenvalue equation ((H)r= ~ 2 : (10)

t (bt 0
d Comparing this expression with the original tunneling

H(t) = E} bi(1)= €¢;(1). (4) Hamiltonian[Eq. (1)] reveals that the action of the applied
field is to renormalize the tunneling terms by the factors

To obtain approximate solutions to this equation we follow & 42y As ¢, is the complex conjugate ofp_, the
perturbation scheme introduced originally by Holth4us 3uésienergies take the simple form

treat both the two-level system and driven superlattices, an

which was generalized recently to also include the effects of A,

inter-particle interactioré. In this approach Hamiltoniafi) €+= i§|<¢+>T|a (11)
is divided into two partsH; which contains the tunneling

terms, andH, which holds the electric field terms. We then where

find the eigensystem of the operathf(t)=H,—id/dt by 1T

working in an extendedHilbert space of time-periodic 2\ _ ;

functioﬂs,18 and apply the tunnelinngamiItonian aspa pertur- <¢+>T_Tfo exiEF(D]dt, (12

bation. A consequence of dividing the Hamiltonian in this . , . . .
way is that the perturbation theory works well in the high- 21dF () is defined in Eq(8). Clearly the quasi-energies can

L~ . ... onl m nerate when th r h | to zer
frequency limitw>t, but breaks down in the opposite limit only become degenerate when they are both equal to zero,

hen the t i ides the dominant I nd we can note from Eq10) that this corresponds, as ex-
meepr)]rob‘laen%nne INg provides he domihant energy-scale 0<';E)lected, to the destruction of the effective tunneling.

For the Hamiltonian given in Eq1), the problem of find-
ing the eigensystem df,(t) simply requires the solution of
two uncoupled differential equations: To obtain the Floquet quasienergies for comparison with

the prediction of Eq(12), the numerical technique described
5) in Ref. 17 was used. This involves evaluating the unitary
evolution operator for one period of the field(T,0) and

IIl. RESULTS
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obtaining its eigenvalues, which are related to the quasiener- 05 = @

gies viak;=exd —igT]. Using this method to obtain the

quasienergies, a standard bisection algorithm could then be < \ e

used to find the location of the quasienergy crossings to a § \ S

high degree of accuracy. S of by ,;{\ L A
The dynamical behavior of the system was also examined g{ S T T

directly by integrating it over long time-periods, with the 3

particle initially located in the left quantum dot. To quantify /r"

to what extent the tunneling between the left and right quan- -0.5 : :

tum dots was destroyed, the probability that the particle was 1L o ‘ ‘ ]

in the left quantum ddtP, (t) ] was measured throughout the I

time evolution. We denote the minimum valueRf attained 5 08 1 1

during this period to be the “localization,” and thus high T 06 H

values of localization correspond to the presence of CDT, s I

while low values reveal that the particle is able to tunnel go4r I

from one side to the other, and is therefore delocalized. 0.2 ‘ L

ol _ il |
A. Sinusoidal driving 0 4 8 12
E/o

We begin with the most familiar case, when the driving ) . ] . S
field has the formf(t)=coswt. The procedure outlined in FIG. 1. (a) Quasienergies for a sinusoidal driving field, of

Sec. 11 B can be followed straightforwardly, leading to the frequencyw=8. Circles indicate exact results, lines the perturba-
result that ' tive result = (A/2)Jy(E/w). (b) Localization in the driven sys-

tem. Spikes in the localization are centered on crossings of the
1T guasienergies.
<¢2+>T=—f exdiE sin(wt)/w]dt. (13
TJo form of Fig. 2a) immediately suggests fitting the manifolds

. . f i ith drants of elli ,
By making use of the standard identity OF crossings with quadrants of efipses

