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A Streamlined Nonlinear Path Following Kinematic Controller*

J. M. de la Cruz', J. A. Lopez-Orozco?, E. Besada-Portas®, J. Aranda-Almansa*

Abstract—This paper presents a new nonlinear path-
following guidance method for autonomous vehicles, which
integrates two guidance laws that have given good results
independently in applications in autonomous ground, marine,
and air vehicles. This new technique retains the best aspects
of its two supporting methods, whereas it overcomes some
of their drawbacks. It uses the control law by Park et al.
to command the vehicle position towards a reference point.
However, the position of the reference point is controlled in
a different way: instead of being calculated to stay at a fixed
distance forward of the vehicle, we use a strategy, inspired
in the works by other authors, that controls the speed of the
reference point to maintain its position at the given distance.
This change does not increment the number of parameters
to tune the algorithm and makes it applicable to any initial
conditions and parameterized paths. The paper also analyzes
the stability of this new nonlinear guidance control law and
shows its effectiveness under different simulations.

I. INTRODUCTION

The path following problem can be described as making a
vehicle converge to and follow a path that is specified without
any temporal constraint [1]. Many of the path following
control algorithms that have been introduced for different
types of unmanned vehicles can be classified in two different
groups. In the first one, the path following loop is divided
in an inner control loop and an outer guidance loop. In the
second one, integrated guidance and control are designed
simultaneously. In this paper algorithms of the first group
are considered.

Usually the inner and outer loops are designed separately
using well-established design methods for control and simple
strategies for guidance. The inner loop controller stabilizes
the vehicle dynamics, while the outer loop controls the
vehicle kinematics and computes reference commands to the
inner loop controller, providing path-following capabilities.
This structure is the usual one when the vehicle comes
equipped with an autopilot. If there is adequate frequency
separation between the guidance and control functions, the
combined scheme will perform as specified according to the
two subsystems [2].

The outer guidance controller can be achieved by using a
PID controller [3], [4], or other strategies based on virtual
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points tracking, line of sight guidance or virtual fields.
Within the virtual point trackers, the pioneering work in
[5], [6] considers a path parameterized by its arc length and
a strategy of projecting the position of a wheeled mobile
robot (WMR) onto the path. In that way, there is always an
imaginary virtual point on the position of the path which
is closest to the real WMR. The virtual point is tracked
by the WMR and its movement is modeled in terms of a
Serret-Frenet frame, which is a frame tangential to the path
at the exact point of projection. The path following problem
is then solved in the error space of this frame, calculating the
desired heading angle as a function of the cross-track error.
This work was extended to unmanned aerial vehicles with
full account of its dynamics in [7], to autonomous surface
vehicles in [8] and to autonomous underwater vehicles in [9].

However, the previous approach has the shortcoming of
having singularities when the distance to the path is not well
defined. This restriction is completely overcome for WMRs
in [10], [11] by controlling explicitly the progression rate of
the virtual point along the path. The algorithm was extended
to underwater vehicles in [12], [13], to surface vehicles in
[14] and to 3D unmanned aerial vehicles in [15].

Related methods are line-of-sight (LOS) guidance algo-
rithms. These algorithms compute the desired heading angle
on the basis of a velocity-path relative angle of the vehicle
with respect to a virtual point located at a given distance, not
necessarily constant, further ahead along the path or along
the path tangential. They have been used for under actuated
3-DOF surface vessels in [2], [16]-[24], for underactuated
underwater vehicles moving in 3-D space in [8], [25]-[27],
and for UAVs in [28].

Other methods use a LOS guidance law related to algo-
rithms originally developed for missile guidance, introduced
by [29] for guidance of WMRs and adopted in [30], [31]
for UAVs. This approach maintains the virtual target on
the desired path at a given constant distance forward of
the vehicle, and generates a lateral acceleration command
according to the direction of the virtual target, relative to
the vehicle’s velocity. Furthermore, it uses the instantaneous
ground speed and compensates naturally for wind. It is
very attractive because of its simplicity; it approximates a
proportional derivative controller when following straight-
line paths, and it has an element of anticipation of the
desired flight path, enabling tight tracking of curved flight
trajectories. The extension of this method presented in [32]
makes it more operable in real systems.

