Remarks on the Weak-Polynomial Convergence on a Banach Space

J. A. JARAMILLO AND A. PRIETO 1

Dpto. de Análisis Matemático, Univ. Complutense, 28040 Madrid, Spain

AMS Subject Class. (1980): 46J15, 46B10

Received June 25, 1991

We shall be concerned in this note with some questions posed by Carne, Cole and Gamelin in [3], involving the weak-polynomial convergence and its relation to the tightness of certain algebras of analytic functions on a Banach space.

Let X be a (real or complex) Banach space. In [3], a sequence $(x_j) \subset X$ is said to be weak-polynomial convergent to $x \in X$ if $P(x_j) \longrightarrow P(x)$ for all continuous polynomial P on X; and the space X is defined to be a Λ -space if, whenever (x_j) is a sequence in X which is weak-polynomial convergent to 0, then $||x_j|| \longrightarrow 0$. It is shown in [3] that ℓ_p is a Λ -space for $1 \le p < \infty$; it is also proved that $L_p(\mu)$ is a Λ -space for $2 \le p < \infty$ and $L_1[0,1]$ is not a Λ -space, and the question is posed as to whether $L_p(\mu)$ is a Λ -space for 1 . Our next result will provide an affirmative answer to this question.

First, we recall that super-reflexive Banach spaces can be defined as those spaces which admit an equivalent uniformly convex norm. In particular, spaces $L_p(\mu)$ are super-reflexive for $1 and any measure <math>\mu$ (see, e.g. [6, Chap.3]).

THEOREM 1. Every super-reflexive Banach space is a Λ -space.

Remark. In [4], a Banach space X is defined to be in the class W_p (1 when each bounded sequence in <math>X admits a weakly-p-convergent subsequence. Along the lines of Theorem 1, it can be shown that if X^* is in the class W_p for some p (1 then <math>X is a Λ -space. In particular, it follows from [4] and [5] that the dual Tsirelson space T and the spaces $(\Phi \ell_{\infty}^n)_p$ and $(\Phi T)_p$ $(1 are <math>\Lambda$ -spaces. The authors like to thank Jesús F. Castillo for providing this remark (and other useful comments).

The notion of Λ -space was introduced in [3], in relation to the tightness of certain algebras of analytic functions on a (complex) Banach space. We recall that a uniform algebra A on a compact space K is said to be tight on K if, for all $g \in C(K)$, the Hankel-type operator $S_g: A \longrightarrow C(K)/A$ defined by $S_g(f) = fg + A$ is weakly compact. Now let Z be a complex dual Banach space, with open unit ball B, and let A(B) be the algebra generated by the weak*-continuous linear functionals on the closed unit ball \overline{B} (regarded as functions on the weak*-compact set \overline{B}). It is proved in [3] that if A(B) is tight on \overline{B} , then Z is reflexive. It is also proved that if Z is an infinite-dimensional Λ -space with the metric approximation property, then A(B) is not tight. We shall give an extension of this last

Both authors partially supported by DGICYT PB 87-1031.

result.

First, we define a Banach space X to be a κ -space if there exists a weakly null sequence in X which is not weak-polynomial convergent to 0. In other words, X is a κ -space if, and only if, there exists a continuous polynomial P on X which is not weakly sequentially continuous; it is clear that P can be chosen to be m-homogeneous, for some m. Concerning κ -spaces, we have the following

PROPOSITION. Let X be a Banach space.

- 1) If X is a reflexive, infinite-dimensional Λ -space, then X is a κ -space.
- 2) If X is reflexive and a quotient of X is a κ -space, then X is a κ -space.
- 3) If X has a weakly null normalized Schauder basis (a_n) and there exists a continuous linear operator $T: X \longrightarrow \ell_p$ $(1 such that <math>(Ta_n)$ is the canonical basis of ℓ_p , then X is a κ -space.
- 4) If a complemented subspace of X is a κ -space, then X is a κ -space.

Remark. In Proposition above, 3) applies whenever X is a Banach space of finite cotype with a weakly null unconditional basis. Arguments of this kind have been also used in [2] and [1] to find a continuous polynomial which is not weakly sequentially continuous on the quasi-reflexive James space, J, and the dual Tsirelson space, T, respectively. On the other hand, 4) covers a wide class of operator spaces defined on a κ -space. For example, the spaces L(X) and K(X), of bounded linear and compact linear operators on X are κ -spaces if X is.

Finally, it follows from [7] or [3, 7.1] that any infinite-dimensional Banach space with the Dunford-Pettis property is not a κ -space.

THEOREM 2. Let Z be a complex dual Banach space. Suppose that Z is a κ -space with the approximation property. Then A(B) is not tight on \overline{B} .

Remark. The following examples may be interesting:

- (A) The original Tsirelson space, T^* , is a reflexive space with an unconditional basis, which does not have any quotient isomorphic to ℓ_p $(1 and which is not a <math>\kappa$ -space (it is shown in [1] that every continuous polynomial on T^* is weakly sequentially continuous). Therefore T^* is a Banach space for which [3, 9.3] and [3, 9.4] and our theorem 2 cannot be applied. Hence, the tightness of A(B), for T^* , remains open.
- (B) If Z is a reflexive κ -space with the approximation property, then $E = T^* \times Z$ is also a reflexive κ -space with the approximation property. So, E provides examples of Banach spaces satisfying our theorem 2, which are not Λ -spaces.

ACKNOWLEDGEMENT

The authors gratefully acknowledge several helpful conversations with Richard Aron and Miguel Lacruz while this paper was being prepared.

REFERENCES

- R. ALENCAR, R. ARON AND S. DINEEN, A reflexive space of holomorphic functions in infinite many variables, Proc. Amer. Math. Soc. 90 (1984), 407-411.
- R. ARON AND C. HERVÉS, Weakly sequentially continuous analytic functions on a Banach space, in "Fuctional Analysis, Holomorphy and Approximation Theory II", pp. 23-38, North-Holland, Amsterdam, 1984.
- North-Holland, Amsterdam, 1984.

 3. T. CARNE, B. COLE AND T. GAMELIN, A uniform algebra of analytic functions on a Banach space, Trans. Amer. Math. Soc. 314 (1989), 639-659.
- J. M. F. CASTILLO AND F. SÁNCHEZ, Weakly-p-compact, p-Banach-Saks and super-reflexive Banach spaces, Preprint.
- 5. J.M.F. CASTILLO AND F. SANCHEZ, Upper \(\ell_p\)-estimates in vector-valued sequence spaces,

 Preprint.
- J. DIESTEL, "Geometry of Banach Spaces", Lect. Notes in Math., Vol. 485, Springer-Verlag, New York, 1975.
- 7. R. RYAN, Dunford-Pettis properties, Bull. Pol. Acad. Sci. 27 (1979), 226-240.