= (E/w)2+(A/—w)2—1 (15)
exiliE siwt)/w]= > Jn(Elw)exdimat] (14) Yn 2n | 7

wherey, is then-th root of Jo(y). It can be seen in Fig. 3
this expression can be substantially simplified, yielding thethat this simple parametrization fits the results extremely
final result thate. = *(A/2)Jo(E/w). This reproduces the well for the first crossing manifold, and that the difference
well-known result that for sinusoidal driving CDT occurs between the exact location of the crossing and the fitting
when the ratio of the field strength to its frequency is equafunction (Es;; /@ — Eeyac/ @) Never exceeds a value of 0.02.
to a root of the Bessel functialy. In Fig. 1(a) the locations The degree of deviation becomes larger as the order of the
of the quasienergies are shown for a fixed frequaney8 as  crossing increases, but nonetheless is only visible in Faj. 2
a function ofE/w. It can be seen that the perturbative resultfor the fourth and fifth crossing-manifolds.
works extremely well in this regimghigh-frequency. Figure In Fig. 4 the localization is plotted as is reduced from a
1(b) shows the localization produced by the field, as definechigh value toward zero, witk set to hold the rati&/w on a
above. As expected, at the points where the quasienergiesossing manifold. For each point the system was evolved
cross the tunneling dynamics of the system is blockedpver 200 periods of the driving field to study how effectively
producing sharp spikes in the localization, centered on théhe field could maintain a localized state. For the high-
crossings. frequency regimewp=A, the localization is excellent at all

To investigate how the crossings move away from thesghe crossings, with less than 0.1 of the particle density leak-
points as the driving frequency is reduced, their locations are
shown as a function of &/ in Fig. 2(a). In accordance with
the von Neumann—Wigner theorii we can readily see
that the set of crossings form one-dimensional manifolds. As 8 F—
o tends to infinity the crossings occur at the rootslgf as S
predicted by the perturbation theory, and this remains a gooc
approximation for frequencies as low as=A. Below this
value, however, the crossings smoothly drift away from these 0
locations, and evolve towards the poidisw=2n (wheren
is a positive integgr as was seen earlier in Ref. 8. This  F|G. 2. Location of crossings of quasienergies, in each case the
limiting behavior in the low-frequency regime was also pre-crossings fall on one-dimensional manifol@s. Sinusoidal driving.
dicted in Ref. 19, where a similar pattern of crossing-drift(b) Square-wave driving(c) Triangular driving. Dotted lines indi-
was observed in an investigation of a related model. Theate the empirical fitting functiofEg. (15)].
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FIG. 3. Deviation of the first crossing manifold from the empiri- 0 4 8 12
cal fitting function. The solid line indicates sinusoidal driving, the Eo

dashed line square-wave driving, and the dotted line triangular driv-  F|G, 5. (a) Quasienergies for a square-wave driving field, of

ing. For the square wave the deviation is smaller than’10he  frequencyw=8. Circles indicate exact results, lines the perturbative
dot-dashed line gives the deviation for the Fourier expansion of th?esult[Eq. (16)]. (b) Localization produced by the driving field.
square wave, truncated at two terms.

B. Square-wave driving

ing across to the right-side dot during the time evolution. As  Square-wave driving has been considered to a lesser ex-
can be expected, the high-order crossings, which occur agnt than the sinusoidal case, although it is also an easily
higher values oE, can maintain better levels of localization realizable waveform in experiment. Reference 20 investi-
than the low-order crossingsThis difference becomes more gated the case of a superlattice driven by a square-wave field,
pronounced as the frequency is reduced, and although thend found that for suitable choices of parameters CDT would
localization in all cases decays smoothly to zero, the localindeed occur, while sinusoidal driving of this system could
ization at the higher-order crossings decays much morenly produce partial CDT" Recently in Ref. 22 it was
slowly. For frequencies as low as=0.4A, however, the in-  shown that in a superlattice CDT can only be produced if the
hibiting effect of CDT is still evident for all the crossings, crossings of the quasienergies aqually spaced, which
indicating that even low-frequency fields may serve a usefuflearly does not occur for sinusoidal driving. For this reason
role in stabilizing electron-leakage from quantum dotit s of interest to derive the behavior of the quasienergies for
devices. square-wave driving to see explicitly how this condition is
fulfilled.

We consider the square-wave driving fieldt) =0 (t)
—20(t—T/2), defined over the intervaldt<T. The inte-
grations required to obtain the quasienergies may again be
done straightforwardly, giving the result that

0.8 first manifold 7 i
---- second manifold €. = ié M (16)
——- third manifold - 2 7wERw
5 06 1 From this it is immediately clear that the crossings are
E equally spaced as required, being given by the condition
§ E/w=2n wheren is a positive integer. In Fig. (8 the
304 1 guasienergies obtained for a frequencywsf8 are shown in
N comparison with the above result, and it can be clearly seen
AN that the agreement is excellent. Below this figure is plotted
0.2 \\ . the localization produced by the field, and as for the case of
S sinusoidal driving, the crossings of the quasienergies corre-
AN spond to sharp spikes in the localization, verifying that CDT
0 - == . is indeed occurring.

