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Purpost. Dry eye (DE) includes a group of diseases related to tear film disorders. Current
trends for DE therapy focus on providing lipid components to replace the damaged lipid layer.
Formulations that contain aqueous and mucin-like compounds may have additional
therapeutic benefits for DE patients. The aim of this work was to design and evaluate novel
formulations having the potential to become topical treatment for DE.

Mernops. Unpreserved liposomal formulations composed of phosphatidylcholine (PO),
cholesterol, and o-tocopherol (vit E) were prepared by the thinfilm hydration technique.
Formulations were characterized in terms of liposome size, pH, surface tension, osmolarity,
and viscosity. In vitro tolerance assays were performed on macrophage, human corneal, and
conjunctival cell lines at short- and long-term exposures. In vivo ocular tolerance was studied
after instillation of the formulation.

Resurts. The mean liposome size was less than 1 um and surface tension < 30 mN/m for all
formulations. The final liposomal formulation (PC-cholesterol-vit E in a ratio of 8:1:0.8) had
physiological values of pH (6.45 = 0.09), osmolarity (289.43 * 3.28 mOsm), and viscosity
(1.82 = 0.02 mPa-s). Cell viability was greater than 80% in the corneal and conjunctival cells.
This formulation was well tolerated by experimental animals.

Concrusions. The unpreserved liposomal formulation has suitable properties to be
administered by a topical ophthalmic route. The liposome-based artificial tear had good in
vitro and in vivo tolerance responses. This formulation, composed of a combination of
liposomes and bioadhesive polymers, may be used successfully as a tear film substitute in DE
therapy.
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he ocular surface (OS) is the interface between the eye and

external environment. In the healthy state, the OS
maintains a homeostatic balance that ensures sharp images.
The tear film covers the OS and fulfills important functions,
such as refraction, achieving optimal environmental conditions
for the cells of the cornea and conjunctiva, lubricating the
eyelids to facilitate the act of blinking, transporting metabolites
(mainly O, and CO,), and the dilution and removal of harmful

elements.!

Recent studies suggest that the tear film is composed of an
outer lipid layer and a hydrated gel that includes aqueous
components, such as electrolytes, proteins, and mucins,
forming a decreasing gradient of mucin concentration from
the OS to the air interface.>> Meibum and tear film lipids,
composed mainly of cholesterol esters, wax esters, fatty acids,
and phospholipids, are physiologically important with func-
tions that are well described.®® The phospholipid fraction

represents approximately 5% to 15% of the total lipid
component of the tear film, of which approximately 40% is
phosphatidylcholine (PC) and 18% is phosphatidylethanol-
amine.*

Two models describe the molecular organization of the tear
film lipid layer. McCulley and Shine® described a double-layered
lipid film. The first layer is in contact with the mucinous-
aqueous film and is composed of a polar lipid phase containing
mucins, phospholipids, sphingomyelin, ceramides, and cere-
brosides. The second one is a nonpolar hydrophobic phase
composed mainly by wax esters, cholesterol esters, triglycer-
ides, free fatty acids, and hydrocarbons. This nonpolar lipid film
is in direct contact with the external atmosphere.” More
recently, Fuller et al.'® suggested a model of the tear film lipid
layer that is composed of a continuous liquid phase with solid
lamellar particles in suspension. In this model, the polar lipids
are adsorbed with proteins and are found properly oriented in
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the aqueous/lipid interface according to their amphiphilic
properties.

The lipid layer of the tear film participates in preventing
90% to 95% of water evaporation, promoting the extension of
the tear film on the OS after blinking, and contributing to the
viscoelastic properties of the tear film.!!~!3 Moreover, recent
studies have highlighted the role of meibomian lipids in
enhancing tear film stability and water evaporation.'4-17

Mucins form part of the hydrated gel and contain the
aqueous components of the tear film. Mucins stabilize tear film,
eliminate waste substances, and promote the lubrication of the
OS. The aqueous components of tears regulate pH, osmolarity,
and the integrity of the corneal and conjunctival epithelia.