An additional alternative involving a moving point on
the path is presented in [33], where the motion of the
reference point is coupled to the motion of the vehicle by a


https://www.researchgate.net/publication/3032841_Trajectory-Tracking_and_Path-Following_of_Underactuated_Autonomous_Vehicles_With_Parametric_Modeling_Uncertainty?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/223809803_Guidance_and_control_laws_for_vehicle_pathkeeping_along_curved_trajectories?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/223809803_Guidance_and_control_laws_for_vehicle_pathkeeping_along_curved_trajectories?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/236984679_Handbook_of_Marine_Craft_Hydrodynamics_and_Motion_Control?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/251958262_A_tight_path_following_algorithm_of_an_UAS_based_on_PID_control?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/237127962_Path_Following_And_Time-Varying_Feedback_Stabilization_of_a_Wheeled_Mobile_Robot?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/2749133_Trajectory_Tracking_for_Unicycle-Type_and_Two-Steering-Wheels_Mobile_Robots?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/244445591_Trajectory_tracking_for_autonomous_vehicles_An_integrated_approach_to_guidance_and_control?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/261724401_Path_Following_for_Autonomous_Marine_Craft?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/261724401_Path_Following_for_Autonomous_Marine_Craft?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/224069334_3D_path_following_for_autonomous_underwater_vehicle?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/4058045_Adaptive_non-singular_path-following_control_of_dynamic_wheeled_robots?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/200744564_Nonsingular_Path_Following_Control_of_a_Unicycle_in_the_Presence_of_Parametric_Modelling_Uncertainties?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/222575139_Nonlinear_Path-Following_Control_of_an_AUV?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/220648223_Path-Following_Algorithms_and_Experiments_for_an_Unmanned_Surface_Vehicle?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/245433821_Path_Following_for_Small_Unmanned_Aerial_Vehicles_Using_L1_Adaptive_Augmentation_of_Commercial_Autopilots?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/3230734_Multivariable_Sliding_Mode_Control_for_Autonomous_Diving_and_Steering_of_Unmanned_Underwater_Vehicles?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/221787728_Guidance_Laws_for_Autonomous_Underwater_Vehicles?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/248187459_UAV_Path_Following_for_Constant_Line-of-Sight?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/23624080_Integrated_Mobile_Robot_Control?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/268554072_A_New_Nonlinear_Guidance_Logic_for_Trajectory_Tracking?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/261110739_L2_an_improved_line_of_sight_guidance_law_for_UAVs?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==
https://www.researchgate.net/publication/245433741_Nonlinear_Path_Following_Method?el=1_x_8&enrichId=rgreq-4014ad7a-142f-4460-9fa4-3986d26f041b&enrichSource=Y292ZXJQYWdlOzI3ODMwMDMwMTtBUzoyNDA1MjY3NTQ1Nzg0MzJAMTQzNDM1NzQ1NTc2NQ==

fictitious mechanical link. The method is applicable to 3-D
smooth defined paths. However, the guidance law imposes
constraints on the initial position and on the velocity of the
vehicle, and it cannot be applied when the vehicle has a
direction normal to that of the reference point.

A different kind of approach to guidance is based on the
concept of vector fields [34], [35], constructed surrounding
the path to be followed. This method uses a sliding mode
approach to design the control signal, provides asymptotic
following for paths composed of straight lines and arcs in the
presence of wind disturbances, and switches on and off the
fields in multi-segment paths. However, building fields that fit
generally defined paths is difficult, and its global convergence
proof does not consider any limits on the turning capability
of the vehicle.

In this paper, we present a new guidance law in 2D that
merges the method in [30], [31] with that in [10], [13]. As
in [30], [31], we consider that a reference point is on the
desired path and that the angular rotation rate of the vehicle
is generated according to the direction of the reference point,
relative to the vehicle’s velocity. However, our method com-
mands the speed of the reference point (adopting an strategy
inspired by [10], [13]), instead of maintaining the reference
point at a constant distance forward of the vehicle (as in
[30], [31]). Moreover, our method controls the reference
point speed to maintain it at any given constant distance
forward to the vehicle, extending the strategy in [10], [13]
for distance different to zero. Thus, our approach eliminates
some drawbacks of its supporting strategies, while retaining
the simplicity and advantages of the method given in [30],
[31]. Although it has two tuning parameters (two less than
[10], [13] and one more than [30], [31]), one of them can
be tuned automatically from the curvature of the path, the
speed of the vehicle, and the length of the constant distance
to the target.

