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Abstract. We show that one single experiment can test simultaneously and

independently both the nonclassicality of states and measurements by the violation

or fulfillment of classical bounds on the statistics. Nonideal measurements affected by

imperfections can be characterized by two bounds depending on whether we test the

ideal measurement or the real one.
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1. Introduction

Within standard quantum theory, quantum states play two dissimilar but complemen-

tary roles: (i) they express the state of the system, represented by a density matrix ρ,

and (ii) they determine the statistics of measurements, typically by projection of the

system state on the eigenstates of the measured observable. More precisely, any observ-

able event is represented by a nonnegative Hermitian operator ∆ (maybe part of a larger

positive operator-valued measure) that determines the event probability as p = tr(ρ∆),

where ρ is the state of the system. In many relevant situations ∆ is proportional to a

suitable state, such as photon-number and quadrature measurements in quantum optics.

Positive operators playing the role of ∆ can be turned into the role ρ as shown in [1].

While referring to nonclassical states is quite common, not so many effort has

been devoted to nonclassical measurements [2, 3, 4, 5]. A customary criterion of

nonclassicality for states ρ is the failure of the Glauber-Sudarshan P function to exhibit

all the properties of a classical probability density [6]. This occurs when P takes negative

values, or when it fails to be a proper function becoming more singular than the delta

function. Accordingly, we may say that the event represented by ∆ in Hilbert space

is nonclassical when its P phase-space representative takes negative values or is more

singular than the delta function.

Although the nonclassicality of states and measurements are different things, both

may be tested simultaneously within one single experiment in terms of its statistics p.

This possibility is addressed in this work by means of a simple example: nonefficient

single-photon detection in photon-added thermal states [7]. A key point of this example

is feasibility, since these states have been already generated in experiment [8], and it

explicitly includes typical imperfections such as losses and thermalization.

As nonclassicality criteria we will consider the simple and robust practical tests

recently introduced where nonclassicality is revealed by breaking classical bounds on

probabilities satisfied by all classical states and measurements [4, 9] (see [10] for other

nonclassicality criteria). The main features of these tests are recalled in section 2.

2. Classical bounds on probabilities

For definiteness let us focus on a single mode of the electromagnetic field with complex-

amplitude operator a. To derive the nonclassical tests we will use the P and Q phase-

space representatives associated to any operator A

A =

∫

d2αPA(α)|α〉〈α|, QA(α) =
1

π
〈α|A|α〉, (1)

where |α〉 are coherent states, a|α〉 = α|α〉. They are suitably normalized
∫

d2αPA(α) =

∫

d2αQA(α) = trA, (2)

with d2α = dxdy, where x, y are the real and imaginary parts of α = x+ iy.
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Exploiting the ρ ↔ ∆ symmetry, the same probability p = tr(ρ∆) can be expressed

by two equivalent formulas

p = π

∫

d2αPρ(α)Q∆(α) = π

∫

d2αP∆(α)Qρ(α). (3)

By using the first equality we are able to derive bounds sensitive to the nonclassicality

of the state ρ, while the second equality leads to bounds sensitive to the nonclassicality

of the measurement ∆. Note that the Q function is always a positive and well behaved.

2.1. Nonclassical test for states

For classical states, i. e., for ordinary nonnegative functions Pρ(α) ≥ 0, we get

Pρ(α)Q∆(α) ≤ Pρ(α)Q∆,max, (4)

where Q∆,max is the maximum of Q∆(α) when α is varied. Applying this to the first

equality in (3), and taking into account (2), we get the following upper bound S for p

p ≤ S = πQ∆,max, (5)

that holds for every Pρ(α) compatible with classical physics. If this condition is violated

it means that (4) is false and the state is not classical.

2.2. Nonclassical test for measurements

For classical measurements, i. e., for ordinary nonnegative function P∆(α) ≥ 0 it holds

that

P∆(α)Qρ(α) ≤ P∆(α)Qρ,max, (6)

where Qρ,max is the maximum of Qρ(α) when α is varied. Applying this to the second

equality in (3) we get the following upper bound M for p, provided that tr∆ is finite,

p ≤ M = πQρ,max tr∆. (7)

Equation (7) can be violated if P∆(α) fails to be positive or when it becomes a generalized

function (this is a nonclassical measurement) since in both cases (6) fails to be true.