When designing a topical ocular formulation, it is crucial to
take into account the physiological and physicochemical
properties of the different constituents that form the tears.
The composition of a topically applied preparation that
supplements the tear film should be similar to the components
that are naturally produced by the eye and the adnexa. Such a
formulation should simulate the natural tear film characteris-
tics. The aim of this work focused on the design, preparation,
characterization, and tolerance evaluation of a topically
administered ophthalmic liposomal formulation that is capable
of promoting the replenishment of the destabilized tear film.
According to the composition of natural tears, this formulation
must consist of hydrophobic lipids; amphiphilic lipids;
electrolytes that maintain pH and isotonicity; and mucin-like
compounds that provide suitable viscosity, enable gel forma-
tion, and interact with the epithelial cell mucins to increase the
retention time on the OS. Importantly, this formulation must
not have preservatives, like benzalkonium chloride (BAK), that
can damage the OS, especially in patients requiring long-term
treatments. 18-20

MATERIALS AND METHODS

Compounds

The following materials were used in this study: Soy lecithin PC
(Phospholipon 90G; Lipoid GmbH, Ludwigshafen, Germany);
cholesterol, a-tocopherol (vit E), tetrazolium salt 3(4,5-dime-
thylthiazol-2-yD)-2,5-diphenyltetrazolium bromide (MTT), di-
methyl sulfoxide (DMSO), and BAK (from Sigma Aldrich
Quimica S.L., Madrid, Spain); chloroform (Panreac Quimica
S.A., Madrid, Spain); and sodium hyaluronate (SH, ophthalmic
grade NaHa, 400,000-800,000 Da molecular weight; Abaran
Materias Primas S.L., Madrid, Spain). All culture reagents were
purchased from Gibco-Invitrogen (Life Technologies, Barcelo-
na, Spain). Male New Zealand white rabbits, 2.0 to 2.5 kg, were
purchased from San Bernardo Farm (Navarra, Spain).

Liposome Preparation

Liposomal formulations were prepared by the thin-film
hydration method.?! The lipid components, PC, cholesterol,
and vit E were first solubilized in chloroform in a concentration
ratio 8:1:0.08 (mg/mL). Then, the organic solution was
evaporated in a rotary evaporator (Buchi R-205; Masso Analitica
S.A., Barcelona, Spain) at 33°C, forming a thin lipid film on the
inside of a round bottom evaporator flask. This film was first
redispersed in purified water (Milli Q Elix 3 and gradient A10;
Millipore, Madrid, Spain) to yield the aqueous liposomal
dispersion. The dispersion was left undisturbed at room
temperature for 2 hours to allow complete swelling of the
lipid film. After that, liposomes were sonicated to form smaller
vesicles and make the extrusion process that followed easier.
The influence of the sonication process on liposomes was
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Tasie 1. Formulation Nomenclature and Composition

Formulation Composition Polymer
F1 PC 20 mg/mL and water -

F2 PC 20 mg/mL and 0.9% NaCl -

F3 PC 10 mg/mL and 0.9% NaCl 0.2% SH

studied by using either a probe sonicator (Sonicator XL; Heat
Systems, Misonix, IA, USA) for 2.5 minutes or an ultrasound
bath (Ultrasons-H, Madrid, Spain) for 15 minutes. To optimize
the manufacturing technique after sonication with the probe
sonicator, the influence of the extrusion process was studied.
To standardize the size and structure of the formed vesicles,
liposomes were passed through 800-nm pore size membranes
(FilterLab, Barcelona, Spain) from 1 to 5 cycles.

Once the liposome manufacturing process was optimized in
terms of the sonication device and cycles of extrusion, the
dried thin lipid films were dispersed in MilliQ water to produce
liposome formulation, named as F1, or in 0.9% NacCl to produce
liposome formulation F2. Formulation F3 was prepared from
F2 by a dilution (1:2) in an isotonic solution of SH. The
nomenclature and composition of the formulations are listed in
Table 1.