The organization of the paper is as follows. Section II
describes the proposed algorithm. Section IIT analyses the
behavior of the method when following circular path and
a straight line, determining their equilibrium points and
stability. Section IV compares the proposed algorithm with
other related laws. Simulation results are given in section V
and the conclusions are drawn in Section VI.

II. GUIDANCE LAW

We consider a vehicle with position Q(f) moving with
ground speed V', velocity vector v, heading angle vy and
commanded inertial rotation rate 1/.)V(t) (see Fig. 1). Besides,
we consider a Serret-Frenet frame (SF) at the reference
point P(t) on the path, which moves with it. The abscissa
of the frame is tangential to the path and the ordinate is
perpendicular to it. Further, s represents the distance of P
along the path; s; the along-track distance error or abscissa
of () in the SF frame; y; the cross-track distance error
or ordinate of () in the SF frame; VT the velocity vector,
that is tangent to the path, ¢ its heading angle, and $ the
speed; and L, the line segment defined from ) to P. The
angles created from line L; to the vehicle velocity vector

Fig. 1.

UAV model

and the reference point velocity vector are denoted 7 and
B, respectively. The relative heading angle is defined as

Y = ¢y — ¢r. Then,
n=08+1. (1)

All the angles are clockwise positive; 3, 17 and 1) are defined
in the interval [—m, 7).
The inertial angular rotation rate of the target is

Y = K(s)$ 2)
where k(s) = 1/p(s) is the curvature of the path, and p(s)
its radius. When expressed in the SF frame, the kinematic
equation of the vehicle, already presented in [10] and [13],
are:

s51=—5(1 —y1k(s)) + V costp 3)
g1 = —£(s)$s1 + Vsiney 4)
b=y — k(s)s (5)

The guidance objective is to drive the vehicle to the path
and to make it follow the moving target at a given distance
L > 0. To this end, we propose the following nonlinear
control law, where (6) gives the commanded angular rate for
the vehicle and (7) the speed of the Serret-Frenet frame:

; —2Vsin(n), |n|<3

Yy = A 2 (6)
v {—QXslgn(n), >3
$=Vcostp+ K(s;+L). @)

This control law, which will be compared with others in
Section IV, allows the tracking of the transition between a
straight path and a circle, and converging exactly to paths of
other shapes. Equation (6) tries to bring the cross-track error
to zero, using the maximum angular rate for | 7 |[> 90 deg.
The objective of (7) is to make the vehicle follow the moving
reference point with a constant along-track error L. The first
term of the right hand side provides the reference point with
a speed that equals that of the vehicle tangentially to the path,
and the second term tries to bring the reference point to a
given distance in the path direction. K is a positive constant
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Fig. 2. Geometry of the stationary condition for a circular path

that, as Section III will show, is determined by V, L and the
curvature of the path. The advantages of using this type of
nonlinear control law instead of linear ones, for instances
PID type controllers, can be seen in [30].

ITII. ANALYSIS OF THE CIRCULAR AND
STRAIGHT-LINE PATH FOLLOWING

In this section we analyze the behavior and stability
of our method when following a circular path and, as a
particular case, when following a straight path. We assume
that the vehicle is an ideal particle so that the inner-loop
control system responds instantaneously and exactly to the
commanded angular rate.