3. Inefficient photon detection on photon-added thermal states

The same probability p may serve to test both the nonclassicality of ρ and ∆. Let us

demonstrate this by applying the above formalism to nonefficient single-photon detection

in photon-added thermal states.
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3.1. Single-photon-added thermal states

The single-photon-added thermal states read, in the photon-number basis, [7, 8]

ρ = (1− ξ)a†ρtca = (1− ξ)2
∞
∑

n=1

ξn−1n|n〉〈n|, (8)

where ρtc is a thermal chaotic state

ρtc = (1− ξ)

∞
∑

n=0

ξn|n〉〈n|, (9)

with mean number of photons

n̄ =
ξ

1− ξ
. (10)

The P representative of ρ is well-behaved but nonpositive

Pρ(α) =
1

πn̄3

[

(n̄ + 1) |α|2 − n̄
]

exp

(

−|α|2
n̄

)

, (11)

while the Q function is

Qρ(α) =
|α|2

π(n̄+ 1)2
exp

(

− |α|2
n̄ + 1

)

, (12)

so that its maximum occurs for |α|2 = n̄ + 1 being

Qρ,max =
1

πe(n̄ + 1)
. (13)

These states present three relevant features for our purposes:

(i) Their nonclassical behavior is independent of other typical nonclassical features,

since there is no quadrature squeezing, they present super-Poissonian photon-number

statistics for all n̄ > 1/
√
2, and have no oscillatory statistics [4].

(ii) They can be generated experimentally [8].

(iii) Their definition embodies a typical source of practical imperfection such as

thermalization.

3.2. Ideal single-photon detection

For ideal single-photon detection we have, in the photon-number basis, ∆ = |1〉〈1| with
tr∆ = 1. The P representative is nonclassical being more singular than the delta

function

P∆(α) =

(

1 +
∂2

∂α∂α∗

)

δ(2)(α). (14)

The Q function is

Q∆(α) =
|α|2
π

exp(−|α|2), (15)

and the maximum occurs at |α| = 1

Q∆,max =
1

eπ
. (16)
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vacuum

Figure 1. Illustration of inefficient single-photon detection.

If the measured state is classical, the single-photon probability p is bounded by [4, 9]

p ≤ S =
1

e
. (17)

3.3. Inefficient single-photon detection

In figure 1 we illustrate the case of inefficient single-photon detection. A detector with

quantum efficiency η can be modeled by a beam splitter of amplitude-transmission

coefficient t =
√
η, mixing the input state ρ with vacuum, placed before an ideal detector

∆ with η = 1 [11]. After this model two different routes can be followed:

(i) We can test the underlying ideal detection ∆ regarding inefficiency as a handicap

of practical origin. This is to say that we have ideal detection on the state ρ̃ after

the beam splitter that carries the effect of inefficiency, so that the probability is

p = tr(ρ̃∆). Since the transformation of coherent states through lossless beam splitters

is |α〉 → |√ηα〉 the state ρ̃ is

ρ̃ =

∫

d2αPρ(α)|
√
ηα〉〈√ηα|, (18)

where Pρ(α) is in (11). From this expression we get by direct computation theQ function

of ρ̃

Qρ̃(α) =
1

π

[

(n̄+ 1)η|α|2
(ηn̄+ 1)3

+
1− η

(ηn̄+ 1)2

]

exp

(

− |α|2
ηn̄+ 1

)

. (19)

For η 6= 0 its maximum holds for

|α|2 = 1 + ηn̄− (1− η)(1 + ηn̄)

η(n̄+ 1)
, (20)

leading to

Qρ̃,max =
η(n̄+ 1)

π(ηn̄+ 1)2
exp

[

−ηn̄ + 2η − 1

η(n̄+ 1)

]

. (21)