Size Determinations

The assessment of the liposome sizes was done by photon
correlation spectroscopy using a Nanosizer N4 (Beckman
Coulter, Madrid, Spain). Determining the liposome size was
done with the aqueous liposomal dispersion. All measurements
were made at least in duplicate.

Analysis of Surface Tension

The surface tension was determined by a tensiometer (model
K-11; Kriiss GmbH, Hamburg, Germany) using the Wilhelmy
plate method.??2> The measurements were performed at 33°C,
which corresponds to the OS temperature.?* The tensiometer
was calibrated with purified water before determining the
surface tension of the liposomal dispersions. The surface
tension of the water was 68 to 72 mN/m. The measurements
were made in triplicate on three different batches of
liposomes.

Assessment of the PC Concentration in the
Liposome Formulations

The PC concentration in the liposomal formulations was
determined by colorimetric titration using the Spinreact kit
(Spinreact SA, Gerona, Spain) and read at 505 nm using a
Beckman DU-7 spectrometer (Beckman Coulter). Linearity,
accuracy, and precision of the output were validated using PC
concentrations ranging from 0.05 to 4 mg/mL. Before assay, the
PC standards and samples were dispersed in water by magnetic
stirring and sonication in an ultrasonic bath. Measurements
were made in triplicate for three different batches of
liposomes.

Determination of pH, Osmolarity, and Viscosity

The pH, osmolarity, and viscosity of the dispersions also were
measured. The pH was determined at 25°C by a calibrated pH
meter (Mettler, Toledo, Spain). The osmolarity was measured
with a Knauer vapor osmometer K-7000 (Knauer GmbH,
Berlin, Germany). For reference we used a standard 400 mOsm
solution of sodium chloride. Determinations were performed
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at 33°C corresponding to OS temperature. Sample viscosities
were determined with a rheometer (HaakeRheostress R1;
Haake, Diisseldorf, Germany) using parallel plate geometry
(diameter 60 mm, gap 0.5 mm). The viscosity was calculated at
33°C by the steady state flow method.?>2° The shear rate was
increased gradually in 20 steps from 0 to 1000 s~!. In all cases,
determinations were made in triplicate.

In Vitro Tolerance Studies

In vitro tolerance assays were determined by cellular viability
measurements in the following cell lines: (1) mouse macro-
phage cell line RAW 264.7 was obtained from ATCC
(Barcelona, Spain) (2) immortalized human corneal-limbal
epithelial cells (HCLE, kindly provided by Ilene K. Gipson;
Schepens Eye Research Institute, Harvard Medical School,
Boston, MA, USA), and (3) normal human conjunctiva cells
(IOBA-NHC; Instituto de Oftalmobiologia Aplicada, Valladolid
University, Valladolid, Spain).?” The RAW 264.7 macrophages
were maintained in RPMI 1640 medium supplemented with
10% fetal bovine serum, L-glutamine (1 mM), penicillin (100 U/
mL), and streptomycin (100 pg/mL) at 37°C in a humidified 5%
CO, atmosphere, as described previously.?® The HCLE and
IOBA-NHC cell lines were cultured according the protocol
described previously by Andres-Guerrero et al.??

Cytotoxicity assays were done by the mitochondrial-
dependent reduction of the tetrazolium salt MTT to forma-
zan.3031 Cells were seeded into 96-well culture plates (50,000
cells/well for macrophage cell line and 40,000 cells/well for
corneal and conjunctival cells). After the cells adhered to the
plates, the culture medium was removed and the test vehicle
or liposome formulation was added.>? The exposure times of
cells to formulations was set at 15 minutes to simulate short-
term exposures, and at 1 and 4 hours to simulate longer term
chronic treatments. The RAW 264.7 macrophages then were
incubated for 1 hour, and the HCLE and IOBA-NHC cells were
incubated for 3 hours with the MTT solution (5 mg/mL in PBS).
After that, the medium was carefully aspirated, and the cells
were solubilized in DMSO (100 pL/well). The extent of the
reduction of MTT to formazan was measured by optical density
at 550 nm using a plate reader (model 6010152EU; Digiscan,
Eugendorf, Austria).

