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Abstract. We show that a separable Banach space X has the
Schur property if and only if every separately compact bilinear ap-
plication from X into c0 is completely continuous, thus answering
a question raised by PeÃlczyński.

1. Completely continuous multilinear maps

Let T : X1×· · ·×Xk → Y be a (continuous) multilinear operator act-

ing between Banach spaces. As in the linear case, T is said to be weakly

compact if it maps bounded sets into (relatively) weakly compact sets.

Also, we say that T is completely continuous if it maps weakly Cauchy

sequences of X1 × · · · ×Xk into norm convergent sequences.

In [10] (see also [9]) PeÃlczyński proved the following

Theorem 1. Suppose Xi are (possibly different) L1(µ) spaces for 1 ≤
i ≤ k. Then every weakly compact multilinear operator from X1×· · ·×
Xk to an arbitrary Banach space is completely continuous.

Later on, Ryan [11] showed that the same is true whenever all the

Xi’s above have the Dunford-Pettis property.

In the same article (see p. 385, Remark 2), PeÃlczyński sug-

gests that “Theorem 1 above may be generalized to the case in

which T is separately weakly compact” (that is, for every fixed

x1, . . . , xi−1, xi+1, . . . , xk, the linear operator

x ∈ Xi 7−→ T (x1, . . . , xi−1, x, xi+1, . . . , xk) ∈ Y
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is weakly compact). The purpose of this note is to prove that such a

generalization is impossible. In fact, the following result shows that the

conclusion of Theorem 1 may fail even if T is assumed to be separately

compact.

Fact 1. For a separable Banach space X the following are equivalent:

(a) X has the Schur property (weakly convergent sequences converge

in norm).

(b) For any k and every Banach space Y , every k-linear operator

from Xk into Y is completely continuous.

(c) Every symmetric bilinear application S : X ×X → c0 which is

separately compact is completely continuous.

Proof. We only need to prove that (c) implies (a): If X is not a Schur

space, there is a weakly null sequence in the unit sphere of X. Using

the Bessaga-PeÃlczyński selection principle [3] we can pick a basic sub-

sequence of it, which we will call (xn). Let Z be the closed subspace

of X generated by (xn), and let us define an operator T : Z → c0 by

T (xn) = en, where (en) is the traditional basis of c0. We can now use

Sobczyk’s theorem [12] to extend T to the whole of X. Let us also call

T to this extension. Now, consider the symmetric bilinear operator

S : X ×X → c0 given by S(x, y) = T (x) ·T (y), the product being that

of c0.

Fixing y ∈ X, we see that the operator S(·, y) : X → c0 given

by x 7→ S(x, y) is compact, since it can be decomposed as S(·, y) =

DT (x) ◦ T , where DT (x) : c0 → c0 denotes the (obviously compact)

diagonal operator given by z 7→ T (x) · z. Proceeding analogously with

the other variable, we infer that S is separately compact. On the

other hand, S is not completely continuous, since it maps the sequence

(xn, xn), which is weakly null in X ×X, into the basis of c0, which is

divergent. ¤
Let us give an explicit counterexample for X = L1.

Example 1. The bilinear operator S : L1(T) × L1(T) → c0(Z) given

by S(f, g) = f̂ · ĝ is separately compact but not completely continuous.

Proof. Here f̂(n) denotes the n-th Fourier coefficient of f . To see that

S is not completely continuous, note that if kn is a lacunary sequence of

integers, for instance if kn = 3n, then the sequence given by fn(z) = zkn

is equivalent to the unit basis of `2 (see [8, Theorem 3.4, p. 39] for a
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simple proof). Thus (fn, fn) is a weakly null sequence in L1(T)×L1(T),

while S(fn, fn) = ekn cannot converge in norm. ¤

2. The range of Aron-Berner extensions

In a sense, Fact 1 is a characterization of separable Schur spaces via

c0-valued bilinear forms. We close with a similar characterization of

the Grothendieck property (every linear operator to a separable Ba-

nach space, equivalently to c0, is weakly compact) and reflexivity for

separable Banach spaces.

Let T : X1 × · · · × Xk → Y be a multilinear operator. The Aron-

Berner [1] extension αβ(T ) of T is the multilinear operator X∗∗
1 ×· · ·×

X∗∗
k → Y ∗∗ given by

αβ(T )(x∗∗1 , . . . , x∗∗k ) = w∗ − lim
x1→x∗∗1

· · · lim
xk→x∗∗k

T (x1, . . . , xk),

where the iterated limit is taken for xi ∈ Xi converging to x∗∗i in the

*weak topology of X∗∗
i . (We could have chosen any other order of the

variables and we would have got another extension, in general different

from the one given above).

