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Abstract: In this strictly positional paper we propose a general approach to 

bipolar knowledge representation, where the meaning of concepts can be 

modelled by examining their decomposition into opposite and neutral 

categories. In particular, it is the semantic relationship between the opposite 

categories which suggests the emergence of a paired structure and its 

associated type of neutrality, being there three general types of neutral 

categories, namely indeterminacy, ambivalence and conflict. Hence, the key 

issue consists in identifying the semantic opposition characterizing the meaning 

of concepts and at the same time the type of neutrality rising in between 

opposites. Based on this first level of bipolar knowledge representation, paired 

structures in fact offer the means to characterize a specific bipolar valuation 

scale depending on the meaning of the concept that has to be verified. In this 

sense, a paired structure is a standard basic structure that allows learning and 

building different valuation scales, leading to linear or even more complex 

valuation scales.  

Keywords: Bipolarity; Neutral concepts; Paired structures; Knowledge 

representation. 

1 Introduction 

Psychology and Neurology are providing relevant results for modelling human 

decision making. The human brain has specifically and successfully evolved to 

manage complex, uncertain, incomplete, and even apparently inconsistent 

information. For example, neurologists have shown that the part of the brain taking 

care of making up the last decision is different to the part of the brain in charge of the 

previous rational analysis of alternatives, being the first part associated to emotions 

[5], [6]. This is an extremely important result, as it suggests that different parts of our 



brain participate in our decision processes, each one following its own rules within a 

connected structure still under study. Among other key achievements, it has been 

recently shown the key role that concept representation plays in our knowledge 

process, along with the fact that the human brain manages positive information in a 

different way than negative information, suggesting some kind of bipolarity in the 

way that our brain handles information [11], [12]. In this way, positive and negative 

affects are not processed in the same region of the brain, as they are generated by 

clearly different neural processes [38]. 

The importance of bipolar reasoning in human activity was settled by Osgood, 

Suci and Tannenbaum in 1957 [35] -see also [26], [47]-, proposing a semantic theory 

based on the Semantic Differential scale for valuing the meaning of concepts. This 

theory became very popular for measuring attitudes in an easy way, where individuals 

are asked to use the Semantic Differential scale for valuing if a given object is 

perceived as being positive, neutral or negative. Thus, the object cannot be evaluated 

as being positive and negative at the same time. This led to some critics (see e.g. [12], 

[19], [26]) stating that the Semantic Differential scale does not consider other relevant 

attitudes like e.g. ambivalence, making it necessary to allow simultaneous positive 

and negative valuations. Thus, the neutral value that appears in a Semantic 

Differential scale can hardly be understood as a proper representation for certain 

attitudes that seem to escape the linear logic of such a scale. 

Therefore, it can be stated that our internal decision making process is of a 

complex nature, implying previous differentiated knowledge acquisition and 

representation processes (see e.g. [31], [32]), and quite often implying multi-criteria 

arguments. In fact, a 1-dimensional scale is too poor for modelling most of our 

problems, not giving room to the true conflicts we perceive from reality. Hence, once 

such a complexity is acknowledged, our mathematical modelling must continuously 

balance precision and simplicity, just as our brain looks for relevant but at the same 

time manageable information. Within such Multicriteria Decision Making framework 

(see e.g. [24]), the Semantic Differential scale of Osgood [35] is commonly known as 

the bipolar univariate model, while a somehow modified Semantic Differential scale 

(see e.g. [26]) consisting of two unipolar scales joined together, respectively allowing 

simultaneous positive and negative measurements, is commonly known as the 

unipolar bivariate model. A well-known example for the bipolar univariate model in 

decision theory is Cumulative Prospect Theory [54] and its generalization by means 

of the Choquet integral with respect to bi-capacities [25].  

Generally speaking, understanding concepts by their decomposition into opposite 

poles (meaningful opposites in the sense of Osgood [35]), enables us to capture the 

tension between somehow opposite arguments, a tension that is found in the way we 

understand most of the concepts we use. If an objective measure is not available, 

concepts in real life cannot be manipulated in an isolated manner, without taking into 

account their immediately related concepts. In some way, such simultaneous but 

somehow opposite views are unavoidable to start understanding the world, and indeed 

we need more complex knowledge structures to manage more than two views. But 

addressing two views is the minimum effort we should expect to acknowledge 

complexity. 

The point of departure of this paper are the above considerations, focusing our 

attention on the construction of basic structures that deal with the bipolar meaning of 



concepts (see [39] for a previous attempt), together with the associated neutrality that 

emerges from the tension between opposites or poles. Notice here that neutrality in 

our sense should not be confused with the neutral value in the traditional sense (see 

[15], [16], [17], [24], [35], among others), given that we refer to a neutral category 

which does not entail linearity between opposite poles. Instead, we will stress the 

existence of different kinds of neutrality that allow the representation of a number of 

concepts directly generated from the semantic relation between poles.  

Therefore, our proposal for examining bipolar knowledge representation is based 

on paired structures, understanding a paired structure as a basic structure allowing 

learning and building different valuation scales, not necessarily linear but more 

complex ones. In fact, what a paired structure represents is the semantic structure of 

its associated valuation scale. In this way, the measurement of the meaning of a 

concept, which occurs on the valuation scale, has proper sense only regarding its 

respective semantic structure. Hence, paired structures emerge from the semantic 

relation among opposites together with their characteristic neutrality, giving rise to a 

pertinent type of (bipolar) valuation scale. 

From our point of view, the key issue at a first stage of knowledge is the structure 

associated to the semantic relation between poles, and how neutral concepts are 

generated. Again, as pointed out in [31], there are many different ways of being in 

between poles, but such in-betweenness does not necessarily entail a neutral situation; 

instead, it can refer to a particular symmetry, as an element of a scale with no 

conceptual meaning but that of being somehow equidistant from poles (being not able 

to choose among poles does not necessarily imply a concept behind). Particularly, we 

consider that symmetries are not neutral concepts, since they are generated outside a 

semantic argument. 