Viability was set as 100% in untreated cells (negative
control). The positive control was an isotonic solution of
0.005% BAK that produces cellular death.333% Assays were
performed in triplicate and results are expressed as the
reduction in cell viability compared to untreated cells for at
least three independent experiments.

Animals

Male New Zealand white rabbits weighing between 2 and 2.5
kg were caged individually with free access to food and drink.
The room was maintained at 22°C and 50% relative humidity,
and had a 12-hour light/dark cycle. The tests performed were
compliant with the ARVO Statement for the Use of Animals in
Ophthalmology and Vision Research, and the corresponding
directive of the European Community (European Communities
Council Directive 86/609/EEC).

In Vivo Tolerance Study

The in vivo tolerance study was done on six rabbits. The
liposomal formulation selected was administered in the ocular
cul-de-sac. We administered 30 pL of the formulation in the
right eye and the same volume of 0.9% NaCl solution in the
contralateral eye as the control. The administration was
performed every 30 minutes for 6 hours. Clinical symptoms
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and signs were evaluated in accordance with a previously
described protocol.3> The OS evaluation was made before the
first instillation, and at 3, 6, and 24 hours after the first
administration. Macroscopic examination of the in vivo
tolerance was graded from 0 to 2, indicating the absence or
presence of the following clinical signs: loss of corneal
transparency, conjunctival disorders (hyperemia, edema),
eyelid swelling, and intense blinking that indicated a lack of
tolerance.

Statistical Analysis

Data were expressed as means * SDs. Overall effects were
determined by analysis of variance. If necessary, statistical
differences between two mean values were analyzed by 2-
tailed Student’s #test. Results were considered as significantly
different at P < 0.05. Data plotting and line fitting were carried
out by Origin Pro-8 (Originlab, Northampton, MA, USA).

RESULTS

Effect of Preparation Method on the Size of Lipid
Vesicles

We optimized the method for preparation of the liposomes by
evaluating two sonication devices. Our goal was to achieve
liposomes with the best uniformity of size to avoid liposomal
aggregation and maintain vesicles of stable diameter.

To optimize the preparation method, we used two
approaches: the influence of the sonication process and the
number of extrusion cycles through the polycarbonate
membranes. As described previously, after determining the
optimal sonication method and number of extrusion cycles,
two liposomal formulations were obtained by using different
redispersion solutions (Table 1): Liposomes in formulation F1
were dispersed with water, meanwhile liposomes in formula-
tion F2 were dispersed with 0.9% NaCl. The nominal liposome
lipid concentration after sonication and extrusion, expressed
as the PC concentration, was 20 mg/mL. Finally, a third
formulation, F3, was obtained after diluting F2 (1:2) with a
solution of SH in 0.9% NaCl. The F3 formulation had PC and SH
concentrations of 10 mg/mL and 0.2%, respectively.

We determined the effects of the number of extrusion
cycles and the sonication method on vesicle size using an
aqueous liposomal dispersion. To select the number of
extrusion cycles, we first used the ultrasonication probe for
2.5 minutes. The size distribution of the lipid vesicles was
affected by the number of extrusion cycles through the
polycarbonate filter (Figs. 1A-C). In these conditions, the
average vesicle diameter decreased with increasing number of
extrusion cycles (Table 2). At the maximum extrusion of five
cycles, less than 3% of the vesicles had diameters of more than
1 pm. Thus, by increasing the number of extrusion cycles, a
greater uniformity of liposome size was achieved, and after five
cycles the distribution was bimodal (Fig. 1C).