In general, the Aron-Berner extensions are Y ∗∗-valued. Sometimes,

however, it may happen that they take values in Y . (The question

of whether or not a given extension is Y -valued arise naturally when

discussing “polynomial” properties of Banach spaces; see [6]).

Fact 2. For a Banach space X the following are equivalent:

(a) X has the Grothendieck property.

(b) For any separable Banach space Y , every k-linear operator

Xk → Y has Y -valued Aron-Berner extension.

(c) Every symmetric bilinear application S : X ×X → c0 which is

separately compact has c0-valued Aron-Berner extension.

Moreover, if X is separable, these statements are equivalent to

(d) X is reflexive.

Proof. The “moreover” part is clear, since a separable space has the

Grothendieck property if and only if is reflexive.

We now prove that (a) implies (b). Let T : Xk → Y be a multilinear

map, where Y is separable and X has the Grothendieck property.
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For 1 ≤ i ≤ k − 1, let us fix xi ∈ X and x∗∗k ∈ X∗∗ and consider the

first limit appearing in the Aron-Berner extension of T

T̂ (x1, . . . , xk−1, x
∗∗
k ) = w∗ − lim

xk→x∗∗k

T (x1, . . . , xk−1, xk).

Then T̂ (x1, . . . , xk−1, x
∗∗
k ) belongs to Y (instead of Y ∗∗) since it is

the value at x∗∗k of the bitranspose of the weakly compact operator

T (x1, . . . , xk−1, ·) : X → Y , by an old result of Gantmacher [4]. Now,

for 1 ≤ i ≤ k − 2 let xi be fixed in X and take x∗∗k−1, x
∗∗
k ∈ X∗∗. Then

we have

αβ(T )(x1, . . . , xk−2, x
∗∗
k−1, x

∗∗
k ) = w∗− lim

xk−1→x∗∗k−1

T̂ (x1, . . . , xk−2, xk−1, x
∗∗
k ),

which also belongs to Y since it is the value at x∗∗k−1 of the bitranspose of

T̂ (x1, . . . , xk−2, ·, x∗∗k ) : X → Y which is weakly compact by hypothesis.

Continuing these reasonings we obtain that αβ(T ) is Y -valued.

It is trivial that (b) implies (c) . It remains to show that (c) implies

(a).

As before, if T : X → c0 is a linear operator, we can consider the

symmetric bilinear form S : X×X → c0 given by S(x, y) = T (x)·T (y).

It is easily seen that

αβ(B)(x∗∗, y∗∗) = T ∗∗(x∗∗) · T ∗∗(y∗∗),

now the product being that of `∞. If X lacks the Grothendieck prop-

erty, there is a linear operator T : X → c0 that is not weakly compact,

which implies that T ∗∗ cannot fall into c0 ([4]). Thus there exists

x∗∗ ∈ X∗∗ so that T ∗∗(x∗∗) /∈ c0 and therefore αβ(S)(x∗∗, x∗∗) /∈ c0.

This completes the proof. ¤

The equivalence between (a) and (b) above was already known for

polynomials ([5]).

Let us discuss two extreme examples of the “growth” of the range of

Aron-Berner extensions.

Example 2. Suppose S : `1 × `1 → c0 is obtained from some quotient

mapping T : `1 → c0 [2]. Then T ∗∗ : (`1)
∗∗ → `∞ is surjective as well,

and therefore the range of αβ(S) is the whole of `∞.

Example 3. To obtain an example of “minimal” growth, let J be

James’ quasireflexive space [7], set T : J → c0 to be the obvious in-

clusion and let S : J × J → c0 be as before. It is easily seen that
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the range of αβ(S) is contained in the subspace c of all convergent

sequences of `∞.

Finally, let us remark that, despite Fact 1, we do have the following

result (note that L1(µ) spaces have the Dunford-Pettis property):

Fact 3. Suppose Xi are spaces with the Dunford-Pettis property. If T is

a multilinear operator such that its Aron-Berner extension is separately

weakly compact, then T is completely continuous.

Proof. Suppose T : X1 × · · · × Xk → Y is a multilinear map whose

Aron-Berner extension is separately weakly compact. Then, reasoning

as in the proof that (a) implies (b) in Fact 2, one obtains that αβ(T )

takes values in Y . Now [6, Theorem 3.7] states that if all the Xi’s

have the Dunford-Pettis property and αβ(T ) is Y -valued then T is

completely continuous. ¤

Thus, in view of Facts 2 and 3, every multilinear operator from a

Banach space having the Dunford-Pettis and Grothendieck properties

(say l∞) into c0 (or any separable space) is completely continuous. This

shows that Fact 1 may fail is one allows nonseparable spaces.
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