The paper is organized as follows: in the next section we shall give an example to 

fix our intuition. This example will be completed throughout the paper. Our proposal 

will be formalized in Section 3, where we explain what we understand by paired 

concepts and paired structures. In Section 4 we shall analyse in detail the types of 

neutrality rising from paired structures, followed by an example on preference 

modelling. In Section 5 we present the standard procedure for building paired 

structures, ending with some final comments briefly clarifying our position. 

Let us finally remark in this introduction that this paper is not about formal logic 

or its interpretation, but rather it deals with knowledge and natural language 

representation by means of logical tools. 

2 Preliminary Example: On the Representation and 

Measurement of Size 

Let us try to illustrate our view through an example. 

The meaning of size can be modelled based on some set of characteristic 

properties which can be somehow measured (subject to standard imprecision). Then, 

the measurement of a property occurs on a valuation scale which exists because there 

is a previous decomposition of the meaning of size, either as a 1-dimensional or n-

dimensional concept. In this way, if size is represented as e.g. size = height, the 



verification of its occurrence can be valued within the real line. That is, by taking the 

size of a person as height, we can refer to how tall that person is. Let us examine this 

meaning of size = height in more detail. 

Although we all know that height is measurable, we do not try to measure the 

height of each person we meet. Instead of saying “Paula’s height looks around 1.90 

meters”, most people will talk about Paula as a tall person, i.e., in terms of the tallness 

concept (which can be regarded as a fuzzy context-dependent concept [55]). Indeed, a 

person’s height is usually judged in terms of the concepts tall and short, which 

constitute the reference or semantic landmarks for the evaluation of such a feature. 

We hardly use the notion of a person’s height without the landmarks provided by the 

poles tall/short or any other equivalent pair. 

If our concept of tallness were crisp, the term “Paula is tall” would have a direct 

translation on the valuation scale in terms of height: for example, “Paula is tall” if and 

only if “Paula’s height is at least 1.70 meters”. As soon as we have this crisp 

definition, the concept of being non-tall is automatically created by the classical crisp 

negation: “Paula is non-tall” if and only if “Paula’s height is less than 1.70 meters”. 

That is, tallness is associated to the interval [1.70,∞) meanwhile non-tallness is 

associated to the interval (0,1.70). In order to generate such paired concepts, we 

simply need to assume the existence of the crisp negation: a person x within a 

community X belongs to the set of tall people within X if and only if the height h(x) of 

such a person is greater than or equal to 1.70. And a person x within the community X 

belongs to the set of non-tall people within X if and only if the height h(x) of such a 

person is smaller than 1.70. The set of tall people is Tall = {xϵX / h(x) ≥ 1.70}, and 

the set of non-tall people is Non-tall = {xϵX / h(x) < 1.70}. Within such a crisp 

context, no person can be tall and non-tall at the same time, and everybody will be 

either tall or non-tall. A simple paired structure to represent height has been built 

from only one concept (tallness) and its negation (non-tallness), and the characteristic 

functions of both crisp concepts 

     ( )      ( )            ( )      ( )       

         ( )      ( )                ( )      ( )       

are defined in such a way that  

     ( )   (         ( ))      

         ( )   (     ( ))      

being n:{0,1}→{0,1}, such that n(0) = 1 and n(1) = 0, the only negation within the 

crisp {0,1} framework (in fact, and within the crisp framework, the only one-to-one 

mapping from {0,1} into itself different from the identity mapping). 

Hence, tallness and non-tallness appear as paired concepts in a natural way within 

the crisp framework. But meanwhile a measurement of height is both available and 

precise, there is no room for any kind of neutral concept, although borders between a 

concept and its negation ({xϵX / h(x) = 1.70} in the above example) might deserve 

specific attention, precisely because of the potential imprecision in measurement. 

However, the introduction of short as the dual concept of tall allows different 

translations into measurable height, such that tallness and shortness exist now as 

paired concepts. 



For example, and keeping the crisp approach, we can define that “Paula is short” 

if and only if “Paula’s height is at most 1.60 meters”. Again the concept of non-short 

is automatically created, in such a way that Short = {xϵX / h(x) ≤ 1.60}, and the set of 

non-short people is Non-short = {xϵX / h(x) > 1.60}. In this way, all those people 

with height within the interval (1.60,1.70) are neither tall or short, leading to some 

kind of indeterminacy (we cannot assign any of the only two available concepts to 

some individuals). In this particular case we know that in order to solve this 

indeterminacy we can create an intermediate concept, like Medium = {xϵX / 1.60 < 

h(x) < 1.70}. But this is a different argument, conducted in a subsequent stage. At 

first, what we find from a semantic point of view is just that none of the two opposite, 

available concepts apply to some individuals. In general, indeterminacy represents 

this hesitant situation. That is, indeterminacy suggests the need of a new concept, 

which not necessarily will be an intermediate concept as Medium in the previous 

example. In fact, notice that the linearity between Tall-Medium-Short is due to the 1-

dimensionality of size = height, which in no way is the only possible meaning for size 

(please be aware of the specificity of this example, where the linear representation 

behind is a priori known and the two opposite concepts we have chosen correspond to 

left and right tails). 

On the other hand, we could have defined that “Paula is short” if and only if 

“Paula’s height is at most 1.80 meters”. In this case, Short = {xϵX / h(x) ≤ 1.80}. 

Then all those people with height within the interval [1.70,1.80] will be both tall and 

short, leading to a certain kind of ambivalence. That is, now what we find from a 

purely semantic point of view is that both opposite concepts simultaneously apply. 

Clearly, in this specific example it is again suggested to intersperse an intermediate 

concept in between the poles, like Medium = {xϵX / 1.70 ≤ h(x) ≤ 1.80}, and then 

reshape tallness and shortness to avoid overlapping, for example, Tall = {xϵX / h(x) > 

1.80} and Short = {xϵX / h(x) < 1.70}. Once more, the construction of a linear 

valuation scale (or equivalently, the interpretation of such ambivalence as an 

intermediate concept Medium) depends on a different, subsequent argument relying 

on a previous interpretation of the semantics of the poles and their relationship.   

Now, it is important to realize that tallness and shortness exist as paired concepts 

no matter if they can be translated into a measurable height.  