After selecting five extrusion cycles as optimal to achieve
the best uniformity of size, we determined the effects of the
sonication devices used in the preparation of liposomes. The
effects on liposomal dispersion by the ultrasonic probe (2.5
minutes) and the ultrasonic bath (15 minutes) were compared.
The frequency distribution for vesicle size was bimodal for
both sonication methods (Fig. 2). The sonication probe
produced a much higher frequency of vesicles that were less
than 0.1 um in diameter, but the sonication bath procedure
yielded higher uniformity of liposome size. The high uniformi-
ty of size reduces aggregation and improves colloidal stability
of the system.3*37 Therefore, formulations F1, F2, and F3 were



The Influence of Liposome Concentration on the
Surface Tension

Using PC as a measure of liposome concentration, we studied
the effect of liposome concentration on surface tension. To do
this, different liposomal concentrations were prepared by
diluting F1 and F2 formulations from 25.6 to 1 X 107° mM.
From concentrations of 1 X 107° to 1.02 X 102 mM, the
surface tension of both formulations was quite similar to water
(Fig. 3). For both formulations, there was a decrease in surface
tension at 0.102 mM, which corresponded to the PC
concentration at which the liposomes became visible by light

Tasie 2. Effect of Extrusion Cycles on Liposome Diameter

Extrusion Cycles VD, nm Fg > 1 pm» %
0 710 20.0
1 712 18.5
3 389 6.3
5 269 2.7

Liposomes were prepared with PC, cholesterol, and vit E in water,
and sonicated with a probe for 2.5 minutes. VD, vesicle diameter; Fg -
1 um, percentage of vesicles with a size greater than 1 pum.
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Ficure 1. Size distribution of lipid vesicles obtained with (A) one, (B) three, and (C) five cycles of extrusion. O, liposome dispersion with O

microscopy. At 25 mM PC (equivalent to 20 mg/mL) the
surface tension decreased to approximately 30 mN/m.
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Assessment of the Amount of PC in Liposomes

The yield during liposome formation was determined on the F1
formulation with an initial PC concentration of 20 mg/mL. The
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Ficure 2. Effect of sonication devices on liposome size distribution.
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Ficure 3. Concentration-dependent surface tension (ST) of liposome
formulations. Liposomes in water (F1, O) and liposomes in 0.9% NaCl
(F2, m). At 0.102 mM PC (arrow) the liposomes in both formulations
became visible by light microscopy (see micrograph inserted in
graph). A, surface tension of water (reference).

PC concentrations were quantified in three key stages of
liposome preparation: unfiltered liposomes or multilamellar
vesicles, liposomes after sonication by ultrasonic bath, and
liposomes after five extrusion cycles. The PC concentrations in
any of the steps of the preparation were not significantly
different from the theoretical 20 mg/mL (Table 3).

Determination of pH, Osmolarity, and Viscosity

The pH, osmolarity, and viscosity were measured for all
formulations and corresponding vehicles (Table 4). The pH
values of the liposomal formulations F1 to F3 were between
6.5 and 6.7, and were significantly greater than the pHs of the
two vehicles (P < 0.001).

The osmolarity of the F1 preparation was not significantly
different from zero (Table 4). Although significant differences
in osmolarity were present among the liposomal formulations
and vehicles, the osmolarity values obtained for F2 and F3 were
in the range of iso-osmolarity.

The viscosity and rheological properties of all of the
samples closely followed Newtonian behavior (Fig. 4). With
the exception of isotonic 0.9% NaCl, the viscosities of the
samples were higher than the viscosity of water. The slight
increase in viscosity induced by the liposomes, <0.1 mPa-s,
was physiologically insignificant (Table 4). The final proposed
formulation F3 had a viscosity similar to that of human tears,
0.3 to 8.3 mPa-s.3839

In Vitro Tolerance Studies

Cell viability was measured in the presence of formulations F2,
F3, and the respective vehicles in short-, intermediate-, and
long-term exposures in RAW 264.7 macrophage, HCLE, and