(ii) Alternatively, we can test the real measurement embodying the inefficiency as

part of the measuring apparatus. The real measurement is represented by an Hermitian

nonnegative operator ∆̃ to be determined such that the probability can be expressed as

p = tr(ρ∆̃). From (3), (18) and the equality p = tr(ρ̃∆) = tr(ρ∆̃) we get

Q∆̃(α) = Q∆(
√
ηα) =

η|α|2
π

exp(−η|α|2), (22)
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so that

Q∆̃,max = Q∆,max =
1

πe
. (23)

From (2), (22) and tr∆ = 1 we readily get

tr ∆̃ =
1

η
. (24)

Moreover, by expressing the exponential in (22) as exp(−η|α|2) = exp[(1 −
η)|α|2] exp(−|α|2) and expanding the first exponential in power series we get

Q∆̃(α) =
η

π

∞
∑

n=0

(n+ 1)(1− η)n
|α|2(n+1)

(n+ 1)!
exp(−|α|2), (25)

that readily provides the expression of ∆̃ in the photon-number basis

∆̃ = η
∞
∑

n=0

(n + 1)(1− η)n|n+ 1〉〈n+ 1| = η(1− η)a
†a−1a†a. (26)

The probability p is independent of the interpretations (i) and (ii), being [from (8)

and (26) for example]

p = tr(ρ̃∆) = tr(ρ∆̃) = η
1 + 2n̄− ηn̄

(1 + ηn̄)3
. (27)

The interpretations also do not affect the classical upper bound for states, from (5) and

(23),

p ≤ S = πQ∆,max =
1

e
. (28)

The interpretations (i)/(ii) affect the classical upper bound for measurements. Since

we are actually considering two different measurements, the ideal ∆ and the real ∆̃, we

get from (13), (21), and (24) two different classical bounds M∆ and M∆̃ with

p ≤ M∆ = πQρ̃,max tr∆ =
η(n̄+ 1)

(ηn̄+ 1)2
exp

[

−ηn̄ + 2η − 1

η(n̄+ 1)

]

, (29)

and

p ≤ M∆̃ = πQρ,max tr ∆̃ =
1

eη(n̄+ 1)
. (30)

In figure 2 we have plotted p, M∆̃, M∆, and S as functions of n̄ for η = 0.4 and

0.9, while in figure 3 they are plotted as functions of η for n̄ = 0.2 and 0.7. Several

conclusions can be derived from these plots:

(a) M∆̃ is always above M∆, so that it is more difficult to prove the nonclassicality

of the real ∆̃ than of the ideal ∆. This fits with the general idea that inefficiencies

degrade quantum properties.

(b) When η increases M∆̃ and M∆ become closer. This may be expected since when

η → 1 we get ∆̃ → ∆.

(c) In general p decreases when n̄ increases, enforcing the fulfillment of the classical

bounds. This agrees with common understanding of the effect of thermalization. An
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Figure 2. Plots of p (solid), M
∆̃

(dashed), M∆ (dotted), and S (dash-dotted), as

functions of n̄ for fixed η = 0.4 (a) and η = 0.9 (b).

exception occurs when η is rather low, since for small η thermal photons may increase

the probability of photon detection, as illustrated in figure 2(a).

(d) For low values of n̄ increasing η favors the violation of the classical bounds by

increasing p and decreasing M∆̃ and M∆, as illustrated in figure 3(a). On the other

hand, for larger n̄ we get that larger η increases the probability of detecting more than

a single photon, decreasing p as illustrated in figure 3(b).

(e) For large η and small n̄ it is possible to have p > M∆̃,M∆, S simultaneously,

so that one and the same measurement can reveal at the same time the nonclassical

character of the ρ, ∆, and ∆̃ as illustrated in figures 2(b) and 3(a).

4. Conclusions

We have shown that the same experiment can test simultaneously and independently

both the nonclassicality of states and measurements. This is because the nonclassicality

of states and measurements manifests via the violation of different and independent

bounds to the same statistics. We have shown that practical imperfections produce the



Nonclassical tests 8

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.3

0.4

0.5

0.6

0.7

(a)

(b)

=0.2

=0.7

Figure 3. Plots of p (solid), M
∆̃

(dashed), M∆ (dotted), and S (dash-dotted), as

functions of η for fixed n̄ = 0.2 (a) and n̄ = 0.7 (b).

existence of two bounds testing the ideal and real measurements.
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