Our main argument is based upon the above observation: two opposite crisp 

concepts that refer to the same property, and depending on their semantics, can 

generate two neutral concepts (indeterminacy and ambivalence, or both). A more 

careful analysis of indeterminacy and ambivalence might suggest specific scales (see 

e.g. [27]) by modifying the definition of the two basic opposite concepts and/or 

introducing new intermediate concepts. But these valuation scales and their 

corresponding semantics can only be properly understood by firstly addressing the 

particular semantic relationship between the correspondent poles. And that is the role 

we give to paired structures, as well as the reason why we find it important to define 

and study them.  

In addition to indeterminacy and ambivalence, there is a third standard neutrality 

that can appear in more complex situations. In the above example we have based our 

arguments upon the existence of a unique, linearly-based property for understanding 

size, given by height. In practice, however, most of our concepts are complex in the 



sense that they can be decomposed into simpler concepts (see e.g. [23]). In this case, 

our evaluation proceeds through an (perhaps non conscious) aggregation process. 

For example, when talking about the size of a person we can define two opposite 

categories like big and small. But being a big or small person might depend on height 

(tall versus short) and weight (fat versus slim). Of course it may be the case that a 

person is neither big nor small, being there indeterminacy, and another person can be 

both big and small, being there ambivalence. But it can also happen that we cannot 

choose among the two concepts big and small because there is a conflict behind, i.e. 

both opposite concepts hold in a conflictive manner. It is not the same to say that a 

person is both big and small because it is simultaneously both tall and short and both 

fat and slim, than to say that such a person is big and small because it is tall but slim, 

or fat but short. In this more complex framework we can find conflict as a third kind 

of neutrality associated to opposite concepts, together with indeterminacy and 

ambivalence. 

To conclude this example, let us briefly illustrate the notion of point of symmetry. 

To this end, let us assume again that the meaning of size is interpreted solely in terms 

of the measurable characteristic height, and that our references are given by the 

predicates Tall and Not-tall, but let us now consider these as fuzzy (i.e. non-crisp) 

concepts. That is, we now allow both notions to be evaluated on the interval [0,1] 

rather than on the binary set {0,1}. Then, for any xϵX, for instance we may set the 

meaning of Tall and its complement to be represented by the fuzzy sets  

0                 if ( ) 1.70

( ) 1.70
( )  if 1.70 ( ) 1.80 , ( ) 1 ( )

1.80 1.70

1                  if ( ) 1.80

Tall Not tall Tall

h x

h x
x h x x x

h x

  





    




. 

As usually admitted, this kind of representation enables both Tall and its 

complement to exhibit a somehow imprecise semantics, avoiding the boundary 

problems associated to crisp predicates. But, apart from that, we still have just a 

predicate and its complement as poles, which therefore fully explain the whole 

universe of discourse X, again leaving no room for any neutral concept. However, 

contrarily to the previous crisp context, now it is possible for an object to be equally 

associated to a pole and its complement, as now ( ) ( )Tall Not tallx x    can hold for a 

given object xϵX (i.e., whenever h(x) = 1.75). We refer to this situation by saying that, 

in a fuzzy context, a reference predicate and its complement admit a point of 

symmetry between them.  

It is important to stress that such point of symmetry does not represent a concept 

different than poles (either a neutral or an intermediate one): as exposed above, there 

are no other available options beside poles as these are complementary notions. 

Rather, in this situation we hesitate between both poles as a consequence of their 

imprecise, fuzzy semantics, which allows an object to be considered as e.g. half tall 

and half non-tall. This hesitation is clearly different from a semantic point of view to 

those associated to a situation of overlap (ambivalence), lack of covering 

(indeterminacy) or conflict between the poles. Particularly, a point of symmetry 

should not be confused with an intermediate concept between the poles: though both 

notions are somehow related to linear scales, the latter indeed represents a different 



valuation option from the poles, while the former represents just an equilibrium 

between them, only available due to the imprecise representation of these references. 

3 Semantic opposition and paired structures 

Let us study the relationships that can arise between a pair of concepts when these 

two concepts are semantically related, constituting the reference landmarks for a 

certain linguistic representation of reality. We will refer to those pairs of concepts 

fulfilling such relationship as paired concepts. We will use the term pole to refer to 

any of the two concepts being paired. Some concepts that constitute paired concepts 

are, as pointed out in the previous section, tall/short, fat/slim, big/small, but it is easy 

to find other examples such as cheap/expensive or good/bad (see e.g. [40]). 

3.1 Paired concepts 

Paired concepts are not simply a couple of concepts. These two concepts must 

somehow define a specific structure. Hence, our first objective is to clarify what we 

mean by paired. In fact, as pointed out above, our mind is able to represent complex 

situations, related to interests and emotions, by using a pair of landmarks or poles that 

constitute the references for evaluation. Such reference concepts or poles allow 

configuring the evaluation framework in which information can be assessed. In other 

words, they constitute the referential context in which pieces of information are 

understood. As shown in our preliminary example, only if size is assigned the 

meaning of height as tallness, and such meaning is translated into a valuation scale 

with its specific measure, only then we can be confused in thinking that tallness can 

be understood without shortness. Otherwise, if such a measure has not yet been 

provided, even the concept of tallness requires the concept of shortness in order to be 

understood.     

Hence, poles appear in pairs. We cannot understand most concepts without also 

knowing the meaning of those other concepts that define their limits. In this sense, 

two concepts have to be related in some specific way to effectively configure an 

appropriate referential context, i.e., in order to properly constitute a pair of reference 

landmarks. The previous arguments suggest the existence of a certain structure, which 

emerges from a pair of somehow opposite concepts, and constitutes the 

abovementioned evaluation framework arising from these reference poles. 

These ideas suggest that we should focus on the structural/semantic opposition 

between paired concepts. However, such opposition does not have a unique possible 

representation or definition, and the different opposition relationships between poles 

will in fact generate different structures.  

For example, very tall and very short are opposite concepts, and more or less tall 

and more or less short are also opposite concepts, but they indeed suggest very 

different spaces in between them (the first pair of poles cannot hold at the same time, 

while the second pair can). In this way, we refer to duality to capture in a general 

sense such a semantic opposition.  



3.2 Duality: negation, antonym and antagonism 

In this paper, we focus on three particular forms of such a duality relation, specifically 

negation, antonym and antagonism (see e.g. [48], [49], but also [41]).      