Tasie 3. Experimentally Determined PC Concentration

Stage PC Concentration, mg/mL P
MLV liposomes 19.4 = 0.5 0.166
After ultrasonication 19.1 £ 0.5 0.088
After 5 extrusion cycles 18.8 = 0.5 0.053

The PC concentration at different stages of liposome preparation in
water (n = 3). MLV, multilamelar vesicles; P, probability that the
experimentally determined PC concentration was significantly differ-
ent from the theoretical concentration of 20 mg/mL.
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TaBie 4. Vehicle and Liposome Formulation pH, Osmolarity, and
Viscosity

Osmolarity, Viscosity,

Sample pH mOsm mPa-s
0.9% NaCl 5.55 = 0.02 297.07 £ 791 0.78 = 0.01
0.2% SH-0.9% NaCl  5.58 £ 0.02 301.20 £ 1.10 1.75 = 0.02
F1 6.67 = 0.01 —2.31 = 1.53* 091 * 0.01
F2 6.61 = 0.03 279.10 £ 3.00 0.97 = 0.06
F3 6.45 £ 0.09 28943 + 3.28 1.82 + 0.02

Vehicle for F1 was H,O (data not shown). Vehicle for F2 was 0.9%
NaCl. Vehicle for F3 was 0.2% sodium hyaluronate (SH)-0.9% NaCl. F1,
liposomes dispersed with water; F2, liposomes dispersed with 0.9%
NaCl; F3, liposomes dispersed with 0.2% SH-0.9% NaCl.

* Value associated with the osmometer measurement variations, not
significantly different from distilled water.

IOBA-NHC cell lines (Fig. 5). The macrophages were more
sensitive to the test solutions than were either of the OS-
derived lines (Fig. 5A versus Figs. 5B, 5C). The RAW
macrophages had the lowest cell viability values, <20%, for
the positive control, 0.005% BAK, after short-, intermediate-,
and long-term exposures, while these values were between
20% and 40% for HCLE and IOBA-NHC cells.

After exposures of 15 minutes and 1 hour to formulations
F2 and F3, macrophage viability was greater than 80% (Fig. 5A).
For the HCLE (Fig. 5B) and IOBA-NHC (Fig. 5C) cells, viabilities
were higher than 95% for the F2 and F3 formulations at 15
minutes, and 1 and 4 hours.

In Vivo Tolerance Studies

Before testing, all animals (72 = 6) had a normal OS and corneal
transparency. None had any conjunctival disorders, including
hyperemia or edema, eyelid swelling, or intense blinking
(grade 0). The animals showed no discomfort during the test or
within 24 hours after the administration of formulation F3,
which contained 0.2% SH-0.9% NaCl. The cornea remained
transparent (no vessels) throughout the assay (grade 0) and the
coloration of the conjunctiva remained normal except for one
rabbit with a slight hyperemia observed at 6 hours after the
first instillation (grades 0-1). This hyperemia was transient and
disappeared by the end of the study (24 hours). No animal

35

Viscosity (mPa-s)

0

0 100 200 300 400 500 600 700 800 900 10001100
Shear Rate (s”)

FiGure 4. Viscosity profiles of 0.2% SH-0.9% NaCl and F3. B, 0.2%
SH-0.9% NaCl (an isotonic formulation of sodium hyaluronate); O, F3
liposome formulation dispersed in 0.2% SH-0.9% NaCl.
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Figure 5. Cell viability of (A) RAW 264.7 macrophages, (B) HCLE cells, and (C) IOBA-NHC cells exposed to control, vehicle, and liposome
formulations for 15 minutes, 1 hour, and 4 hours. (C) Untreated cells used as negative control. NaCl, 0.9% NaCl; SH-NaCl, 0.9% NaCl-0.2% SH; F2,
liposomes dispersed in 0.9% NaCl (PC = 20 mg/mL); F3, liposomes dispersed in 0.2% SH-0.9% NaCl (PC = 10 mg/mL); BAK, 0.005% benzalkonium
chloride was used as the positive control. Cell viability was measured by MTT assay, results are reported as mean (%) = SEM and are normalize to
cell viability of untreated cells. For (C), the error bars are too small to be seen clearly.

presented signs of mucus secretion as a result of the
formulation tested. These results demonstrated good in vivo
tolerance of the F3 formulation on the OS of rabbit’s eyes.