If we consider a circular path of radius R = (s)™!, the
system dynamics (3-7), after substituting (6) into (5), become

$1=-$(1—w1/R) + Vcost (8)

g1 = —$s1/R+ Vsiny )

z/.}:{ —%s.in(n)—%y <3 00
—Zsign(n) — %, |nl>3

$=Vcosp+ K(s; +L). 11

A. Stationary points

If the vehicle and the reference point are going to follow
a circle of radius R with the same speed V, then at the
stationary state $; = 0,9; = 0,¢ = 0,$ = V, the solution
of the system in (8-11) and the angular relation in (1) become

s} = Rsiny* (12)

yi = R(1 — cosv)™) (13)
cosyp* =1-— %(s’{ +1L) (14)
sinn*:—%, L <2R (15)
B = -y, (16)

The values of V, K, L and R determine the relative course
angle ¢)* and through (12-13) the distance L1 = /s}? + y;2
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Fig. 3. Relation between L/R and the non dimensional quantity K L/V.

of the vehicle to the target. If this distance equals L, then,
according to Fig. 2,

sin 8" =sina = 3R (17)
n=-=p (18)
Pr = —2p" 19)
Besides, at the stationary point (see Fig. 2)
s} = —Lcos " (20)
and the substitution of (20) into (14) yields
KL _ 1-cos26” 21

\% 1 — cos 5*

Expressions (21) and (17) show that the dimensionless
quantity K L/V is a function of the relation L/R, which is
represented in Fig. 3 at the stationary condition. Therefore,
the stationary point depends only on L and R and not on the
speed of the vehicle. Moreover, although the control law in
(6)-(7) has two parameters (L and K), relation (21) gives a
constraint that determines K adaptively as a function of the
actual curvature of the path, the actual ground speed of the
vehicle, and the chosen L.

For the special case of following a straight-line desired
path, R = oo, the stationary point is

s=-Ly;i=0,9"=0,n"=0,§=1V,
and the dynamics of the along-track error is given by
31 = —K(81 + L)

So, the along-track error converges to —L with a time
constant of 1/K. By linearizing the equations of the cross-
track error and course error about the equilibrium point, a
second order system is obtained whose dynamics equals that
of [31]. This second order system has a damping ratio of ( =
1/4/2 and an undamped natural frequency of w, = v/2V/L.
In addition, from (21), KL/V = 4, what yields

K= Qﬁwn.
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Fig. 4. The solid curves show the undamped natural frequency wy, (in blue)
and damping ratio ¢ (in green) of the second order characteristic equation of
the linearized system for different values of relation L/R. The dotted curves
show the corresponding values obtained in [31].

B. Stability of the stationary points

In order to prove the stability, equations (8)-(11) can be
written (see appendix for details) in term of the angles 8 and
1) as follows

= (cost+ S (1 = cos B))( — sin ) +sin(u + )
(22)

—2sin(f+ ) — %(cosw + %(1 —cos f3)),
L . | B+ <5

L _ 2
Vw —2sign(f + ) — %(coszﬁ + %(1 —cos ),
| B+ >3
(23)
with domain
Q:{(ﬁaw)ﬁawe [—TF,TF]} (24)

We can simplify (22)-(23) using a normalized time variable
as 7 = tV/L, where one unit of normalized time is
equivalent to the actual time it takes the vehicle to move
distance L.

By the Hartman-Grobman theorem, if the linearization
of the system has a hyperbolic equilibrium point, an open
set of the equilibrium point exists where the linearized
system has the same phase portrait as the original [36],
[37]. By computing the Jacobian matrix for (22)-(23) at the
equilibrium point, we determine the associated linearized
system. Fig. 4 shows in solid lines the undamped natural
frequency w,, and the damping ratio ( of the second order
characteristic equation of the Jacobian for different values of
the relation L/R, when using the normalized time variable.
By analyzing the characteristic equation of the linearized
system, it follows that this is asymptotically stable for values

0<L/R<1.79 (25)
and is unstable for 1.8 < L/R. The equilibrium point is not
hyperbolic when the damping ratio is zero. This occurs at
¢ = 1.791with an accuracy of 0.001.

C. Domain of attractions

In order to analyze the domain of attractions of the
equilibrium points we introduce the following theorem.

Theorem 1. Consider the autonomous system & =
f(z),z € R? and let M C R? be a compact invariant set
for the system with only one equilibrium point in its interior
and no equilibrium points on the boundary. Assume that for
each initial condition in M there is a unique solution, and
that f(z) has continuous partial derivatives in the interior of
M. Let J denote the Jacobian matrix of the system. Then,
if the trace of J is negative and the determinant of J is
positive at the equilibrium point, the domain of attraction
is either the set M or an open set {2, whose boundary is a
positively invariant periodic orbit. In the latter case, the limit
set of the trajectories not in {2 are periodic orbits.