Before formalizing the meaning of these duality relationships, it is important to 

make explicit that we assume that any concept or predicate P (and thus particularly 

reference poles) can be represented as a fuzzy set 
P  over a particular universe of 

discourse X, in such a way that ( ) [0,1]P x   denotes the degree up to which an 

object x X  verifies predicate P. Nonetheless, notice that this assumption is not 

really necessary, as we would only need the predicate logic framework of classical or 

crisp sets (defined through a binary {0,1} scale instead of a continuous [0,1] scale). 

But as crisp sets are special instances of fuzzy sets, we study paired concepts as 

paired fuzzy sets for examining bipolar knowledge representation in a more general 

framework.  

In a first approach, we will also assume reference concepts or poles to be simple, 

in the sense of referring to a characteristic depending on just a single criterion or 

dimension (like tall and short refer to size = height), i.e. not admitting a further 

decomposition in a set of underlying criteria or sub-concepts. Later on we will 

remove this assumption and analyze also complex multidimensional reference 

concepts, as could be big/small or good/bad, which usually require a further 

decomposition and aggregation processes in a set of underlying criteria. 

Now, let us recall that a negation within the fuzzy context (see again [48], [49]) is 

usually understood as a non-increasing function :[0,1] [0,1]n   such that n(0) = 1 

and n(1) = 0. A strictly decreasing, continuous negation being also involutive (i.e. 

such that n(n(v)) = v for all v in [0,1]) is called a strong negation. If ( )F X  denotes 

the set of all fuzzy sets (i.e. predicates) over a given universe X, then any strong 

negation n determines a complement operator : ( ) ( )N F X F X  such that 

( )( ) ( ( ))N x n x   for any predicate ( )F X  and any object x X .  

On the other hand, an antonym operator was defined [50] as a mapping 

: ( ) ( )A F X F X  verifying,   

A1) 2A Id  (i.e. A is involutive);  

A2) ( ) ( ) ( )( ) ( )( )x y A y A x       for all ( )F X  and ,x y X ; 

A3) A N  for a given complement operator N (i.e. A is sub-additive with respect to 

the complement operator N or, equivalently, with respect to the negation n that 

defines N). 

Finally, for the purposes of this paper we will refer to an antagonism or 

dissimilarity operator as a mapping : ( ) ( )D F X F X  that fulfils,  

D1) 
2D Id  (i.e. D is involutive); 

D2) ( ) ( )x y   ( )( ) ( )( )D y D x   for any ( )F X  and ,x y X .  



It is important to note that the main difference among antonym and antagonism 

operators lies on that antonyms are always sub-additive, in the sense of A3. In other 

words, the antonym always lies behind the complement, while antagonistic predicates 

could be over-additive, i.e. it could be that D ≥ N for a certain complement N. As we 

shall see, the distinction between sub-additive and over-additive duality operators is 

relevant as it reflects two essentially different semantic relationships between poles, 

not necessarily incompatible (two concepts can overlap while at the same time not 

fully explaining reality).  

Observe also that complement is a special case of antonym, as well as that 

antagonism somehow suggests a generalization for antonyms. Finally, note that all the 

considered duality operators (negation, antonym, dissimilarity) are involutive, i.e., 

they naturally define pairs of concepts related through duality.  

3.3 Paired structures 

Paired structures belong to a first level of (bipolar) knowledge representation. They 

stand as the subjacent structure that allows making sense of (bipolar) valuation scales, 

where neutrality is not simply a symmetry point but a concept in itself that requires 

further examination. With the purpose of exploring the nature of such neutrality, we 

propose to go further into the roots of bipolarity and go beyond standard valuation 

scales by dealing with paired concepts and paired structures. 

In a general sense, we consider that two concepts P,Q are paired if and only if P = 

D(Q), and thus also Q = D(P), holds for a certain semantic duality operator D. Then, 

we assume that two paired concepts provide semantic references for a linguistic 

assessment of a characteristic, in such a way that a semantic structure emerges from 

these two referential notions. We refer to these semantic valuation structures as paired 

structures. Our point is that, besides the original pair of opposite references, a paired 

structure emerges together with its neutral concepts, as a consequence of the specific 

semantic relationship holding among opposite poles. 

In this paper we are mainly concerned with analysing the features of these paired 

structures, and particularly (as it will be shown throughout this paper) the manner in 

which the semantic relationship between paired concepts determines both the 

semantic valuation structure arising from them and its representative power.  

A first observation is that negation (in the sense of complement) not-P of a 

concept P cannot be viewed as a different concept from P, as it happens with 

antonyms and antagonists. Not only it does not add qualitatively different 

information, but it is kind of unnatural to estimate not-P independently from P 

(moreover, we should also remind that intuition works with positively defined 

concepts, and negation itself is not positively defined, see e.g. [14], but also [31]). 

This is a key issue whenever we look for the possibility that two opposite or dual 

concepts generate additional neutral concepts from their semantics. Still, it should be 

noticed that we refer to a semantic argument to define a paired structure. Therefore, 

although in our opinion antonym and antagonistic relationships represent the proper 

framework for paired structures, it is true that negation or complement appears as a 

very specific case of semantic opposition (see e.g. [52]). In this sense, a concept and 

its negation indeed constitute a paired structure that implies a particular empty space 



between poles, and in fact, duality operators different from negation allow generating 

additional neutral concepts in between poles. 

As suggested in the preliminary example, neutrality may arise in different 

manners, whenever an object fails to be fully explained from the two reference 

concepts, denoting a situation that in turn is related to different types of hesitation 

regarding the poles. Neutrality will in fact represent a different concept from the 

poles, another relevant available option for evaluating objects. And depending on the 

circumstances, such neutrality can suggest to search for an alternative symmetrical 

category (like in the tall/short example a medium category was suggested from the 

existence of ambivalence or indeterminacy). Particularly, different paired structures 

(arising from different semantic relationships between the poles) are able to represent 

different types of neutrality in our knowledge about reality. Again, we stress our key 

idea that a paired structure requires two opposite or dual concepts, together with a 

semantic building procedure leading to the emergence of new neutral valuation 

concepts. The existence of such neutrality, which is a consequence of the semantic 

relationship between opposite concepts, will sometimes be definitive in order to 

identify the particular paired structure we are dealing with. 