DiscussION

Dry eye (DE) is characterized by alterations in the OS and by
tear film instability.“° The lipid layer has an important role in
tear film stability as it reduces water evaporation from the OS.
Among the components of the lipid layer, the surfactant
properties of phospholipids, and in particular PC, are
responsible for the linkage between the lipid and aqueous
layer.

In DE, the lipid layer usually is damaged and tear film
instability occurs.442 For this reason, artificial tears that can
provide lipids to the tear film are of great interest for patients
suffering from DE.¥344 These formulations also can include
components similar to the aqueous layer of the tear film.
Moreover, the proper combination of lipids and aqueous
components can behave similarly to the natural tear film. In the
present work, we have designed novel ophthalmic formula-
tions containing lipid components that are present in natural
tears. Additionally, we have included a bioadhesive polymer to
resemble the aqueous layer of the tear film and also to increase
the residence contact time of the formulation on the OS. The
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liposomes composed of PC and cholesterol were dispersed in
aqueous saline solutions with or without 0.2% SH (F3 and F2,
respectively). Vitamin E was incorporated to stabilize the lipid
vesicles and prevent degradation of the fatty acids chains
present in PC. From a pharmaceutical point of view, vit E also
could provide a reparative effect on damaged OS cell
membranes. The potential therapeutic efficacy of the novel
formulation is based on the ability to form a lipid layer that
covers the OS.

The liposomal vesicles developed in this work had a size
suitable for topically applied formulations and avoids any
blurring of vision after instillation.#> Although a narrow
liposome size distribution can be achieved easily with the
help of an ultrasound probe, the use of this technological
strategy has the risk of metallic particle contamination. For this
reason, in this work we have used an ultrasound bath to avoid
possible occurrence of metallic particles.47

Taking into account the chemical and physical parameters
of the tears, ophthalmic formulations administered by topical
route must have several technological properties. Among
them, pH, surface tension, osmolarity, and viscosity are critical
in the design of formulations to be administered to a damaged
0S.48 Natural tears have a physiological pH of approximately
7.4 and endogenous buffering capacity that reduces discomfort
caused by solutions with a pH between 6.5 and 9.%%5° The
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corneal surface has a critical surface tension of 38 mN/m and
natural tears have a surface tension in the range of 38 to 46
mN/m.!1>1 As both surface tension values are close to each
other in normal eyes, tears extend homogeneously on the
corneal surface, reaching a complete wetting state. However,
in DE patients, tears have lower surface activity, with a surface
tension of 49.6 * 2.2 mN/m, due to the lack of lipids, proteins,
and mucins.>*>3

Our results showed that the surface tension of the
liposomes at a PC concentration of 2.5 mM, dispersed in
water (F1) and in 0.9% NaCl (F2) was 27.3 and 33.7 mN/m,
respectively. At 25 mM PC, the surface tension was 26.8 and
29.8 mN/m, correspondingly. These values are lower than the
critical corneal surface tension in healthy eyes and similar to
the corneal epithelium surface tension in the absence of
mucins that may occur in DE disease, 28 mN/m.>>5% Thus,
liposomal dispersions at concentrations of PC above 2.5 mM
will allow an adequate extension of lipids on the OS and the
formation of a continuous film over the eye surface. We
selected F2 and F3 liposomal formulations, with PC concen-
tration of 20 mg/mL and 10 mg/mL respectively, to develop
and characterize as artificial tears for DE.