Proof. The demonstration of Theorem 1 is based on the
demonstration of Theorem 1.134 in [37]. From the hypoth-
esis on the Jacobian matrix, the eigenvalues of the associ-
ated linear system have negative real parts. Therefore, the
equilibrium point is asymptotically stable and the domain of
attraction contains an open neighborhood of the equilibrium
point. Let £ denote the domain of attraction. If 2 = M, then
the demonstration is done. Otherwise, from the continuity of
the solution of the differential equation, it follows that € is
open. Moreover, it can be shown that its boundary is closed
[37]. As the boundary of € is closed and it has no equilibrium
point, by the Poincar-Bendixon theorem, it follows that the
boundary is a closed orbit. Moreover, the Poincar-Bendixon
theorem also tell us that the only limits of the trajectories in
M\ 2 (the complement set of €2 in M) are closed orbits (so
there exists a limit cycle in it, corollary 6.18 in [38]).

Theorem 1 tells us about the behavior when the hyperbolic
equilibrium is stable. If the hyperbolic equilibrium point is
unstable, then M contains at least a limit cycle, see corollary
6.18 in [38].

For equations (22),(23) three different situations are found
in relation to the equilibrium point (17)-(19): i) the domain
of attraction of the equilibrium point is the set M = Q;
ii) there exists an open set 2 C (), which is a domain of
attraction of the equilibrium point with a boundary that is a
limit cycle; iii) the equilibrium point is unstable and there
exists a limit cycle in Q.

The first case is verified for 0 < L/R < 1.6, the second is
verified for 1.6 < L/R < 1.79, and the third is verified for
1.8 < L/R < 2.0. All cases can be found by simulations;
however, there are certain domains of L/R where case i)
can be demonstrated by the isoclines method as in [31].
This occurs when L/R = 1, whose phase plot is represented
in Fig. 5. In this case, all the trajectories defined in set ()
converge to the stable stationary point. The cross glyph (x)
are used to show those points of a trajectory that at a given
time have reached the boundary and where the flow vector
points outward of the definition region. Every cross glyph is
related to a circle symmetric with respect to the reference
axis, which shows the new initial value for the trajectory.
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f deg

Fig. 5. The phase portrait for L/R =1, KL/V = 3.73. All trajectories
converge to the stationary point 5* = 30 deg, ¥* = —60 deg. Blue arrows
show the flow vector.

IV. COMPARISON WITH OTHER METHODS

In this section we relate our guidance law with other
closely related algorithms and highlight the main differences
and similarities.

A. Comparison with [30]—[32]

The methods in [30], [31] assume that there is always a
reference point on the path at distance L from the vehicle in
the desired direction of travel. A nonlinear guidance law for
UAVs is determined as a lateral acceleration command:

V2

Aemd = 2? sin n.

This acceleration equals the instantaneous centripetal accel-
eration required to follow the circular arc that is tangent to
the vehicle velocity vector, and passes through the reference
point on the desired path at the constant lookahead distance
L. This lateral acceleration is equivalent to command an
instantaneous angular rotation rate

Wemd = 2— sinn. (26)

L
Equation (26) is the law used in (6) when | 7 |< 7/2 for
the commanded angular rate for the vehicle. The different
here is that we don’t consider a reference point on the path at
a distance L from the vehicle, but a desired distance from the
vehicle to the reference point on the path. In our case, there
is no need of an algorithm to find a point on the path. Given
an initial position of the reference point, the evolution of this
point is determined by equation (7). In that way, our law can
be applied even if the distance to the path is undefined, as
when the vehicle is at the center of a circle, or when it is
located at a distance greater than L.
If the system in [30], [31] is linearized when following
a circular path a second order low pass linear system is
obtained for the response of the cross-track error distance,
with undamped natural frequency and damping ratio

V2V L[ L

Wn = —F—, CZ ﬁ - (E)Q 27

L

for the normalized time variable. These values are repre-
sented in Fig. 4 for different values of L/R. In both cases,
our approach and this one, the damping ratio is a function
of L/R and when this value tends to zero both equations
tends to the value obtained for the straight-line case. The
differences are not very significant when L/R has values in
the interval [0, 1], e.g., for L/R = 1, the linearized equations
of (22)-(23) give ( = 0.55, w, = 1.50 and equation (27)
gives ¢ = 0.61, w, = 1.41. The differences are due to the
different laws used for the speed of the reference point, (6)
in our method and $ = Vcosn/cos 8 in [30], [31].