4 Neutrality 

Neutral concepts are generated from two opposite concepts whenever an object 

cannot be properly explained in terms of the poles. From a fuzzy approach, the point 

here is that the two poles may not form a fuzzy partition of the universe of discourse, 

see [44] or any of its generalizations based upon any alternative logic (e.g. [13], but 

particularly [1], [2]). In this context, the term neutral means that besides the character 

or semantics of both poles, their relationship implies the existence of an additional 

concept that applies to those objects that cannot be properly explained from poles.  

But as suggested in [31], there are different types of neutrality or neutral categories.  

4.1 Types of neutrality 

Examining the bipolar opposition holding among paired concepts, it may be on the 

one hand that both poles somehow overlap [8], suggesting that both poles may be 

reshaped to create some middle concept between the new poles. On the other hand, it 

may be that objects cannot be fully explained solely in terms of the given poles, 

suggesting the search for an additional concept [10]. Moreover, poles might show 

some conflictive behavior. The particular neutrality we find depends on the semantic 

relationship between our paired references (in the next section we shall describe a 

building procedure to obtain our paired structures and their associated neutral 

concepts). Let us now concentrate in describing some of the different ways of being in 

between poles and the types of neutral concepts that can appear within paired 

structures. 

Let us start by analysing the case of a paired structure given by a predicate P and 

its complement Q = N(P) ≡ not-P. As discussed above, the complement not-P of a 

concept P is not logically independent of P, and thus the former does not actually 



define a different category nor provides different information from that of the original 

concept P. That is, complementation constitutes a very specific semantic relationship, 

in which the references just allude to the verification or lack of verification of a single 

concept or pole. In this way, when for example we conceive size = height as 

expressed in terms of two complementary references (e.g., tall and non-tall), we are in 

fact just measuring a single notion, since any verification degree of tall corresponds to 

an inverse degree of verification of non-tall.  

Hence, neutral concepts can only arise when we really deal with two logically 

independent poles. As already shown, in a binary {0,1} setting, if the valuation 1 is 

assigned to e.g. tall people, then non-tall people obtain the valuation 0. Thus, there is 

no room for anything else, since both references are understood as crisp, precise 

notions that complement each other to cover the whole universe of discourse.  

Notice that, in case we admit a pair of complementary references to be modelled 

as fuzzy (instead of crisp) predicates, basically the same situation remains to hold. 

That is, in a fuzzy context a predicate and its negation are still not logically 

independent, and also they are still able to explain the entire universe of discourse. 

Therefore, again no neutral concepts can arise in this setting.  

However, a fuzzy representation enables the modelling of a certain kind of 

linguistic uncertainty, usually associated to imprecise predicates. And, as pointed out 

at the end of Section 2, this linguistic imprecision now allows a predicate and its 

negation to simultaneously hold, up to a certain degree, for a given object. In this 

sense, for instance, an individual can be assessed as being both half tall and half not-

tall. This leads to a particular hesitation, as we find difficulties to choose between 

both references, although such hesitation does not suggest a third, different concept to 

come into play. Rather, the individual is adequately explained in terms of the 

available pair of references, but their imprecise nature admits the emergence of a 

symmetry point expressing an equilibrium or balance between them. Thus, in 

accordance with the discussion at the beginning of this section, symmetry points 

neither represent a concept (or valuation alternative) different from the poles (as 

intermediate concepts or symmetries do represent) nor they are to be considered a 

specific kind of neutrality (in the sense given in the introduction of this paper).     

More formally, given a strong negation n and assuming that a membership 

function is associated to complementary poles, in such a way that   ( )( )  

 (  ( ))     , a (fuzzy) symmetry point can be found when   ( )( )  

  ( ) for a certain    . Notice that, since n is a negation, the latter equality can 

only take a single value restricted to the interval (0,1), and in fact it takes the value 

0.5 in case we use the standard negation n(x) = 1 – x.  

A similar scenario is reached if we allow probabilistic uncertainty instead of 

linguistic uncertainty, i.e., if we consider the poles as events with an associated 

probability for any object in consideration. As long as both poles are considered as 

complementary notions, they cover the whole sample space, leaving no room for 

other alternative events. Then, a (probabilistic) symmetry point is found whenever the 

probabilities of both poles are equal for a certain object (in which case they are to be 

equal to 0.5).  

Thus, in case of complementary references, neither fuzzy nor probabilistic 

uncertainty by themselves can lead to the apparition of neutral concepts or 

symmetries constituting valuation alternatives different from the poles. That is, the 



crucial point in order to enable the emergence of neutral concepts is not whether the 

modelling of our references admits a fuzzy or probabilistic representation of 

uncertainty, but whether our references are complementary or not.  

Before dropping the assumption of complementary references, let us briefly 

consider an aspect in relation with the estimation of exact membership or probability 

degrees. Such degrees are usually introduced in order to enable the modelling of 

certain kind of uncertainty, either linguistic or probabilistic. But at the moment of 

estimating these degrees, we may easily have to face a different kind of uncertainty, 

related to the difficulty of choosing an exact value for them. To some extent, 

depending on the context and the specific problem being addressed, we may be forced 

to admit that our valuations or degrees are subject to some imprecision regarding its 

estimation. Thus, such an estimation imprecision represents a different kind of 

uncertainty from those usually associated to imprecise predicates or uncertain events, 

in fact a kind of uncertainty related to the way we express other uncertainties in our 

models. Particularly, it is possible to allow a range of imprecision levels for our 

estimations, in such a way that absolute imprecision may be taken to represent an 

alternative case of symmetry between poles, expressing ignorance or lack of 

knowledge. Instances of such absolute imprecision can be found, for example, when 

we can only state that the actual probability value is simply between [0,1] (see [46]), 

or that the actual degree of membership is simply between [0,1] (see [45]). In both 

situations we find a certain hesitation to choose among the poles, in this case due to a 

lack of knowledge. But such an absolute estimation imprecision should not be 

considered as a neutral concept, as it is not created from the semantic tension between 

the poles.  