In evaporative DE, the loss of aqueous components of the
tear film causes an increase in tear osmolarity.>> As previously
reported, formulations with osmolarity values between 150
and 320 mOsm/L do not produce ocular discomfort.>®57 The
F2 and F3 formulations have osmolarity values that fall within
these limits. Not surprisingly, the presence of lipid vesicles
produced a slight decrease in osmolarity (from 18.0 to 7.7
mOsm) after dispersion in isotonic saline. The liposomal
formulation dispersed in a saline solution of SH, F3, was
physiologically iso-osmolar.

Current technology trends focus on the development of
new, topically applied formulations that increase the retention
time and adhesion to the OS through the use of mucoadhesive
polymers, viscosity modifying agents, and penetration promot-
ers.>®5% The SH used in F3 can exhibit non-Newtonian
behavior®®°!; however, in the F3 formulation, the polymer
displayed a Newtonian behavior. These results are a conse-
quence of the molecular weight and the concentration of SH
selected for our study.®?

Topical formulations that exceed 20 to 40 mPa-s viscosity
have no additional advantages over applications with lower
viscosity, because they do not uniformly mix with natural
tears.®3%% Consequently, they cause difficulties during blinking
and blurred vision. The discomfort causes increased blink
frequency and results in more rapid removal of the ophthalmic
preparation from the OS. It is critical, therefore, to find the
optimal concentration of bioadhesive polymer that is capable
of increasing the ocular residence time, but does not have an
excessively high viscosity. Because the viscosity of natural tears
is 0.3 to 8.3 mPa-s,>®3 it is highly likely that F3, with a
viscosity of 1.82 = 0.02 mPa-s, mixed uniformly, or nearly so,
with the tear film. Furthermore, the presence of SH increases
the contact time between the lipid vesicles and the OS through
mucoadhesion mechanisms.®> An additional advantage of
including SH in the novel artificial tear is that this polymer
improves the state of the OS and enables healing and
regenerative processes.®0-%8

In the present work, cytotoxicity studies were carried out
on RAW 264.7 macrophage, HCLE, and IOBA-NHC cell lines to
determine their tolerance to the liposomal formulations. The
liposomal formulations F2 and F3 were well tolerated during
short-, intermediate-, and long-term exposures of HCLE cells
and normal conjunctival cells (OBA-NHC) that were derived
from the human OS. Taking into account the relative absence
of toxicity obtained in the in vitro tolerance studies, we
performed in vivo tolerance assays in rabbit eyes for the F3
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liposomes containing SH. Despite differences between rabbit
and human eyes in terms of tear volume, tear evaporation, and
recovery time after irritant exposures, the low-volume test in
rabbits usually shows a good correlation with the human
experience.®*7! Our results clearly showed that the F3
formulation of liposomes with SH was well-tolerated by
animals throughout the study period. Nevertheless, direct
extrapolation from the animal results to human should be done
with caution.

In summary, we have developed unpreserved formulations
containing lipids intended for relieving signs and symptoms of
DE disease. These formulations were composed of pharma-
ceutical liposomes containing amphiphilic PC, nonpolar
cholesterol, and the antioxidant vit E, all of which are natural
components of the tear film. The liposomal vesicles were
resuspended in aqueous solutions, and in the case of the F3
formulation, SH, a bioadhesive polymer widely used in artificial
tears, was added. Formulations F2 and F3 had adequate
properties of pH, osmolarity, viscosity, and surface tension to
be applied topically. Both formulations were well tolerated by
OS cells in vitro. In vivo studies for F3 indicated an optimal
tolerance for the novel formulation in which the liposomes
were suspended with the bioadhesive polymer SH. Our results
supported the use of this liposomal formulation as a novel
artificial tear for DE treatment. It has the potential to improve
the lipid layer of the tear film by adding lipids found in the
natural tears. Furthermore, the inclusion of SH resembles the
mucin-aqueous phase of the tear film and extends the contact
time of the formulation on the OS.
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