The asymptotic stability of the guidance law in [30], [31]
is demonstrated for straight and circular paths, only when

|n]<90deg |8 |<90 deg,

even in the presence of limitations on the lateral acceleration,
and it is independent of the vehicle’s velocity. However, the
convergence to a straight line requires that the initial cross-
track distance error is smaller than the fixed constant distance
between the vehicle and the reference point. Moreover, the
convergence to a circle is limited to cases where the distance
is smaller than the circle radius, the reference point has to be
ahead of the vehicle and the reference point will only initially
move along the desired path in the forward direction.

In [32] the law of [31] is extended in several ways. The
lookahead distance is computed as a linear function of the
ground speed

L=VT"

where T* is a specified time constant related to the roll
dynamics of the UAV. In that way, the natural frequency
of the linearized response of the kinematic controller is
independent of ground speed. Clearly, this can be also
applied to (6). In addition, [32] provides a set of rules to
account for the cases where the reference point on the path
is undefined, but that is not necessary with (6-7). The other
rules presented in [32] can be applied to our algorithm, such
as limiting the maximum value of 7 in (6) when required.

Finally, we want to point out that [39] makes a detailed
analysis of several guidance algorithms, including [31],
which gets good results but seem to work worse than vector
fields methods [34] when following a route made of circles
and straight lines. A close inspection of the results shows
that the routes followed by the UAVs with each algorithm
are different. The longer path obtained by the algorithm in
[31] is due to the method applied to compute the reference
point. Our method will tackle this problem automatically,
making the UAV follow a similar route as the one followed
with the vector fields method.

B. Comparison with [3], [13]

The kinematic control law for path following presented in
[13], which assumes that there is no side-slip, is

s=Vcosy+ K51 (28)

by =6 — K1 (v —6) + k(s)s, (29)
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where ¢ is an odd function of the cross-track distance error
defining the desired approach angle.

A typical choice of &(y;), wused in [13], is
d(y1) = —tpq tanh(Ksy,) where 1, is the maximum
approach angle value and Ks is a positive constant.
An alternative approach for d(y;), motivated by
the LOS algorithms [19], [26] and given in [3], is
6(y1) = arctan(—%) where A is a constant lookahead
distance along the path tangential. With these choices, either
four (K1, Ko, Ks5,%,) or three (K, K5, A) parameters
need to be tuned for the kinematic control law depending
on the chosen desired approach angle, instead of the only
one required in our approach.

For the methods in [3], [13], the equilibrium point
(s1,y1,%) = (0,0,0) of system (3)-(5) when controlled with
(28)-(29) is uniformly globally asymptotically and locally
exponentially stable for K; > 0 and Ky > 0.

V. SIMULATIONS

To illustrate the behavior of the proposed algorithm, we
use a vehicle with the following kinematic model:

& =V coshy, + wy,

y = Vsinyy, +wy

Yy, * T+ Py, = Yy
where w, and w, are the components of the wind in the north
and east directions, respectively. The inner loop is modeled
as a first order lag with time constant 7.

In all simulations the vehicle has a constant value
V =16m/s, T = 1lsec, and a constant wind speed of 8m/s.

Fig. 6 shows the results when the vehicle must follow
a circle in the clockwise direction and it is situated at a
distance much longer than the specified distance L. The wind
is from the East and the initial position of the reference point
is (0,150). The work in [32] shows that the time constant
T = L/V should be chosen 3 to 4 times the inner-loop
dynamics to ensure satisfactory transient response. Following
this rule, we use two different values of L: L = 3%V = 48m
and L = 2xV = 32m. As expected, worse transient is
obtained with smaller L, but better following of the circle is
achieved. When L = 3 = V' the mean following error when
the circle has been reached is 1.0 m with standard deviation
of 2.7m, and when L = 2 x V the mean value is 0.5m with
standard deviation 1.2m. When applying the guidance law
(6)-(7), condition $ > 0 is imposed to avoid the reference
point going backward. This behavior is observed in Fig 6.b,
where the reference point stand at $ = 0 for a time waiting
for the vehicle to approach it.