However, as stated above, the situation changes qualitatively when we move to the 

case of a pair of poles (P,Q) related through a non-trivial duality operator D, such that 

P = D(Q) and Q = D(P) are not complementary poles.  

Let us start by considering the poles as related through an antonym or sub-additive 

duality operator A, such that Q = A(P). If each pole is contained in the complement of 

the other pole we can assume that they are logically independent. That is, we cannot 

obtain one pole from the other by means of a logical operation, but necessarily as a 

consequence of a semantic operation. Thus, each pole provides different information, 

allowing potential neutral concepts within such a paired structure. As a consequence 

of the sub-additive nature of the involved semantic operator, both poles are somehow 

separated (in the sense of not covering the whole universe of discourse), leaving 

space for some objects that could not verify either one pole or the other. This is not a 

situation in which we hesitate about whether an object verifies a pole or not, but one 

in which we are quite sure that reference concepts cannot fully explain an object. This 

type of neutrality, which we call indeterminacy, is therefore different to the 

imprecision symmetry, and it is not necessarily associated to a fuzzy representation 

framework, but to an idea of separation between poles.  

For example if we consider the semantic references given by the poles very tall 

and very short, it is quite likely that, when applied to any appropriate universe of 

discourse (for instance the students in a classroom), there can be some individual who 

cannot be considered as either very tall or very short. This produces an indeterminacy 

which should not be confused with a degree of half-verification of both poles. Instead, 

indeterminacy strongly suggests the search for more information, perhaps in order to 



introduce a new category, maybe half-a-way in a linear order where poles stand as 

extreme values. But indeterminacy does not necessarily lead to such a linear scale. 

Consider now that the poles are related through an antagonistic over-additive 

duality operator D, such that Q = D(P). Thus, each logically independent pole 

provides different information, and as a consequence of the over-additive nature of 

the semantic operator, both poles are somehow overlapping (in the sense of 

redundantly covering the universe of discourse and leaving no space in between 

poles). As previously stated, this is not a situation in which we know that reference 

concepts cannot fully explain an object, but one in which we are not sure which one 

of those concepts fully explains the object. Then, this type of neutrality, which we call 

ambivalence, is also different to the imprecision symmetry, not necessarily associated 

to a fuzzy representation framework, but to an idea of redundancy in between poles.  

As an instance, consider now the references not very short and not very tall for 

understanding the size = height of an individual. Some extremely short and extremely 

tall students can fail to verify either pole (indeterminacy). But certainly some students 

can fulfil both opposite references, being not very tall and not very short, at the same 

time, thus producing ambivalence between poles. In a fuzzy classification context (see 

again [1], [2]), the appearance of ambivalence would signal overlapping classes, 

suggesting the search for more restricted references or classes that exclude the 

overlap.  

In the previous examples we started from the opposition between a pole and its 

negation, in the simplest case, or between two dual poles, but in both cases we are 

assuming that these references are modelled based on a simple, 1-dimensional 

underlying criterion or characteristic. In many contexts, however, the poles are rather 

complex dual concepts (as good/bad or big/small, for example), that show a multi-

dimensional nature and suggest decomposition in terms of simpler reference concepts. 

This situation can be associated to a multi-criteria framework, in which the 

verification of a pair of poles is necessarily obtained through the aggregation of 

several criteria. It is in this context where conflict can naturally appear as another type 

of neutrality. Such conflict should be naturally expected within multi-criteria paired 

structures, whenever serious arguments for both poles are simultaneously found in 

different, independent criteria (like when in the big/small example we find that 

someone is simultaneously very tall but very slim). This situation suggests that 

complex poles can show a kind of conflictive relation, different to the ambivalent 

overlapping associated to redundant poles over a simple, 1-dimensional characteristic. 

This type of neutrality relates to another different hesitation, associated to a 

disagreement or collision between arguments that refer to different criteria. In fact, 

this conflict should not be expected when dealing with paired structures on a 1-

dimensional argument. Such colliding arguments get a clear meaning only within 

multi-criteria paired structures, once poles are understood as complex positively-

defined dual concepts that harvest families of underlying independent arguments. Of 

course, different kinds of conflict can be acknowledged in higher multi-dimensional 

problems besides the above conflict between two underlying criteria. 

4.2 Example: preference representation 



To conclude this section, let us introduce now a brief example in which the previous 

ideas are illustrated in the context of preference modelling and representation. In our 

opinion, preference models constitute a particularly adequate framework to illustrate 

some issues of paired structures in relation with bipolar knowledge representation 

models and how all those neutralities can simultaneously appear in practice.     

Let us remind that preference models are typically based on the pairwise 

comparison of decision alternatives in relation with a family of preference predicates. 

For instance, we may analyse two possible holyday trips, let us denote them by x and 

y, in terms of whether we consider x to be clearly preferred to y. The implicit 

comparison predicate in this case is more preferred than, which is usually referred as 

the strict preference predicate. Note that we can carry out the comparison the other 

way round, applying the same strict preference predicate to the same two alternatives, 

but switching the order of x and y, so in this case we would be analysing whether y is 

strictly preferred to x. Such reversed predicate is also referred as the inverse strict 

preference, and in practice we need at least both predicates (a preference and its 

inverse) in order to devise the preference relationship between x and y. This allows 

understanding preference models in terms of a bipolar representation framework, 

since a preference and its inverse in fact play the role of opposite references (poles), 

from which other predicates (like indifference or incomparability) could be defined, 

as usually are, in order to enable capturing a wider spectrum of preference attitudes 

and produce more realistic representation models. The set of all considered or allowed 

predicates constitutes then a preference structure, in which some relations among the 

different predicates should hold (in order to acquire an actual structural performance, 

see again [31]), and which represents the fundamental valuation structure or scale for 

preference representation.  

Then, our point is that a preference structure cannot be understood unless we 

consider both the semantic relationship between the basic preference predicates from 

which the structure is built, and how the different preference predicates are related to, 

and obtained from, the configuration of those basic references. That is, a preference 

structure constitutes an instance of second-level valuation structure, in which the 

semantics of its components is based on a particular interpretation of the first-level 

structure arising from the opposing references. In other words, preference structures 

rely on an underlying paired structure, from which the semantics of the different 

preference predicates is developed in terms of their relationship with the references 

and the different neutralities arising from their semantic opposition. 