In Fig. 2(b) the drifting of the crossings as the frequency
is reduced is shown. The behavior is strikingly similar to that

FIG. 4. Localization produced by a sinusoidal field, f&,¢)  observed for sinusoidal driving, and accordingly we use the
coordinates lying on the first three crossing manifolds. same functional formiEq. (15)] to fit the crossing manifolds,
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crossings. The roots of Eq18) may be found numerically,
yielding the result that the first three crossings occur when
E/w=2.92519, 7.02525, and 10.9864. Observing the behav-
ior of the Fresnel functiorfd reveals that fox>1 they both
make small amplitude, decaying oscillations about a value of
0.5, which allows the condition for crossings to be written in
the simpler, though approximate, form tam{/4)=—1. The
crossing condition therefore reduces to the simple result
E/w=4n—1, as may be seen from the exact values given
above, which becomes increasingly accurate for larger values
of Elw.

In Fig. 2(c) it can be seen that the crossing-manifolds for
this form of driving have a similar elliptical form to the
previous cases. Using the same fitting functi&n. (15)] as
before, with they intercepts given by the roots of E(L8),
gives an accurate description of their behavior, as may be
seen in Fig. 3. Although the fit is not as good as for the
sinusoidal case, the maximum deviation is still less than
0.04. As seen previously, the fit is best for the lowest-order

manifolds, with small deviations being visible in the higher-
order manifolds. Nonetheless, in all cases the fitting func-

tion gives an impressively accurate approximation to the
true result.

FIG. 6. (@) Quasienergies for a triangular driving field, of fre-
quency w=8. Circles indicate exact results, lines the perturbative
result[Eg. (18)]. (b) Localization produced by the driving field.

with they intersections now given by,=2n. The fit is so
good that on this plot no differences can be seen between the
exact results and the fits. This is corroborated by Fig. 3,
where the deviation from the exact result for the lowest In summary, it has been shown how changing the wave-
manifold can be seen to be negligible in comparison with thdorm of a periodic driving field can be used to modify the
sinusoidal case, and within the accuracy of the numericalocation of the quasienergies of a two-level system. A proce-
procedures the fit iglentical with the exact result. We there- dure has been given which relates the waveform explicitly to
fore conjecture that this fitting is, in fact, exact for the case ofthe quasienergy spectrum, allowing the positions of the
square-wave driving. In this plot we also show the resultquasienergy crossings to be located exactly in the limit of
obtained for a bandwidth-limited square-wave, obtained byhigh frequency. For various driving fields, including the
truncating its Fourier expansion at two terms. We see that theases we consider here, an analytic form can be obtained for
addition of just the second term to the sinusoidal drivingthe quasienergies, and in other cases they may be obtained
already reduces the deviation of the fit from the exact resulnumerically with little difficulty. This gives the prospect of
considerably. Truncating the series at higher points producedesigning the waveform to create a desired behavior of the
steady improvements in the fit, strongly supporting the conquasienergy spectrum in a direct and straightforward way.
jecture that the fit is exact when all terms are included. It has also been shown how the positions of the quasien-
ergy crossings drift as the frequency is reduced from the
high-frequency limit. For the driving fields considered here,

] ] ) _ the crossings fall approximately onto elliptical manifolds,

~ We now consider another easily obtainable form of driv-anq for the case of square-wave driving it appears that this
ing, the triangular waveform: description is exact. We have examined this behavior for
many other waveforms, and we conclude that this form of
the crossing manifolds is very general. Using the perturba-
tion theory to find the crossings in the high-frequency limit,

and then making use of this drifting behavior, allows the

For this case a closed form solution can again be obtained fQfqsitions of the quasienergy crossing to be accurately located
the behavior of the quasienergies, involving the Fresnel sing, g regimes of driving. This gives more flexibility in ex-

and cosine functions3(x) andC(x). The full expression for  pariment, as the high-field regime may either be difficult to
the quasienergies is given by attain, or may induce undesirable transitions to higher energy
A levels, breaking the two-level approximation. Although the
_ . degree of localization that the field can maintain is reduced
ei_E[COS{XWM)C(\/X_/Z)JFS'WXWM)S( )], (19 in the low-frequency regime, it can still produce a useful
reduction of the leakage from quantum dot devices, and
wherex=E/w. In Fig. 6 it can be seen that this function is thereby enhance their decoherence time, which has many
indeed an excellent approximation to the true quasi-energiepossible applications to the coherent control of mesoscopic
and that CDT again occurs at the points of quasienerggystems.

IV. CONCLUSIONS

C. Triangular driving

1-4t/T for O<t<T/2
f(t)=

| =3+4UT, TR<t<T. (€7
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