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We shall be concerned in this note with some questions posed by Carne, Cole and
Gamelin in [3], involving the weak—polynomial convergence and its relation to the tightness
of certain algebras of analytic functions on a Banach space.

Let X be a (real or complex) Banach space. In [3], a sequence (z;)C X is said to be
weak—polynomial convergent to z€X if P(z;)— P(z) for all continuous polynomial P on
X; and the space X is defined to be a A—space if, whenever (zj) is a sequence in X which is
weak—polynomial convergent to 0, then ||z;||—0. It is shown in [3] that &, is a A—space for
1g<p <ooj it is also proved that L,(u) is a A-—space for 2<p<oco and IL;[0,1] is not a
A-space, and the question is posed as to whether L,(u) is a A—space for 1<p <2. Our next
result will provide an affirmative answer to this question.

. First, we recall that super—reflexive Banach spaces can be defined as those spaces
which admit an equivalent uniformly convex norm. In particular, spaces L,(u) are
super—reflexive for 1<p < oo and any measure p (see, e.g. [6, Chap.3]).

THEOREM 1. Every super—reflezive Banach space is a A—space.

_ Remark. In [4], a Banach space X is defined to be in the class W, (1<p <oo) when

-each bounded sequence in X admits a weakly—p—convergent subsequence. Along the lines of
Theorem 1, it can be shown that if X* is in the class W, for some p (1<p <oq) then X is
a A—space. In particular, it follows from [4] and [5] that the dual Tsirelson space T and the
spaces (@/3), and (®T), (1<p<oo) are A—spaces. The authors like to thank Jests F.
Castillo for providing this remark (and other useful comments).

.The notion of A—space was introduced in [3], in relation to the tightness of certain
algebras of analytic functions on a (complex) Banach space. We recall that a uniform algebra
A on a compact space K is said to be tight on K if, for all g€ C(K), the Hankel—type
operator S;: A— C(K)/A defined by Sy(f)=fg+A is weakly compact. Now let Z be a
~ complex dual Banach space, with open unit ball B, and let A(B) be the algebra generated
by the weak*—continuous linear functionals on the cl(ised unit ball B (regarded as functions
on the weak*—compact set B). It is proved in [3] that if A(B) is tight on B, then Z is
reflexive. It is also proved that if Z is an infinite—dimensional A—space with the metric
apprbximation property, then A(B) is not tight. We shall give an extension of this last
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result.

First, we define a Banach space X to be a s—space if there exists a weakly null
sequence in X which is not weak—polynomial convergent to 0. In other words, X is a
k—space if, and only if, there exists a continuous polynomial P on X which is not .weakly
sequentially continuous; it is clear that P can be chosen to be m—homogeneous, for some m.
Concerning x—spaces, we have the following

PROPOSITION. Let X be a Banach space.
1) If X is a reflezive, infinite—dimensional A—space, then X is a k—space.
2) If X is reflezive and o quotient of X is a k—space, then X is a k—space.
8) If X has a weakly null normalized Schauder basis (ay) and there ezists a continuous linear
operator T: X— 4, (1<p<o0) such that (Tay) is the canonical basis of &,, then X is a
K—space.
4) If a complemented subspace of X is a k—space, then X is a k—space.

Remark. In Proposition above, $) applies whenever X is a Banach space of finite
cotype with a weakly null unconditional basis. Arguments of this kind have been also used in
[2] and [1] to find a continuous polynomial which is not weakly sequentially continuous on
the quasi—reflexive James space, J, and the dual Tsirelson space, T, respectively. On the
other hand, 4) covers a wide class of operator spaces defined on a xk—space. For example, the
spaces L(X) and K(X), of bounded linear and compact linear operators on X are k—spaces
if X is.

Finally, it follows from [7] or [3, 7.1] that any infinite—dimensional Banach space with
the Dunford—Pettis property is not a k—space.

THEOREM 2. Let Z be a complez dual Banach space. Suppose that Z is a k—space with
the approzimation property. Then A(B) is not tight on B. ’

Remark. The following examples may be interesting:

(A) The original Tsirelson space, T*, is a reflexive space with an unconditional basis,
which does not have any quotient isomorphic to 4, (1<p <o) and which is not a k—space
(it is shown in [1] that every continuous polynomial on T* is weakly sequentially
continuous). Therefore T* is a Banach space for which [3,9.3] and [3,9.4] and our
theorem 2 cannot be applied. Hence, the tightness of A(B), for T*, remains open.

‘ (B) If Z is a reflexive x—space with the approximation property, then E=T*xZ is
also a reflexive k—space with the approximation property. So, E provides examples of
Banach spaces satisfying our theorem 2, which are not A—spaces.
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