For instance, in preference representation it is usually admitted (see e.g. the 

classical book of Von Neumann and Morgenstern [34], as well as [21]) that a strict 

preference and its inverse can simultaneously fail to hold for some pairs of objects. 

Then, since neither of the poles are verified, a neutral indeterminacy is reached, which 

is usually interpreted as a preference predicate of indifference, constituting an 

additional intermediate concept in preference structures. However, it is important to 

note that assigning the meaning of indifference to such indeterminacy does not belong 

to the semantic relation between poles. In fact, at a first semantic level such 

indeterminacy is just saying that x is not strictly preferred to y, and that neither y is 

preferred to x. It could be that in fact x and y are not comparable, or that we have not 

enough information or knowledge to state any preference judgement. Thus, such a 



meaning of indifference is only acquired through a set of assumptions taken to 

produce a specific second level interpretation of the underlying paired structure. 

On the other hand, indifference can also hold if we are considering weak 

preferences instead of strict preferences as opposite poles (remind that a weak 

preference, represented by the predicate at least as preferred as, is just the negation of 

the inverse strict preference). In fact, it is usually admitted (see for instance [21]) that 

a weak preference and its inverse weak preference can overlap, thus defining a 

different ambivalent category available for the first-level valuation of pairs of 

alternatives. However, assigning the meaning of indifference to such ambivalence 

again depends on a subsequent, second-level argument taken to interpret the 

neutralities of the underlying paired structure.      

Another issue of paired structures that preference models help to illustrate is that 

of the simultaneous appearance of the different types of neutrality. In the previous 

examples related to the height of a group of students, we explicitly assumed that the 

involved duality operator was sub-additive (over-additive). This enabled the 

emergence of indeterminacy (ambivalence) as the specific type of neutrality 

associated to such duality operator, but at the same time it excluded the emergence of 

ambivalence (indeterminacy). However, general duality operators are not constrained 

to be either sub-additive or over-additive, thus allowing the different types of 

neutrality to appear together in the same paired structure and be assigned to different 

objects, in such a way that an object may be associated to indeterminacy while 

another one may verify ambivalence, or any other kind of neutrality. That is, the 

different types of neutrality are not mutually exclusive, but they can appear 

simultaneously in a paired structure as a consequence of the particular semantic 

relationship between the references. This is particularly usual and relevant in 

preference models, in which different objects (i.e., pairs of alternatives) may be 

associated to different preference predicates, in turn arising from different first-level 

neutralities.  

For example, within preference representation (see [21], [43], but also [33]), we 

may use the following terms when comparing two alternatives x and y:        

- x is preferred to y (strict preference x>y); 

- y is preferred to x (strict preference y>x); 

- x outranks y (weak preference x≥y); 

- y outranks x (weak preference y≥x); 

- x is equivalent to y (indifference x~y); 

- x is in conflict with y (incomparability x‖y); 

- Ignorance (lack of knowledge regarding the preference status of x and y). 

Notice that all these preference predicates can appear and be applied within the 

same decision problem, and that they may in turn be associated to different available 

valuations of the underlying paired structure. For instance, when dealing with strict 

preferences as poles, as stated above, indeterminacy is usually interpreted as 

indifference, and the overlap of these references is usually associated to a conflict 

(arising from a collision on different underlying criteria), in turn commonly 



interpreted as incomparability. Note also that while the first six relations are standard 

in preference representation (see again [21], [33], [43]), the last one should be 

introduced to prevent lack of information, or simply to model the initial ignorance 

stage when we have not enough information to discriminate between alternatives [31]. 

To some extent, this last category may be associated to a state of absolute imprecision 

in our estimation of the basic preference degrees (as we do not have any idea of what 

degrees to assign).     

In summary, let us stress that different types of neutrality may appear depending 

on the semantic duality relating the poles. But it is the existing semantic relationship 

between poles determines the particular meaning of the different types of neutrality 

that may arise, and at the same time, of the whole paired structure. All these kinds of 

neutrality are quite often confused (and labelled under the same word) since they all 

provoke hesitation. However, the point here is that behind each one of those 

hesitancies or neutralities underlies a different informative status. 

5 Building paired structures 

Not stressing the structural issue, as pointed out in [31], implies certain potential 

doubts about basic issues, starting from the concept of pole itself. The concept of pole 

should be precisely described; otherwise it will not be possible to distinguish any 

arbitrary couple of concepts from a paired approach. Moreover, the role and meaning 

of the neutral element should be also clarified. If structural issues are not properly 

addressed in our mathematical model, we might be easily confused between different 

approaches simply because the proposed mathematical models appear as isomorphic. 

But such one-to-one correspondence is only due to the fact that the existing relations 

between elements have not been made explicit. This was the main issue raised in [31], 

in order to explain the intuitionistic discussion underlying Dubois, Gottwald, Hajek, 

Kacprzyk and Prade [14] and Atanassov [4]. Our mathematical models should focus 

on capturing all the essential aspects of reality. Listing elements should be 

accompanied of their associated structure, by describing the relation between those 

elements. It is the structural difference what justifies a denomination, not the other 

way round. Structural performance of a set of concepts does not come with a set of 

isolated objects or names. If these elements suggest a structure, such a structure 

should be formally stated. 

We offer now a standard procedure to build up paired structures: 

1) As already stressed, we start from a concept and its negation (only one option in 

the crisp case). Such negation is a must in our model, since it defines what’s inside 

and outside our original concept. But a concept and its negation are paired concepts 

that cannot generate any additional concept, since both contain the same information. 

2) Then, we need a dual concept, different from such a negation. In this way we 

obtain two paired concepts whose semantic relation will generate additional and 

specific neutral concepts. 

3) In case our original concept and its dual concept do not overlap (dual concept 

implies negation), indeterminacy arises (both paired concepts do not fully explain 



reality, and it is suggested a search for additional information, perhaps a new 

intermediate concept or symmetry). 

4) In case our original concept and its dual concept overlap, ambivalence arises (the 

existence of a new concept associated to such overlapping is suggested together with 

a reshaping of the poles into more precise concepts).  