The example in Fig. 7 shows how the proposed method
can also be used successfully to follow parameterized curves.
These kinds of curves appear naturally when a UAV must
operate in realistic scenarios, [40]. In this case the position
of the reference point, with respect to the global reference
frame, is parameterized as a third order polynomial of s.

3 3
x(s) = Zaisi, y(s) = Z b;s'
i=0 i=0
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Fig. 6. Simulation results when following a circle

where

ao = 0,a1 = 1.3481,a2 = —0.0016482, a3 = 5.0578 x 107"
bo = 0,b1 = 0.61188, by = 0.00030765, b3 = —9.0729 x 10~ ®
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The minimum radius of curvature of the path is 111m. The
initial position of the reference point and the vehicle are (0,0)
and (0,-400), respectively; the initial heading of the vehicle
is 0 rad and the wind direction is 135 deg. The wind is
South East. Three different values of L have been considered:
L =2V, L = 4V, L = 6V. The maximum error occurs at
the curves and have values of 0.5, 1.5 and 4 m respectively.
Clearly, the shortest the lookahead distance, the smaller the
error. However, this behavior is achieved spending higher
energy values.
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Fig. 7. Simulation results when following a parametrized curve

VI. CONCLUSIONS

This paper presents a nonlinear path-following guidance
law, which combines the basic elements of two different
methods that have shown good performance in tight tracking
of curved trajectories. The new method controls the speed of
a moving virtual reference point on the desired path, which
is coupled to the motion of the vehicle by a fixed look-ahead
distance. There are two parameters in the guidance law;
however, only one, the look-ahead distance, has to be tuned.
The other is determined from the speed of the vehicle, the

look-ahead distance, and the curvature of the path. The new
method allows the vehicle to have any initial position and
orientation, overcoming some of the limitations that appear
in its supporting techniques. Moreover, the algorithm is well
adjusted to follow parameterized paths and not only paths
built from straight segments and circles.

The stability of the guidance law is demonstrated for the
entire space of initial conditions and for all velocities. A
limit on the values of the ratio of the look-ahead distance to
the radius of the path for the asymptotic stability has been
obtained.

APPENDIX

Equations (3-7) can be written in term of the angles 5 and
1. We derive the equations of the position of the vehicle
with respect to the SF frame to obtain the derivative of
angle 3. We consider that the vehicle is at distance L from
the reference point. As can be seen in Fig. 1, the vehicle’s
coordinates in the SF frame are given by

= Lsin
Y1 B 30)
sy =—Lcosp
From these equations, it follows that
;1 = Lsin 8 + LB cos
U1 ' B+ Lp . B a1
$1 = —Lcosp+ LBsinp
Hence,
b= 1 sin 3 _ $1 4+ Lcosf3 (32)

Lcosp Lsin g

From the second equality in (32), the following relation is
derived

L=q;sinf —$cosf (33)
Substituting (33) into (32) and operating, leads to
. grcosfB  §1sinf
= 34
p=4= : (34)

Substituting s1, 91 from (3), (4) and s, y; from (30) leads
to

B=(ale) = )54 Toim@+6) (9

Concerning the dynamics of ¢, substituting (1) and (6) into

() yield
b { —2¥sin(B+v) —k(s)s, |B+v <3
—2¥sign(B+ ) —r(s)s, |B+v >3

Now, (35), (36) and (7) describe the kinematics of the
vehicle. Considering a constant curvature x(s) = R~1, (35)-
(36) can be written in the following non dimensional way

(36)

= (cos+ S (1 = cos B)) (5 — sin ) +sin(u + )
(37



\%4

Y=

jus

—2sin(f+ ) — %(cosz/; + %(1 —cos f3)),
| B+ <3
—2sign(B + 1p) — % (cosyp + HE(1 — cos B)),

| B+ [>F
(38)
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