5) Of course indeterminacy and ambivalence can appear simultaneously (overlapping 

in some objects might suggest ambivalence and lack of fulfilment in some other 

objects might suggest indeterminacy).  

6) We can also detect conflict if our paired concepts are viewed in our mind as 

complex concepts that can be decomposed into and aggregated from simpler 

concepts. 

7) Each one of those simpler concepts is subject to the previous arguments (a pole, its 

negation, its dual concept and potential indeterminacy, ambivalence, conflict, …) 

As previously discussed, a fuzzy (or probabilistic) representation is not actually 

needed in order to define a paired structure and enable the emergence of the 

abovementioned types of neutrality. In fact, the main difference between a crisp and a 

fuzzy approach is the increased complexity of estimating fuzzy membership functions 

for all the involved concepts, both the references and the neutral ones. That is, our 

original concept here comes with a membership function, that should be estimated, 

and according to a particular fuzzy negation, we shall obtain the estimated 

membership function of the complementary concept. But the degree of membership to 

our dual concept should be also estimated. Then, some objects might suggest 

indeterminacy, other objects might suggest ambivalence, and others might suggest 

conflict.  Membership functions of all these neutral concepts should be also estimated, 

since it is natural to assume that in such a fuzzy context these neutral concepts will 

also be gradable. Symmetry points may arise in this context whenever the degrees of 

membership to a concept and its negation are the same. However, symmetry points 

are associated to equilibrium between imprecise references, and thus they do not 

properly define new intermediate concepts or valuation alternatives different from the 

poles. All these steps also apply in case of a probabilistic representation, although 

now we have to estimate the probability distributions of all the involved concepts 

instead of their membership functions.  

Both in case we deal with probabilities or membership functions (no matter if they 

are defined in the unit interval or in any other scale) we are subject to an estimation 

imprecision problem. If we cannot estimate exact values, it may be important to 

represent such uncertainty by means of a more complex formalism. A standard 

solution is to consider some kind of type II probabilities or fuzziness (see [28] and the 

book edited by Bustince, Herrera and Montero [9]). But an easy approach to 

imprecision is to associate an interval to each imprecisely estimated value. The wider 

such an interval is, the more imprecise our estimation. Maximum imprecision will be 

then associated to the complete interval, which would mean that we simply do not 

have any useful information about such estimated value (see [46] for a complete 

approach within a probabilistic framework, and [45] for the seminal approach within a 



fuzzy one). However, as previously discussed, this symmetric situation should not be 

associated to a concept generated from the semantic relationship between the poles. 

6 Final comments 

In this paper we have presented a systematic approach to different types of paired 

sets, to be considered as an alternative to the notion of bipolarity proposed by Zhang 

and Zhang [56] and particularly by Dubois and Prade [15], [16], [17], both deeply 

related to Atanassov’s intuitionistic fuzzy sets [3]. All these models are somehow 

based upon two basic opposite concepts (but see [31]). The main aim of this strictly 

positional paper is to bring some light into this discussion, stressing the constructive 

argument towards a more general structure that should particularly stress the role of 

neutral concepts. We postulate that paired structures represent the basic model for 

most learning processes, which quite often starts from two opposite concepts (see also 

[20], [30]). Our approach introduces semantics as a key aspect to be taken into 

account. It is particularly stressed that if the semantic structure of the model is not 

properly specified, we might be confused by different structures that share equivalent 

underlying lattices but not a common semantics. In fact, it has been shown that each 

particular semantic relationship between the poles refers to a specific structure that 

generates characteristic neutral concepts.  

We therefore claim that the term paired should be mainly associated to the 

existence of two different but dual concepts whose relation can create specific neutral 

concepts. In this sense, 

- If properties associated to both poles are non-overlapping antonymous 

concepts, they cannot simultaneously hold, and they produce a neutral 

element to represent indeterminacy (which should not be confused with an 

intermediate category within a linear scale). This should be in our opinion 

the right allocation of Atanassov’s Intuitionistic Fuzzy Sets [3] (avoiding the 

“non-membership” as the opposite pole to “membership”, as pointed out in 

[31]).  

- If properties associated to both poles imply overlapping antagonistic 

concepts, they allow a neutral element to represent ambivalence (which in 

certain contexts might be acknowledged as an intermediate value within a 

linear scale). 

- If properties associated to both poles are conceived as complex, they may 

allow a neutral element to represent conflict. 

Hence, we find at least three different neutral aspects that paired concepts can 

create: indeterminacy (which can be later on justified in terms of lack of information 

or poorness of the system defined by the poles if viewed as a classification system), 

ambivalence and conflict. It is the specific semantic tension (opposition) between our 

two basic poles the key aspect to be analysed. Of course these three different 

neutralities can appear in the same problem, together with other representations of 



uncertainty and imprecision. How we can simultaneously manage all these parameters 

becomes a suggesting and necessary objective for future research. 

As a consequence, we see three main types of paired fuzzy sets:  

- Those “basic” paired concepts based upon the negation of both poles, with 

no additional neutral concept being allowed. 

- Those “dual” paired concepts based upon a 1-dimensional duality, subject to 

antonym or antagonistic components, but allowing indeterminacy and 

ambivalence neutralities. 

- And those “complex” paired concepts based upon multidimensional 

dualities, where in addition to indeterminacy and ambivalence we can find 

different levels of conflict. 

A possible drawback of the general case of paired fuzzy structures is that they can 

be considered too complex for some applications, since it might imply the direct 

estimation of quite a number of degrees of verification, for each object. An alternative 

approach is to consider that some degrees of membership or membership functions 

can be obtained from a smaller subset of estimations, by means of appropriate 

operators previously defined. Hence, the whole system can be fully described from a 

few basic estimations. Notice that, to some extent, this is similar to what is usually 

done in preference modelling: see e.g. [21], [33] and particularly [29], or the 

extensions into Belnap’s logic [7] in [36], [51]. It is also interesting to see the 

similarities between fuzzy preference structures in [21], [22], and the continuous 

extension proposed in [36] and [37], further analysed in [42] and [53]. In all these 

examples, aggregation plays a crucial role in constructing and constraining the 

semantics of different notions from that of the reference concepts (see e.g. [18]).    
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