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3 Departamento de Matemática Aplicada I, Escuela de Ingenierı́a Industrial, Universidad de Vigo, 36200 Vigo,
Spain

Received ..., revised ..., accepted ...
Published online ...

Key words Compact bilinear operators, real interpolation of quasi-Banach couples, commutators of Calderón-
Zygmund operators, interpolation of compact bilinear operators among Lp spaces.
MSC (2010) Primary 46M35, 47B07. Secondary 47B38, 42B20.
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We study the interpolation properties of compact bilinear operators by the general real method among quasi-
Banach couples. As an application we show that commutators of Calderón-Zygmund bilinear operators S :

Lp × Lq −→ Lr are compact provided that 1/2 < r < 1, 1 < p, q <∞ and 1/p + 1/q = 1/r.
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1 Introduction

This paper refers to interpolation theory, a consolidated branch of functional analysis which has found important
applications in harmonic analysis, partial differential equations and operator theory, as one can see in the mono-
graphs by Butzer and Berens [6], Bergh and Löfström [4], Triebel [44, 45], König [32] or Bennett and Sharpley
[1]. Inside this theory, interpolation of compact linear operators is a very active research area. It started with the
pioneering results of Krasnosel’skĭi [34], Lions and Peetre [37] and Persson [42] in the early 1960. Since then it
has attracted the attention of many authors (see [9] and the references given there).

As for the real interpolation method (A0, A1)θ,q, it was a long standing problem to show that if any restriction
of the operator is compact, then the interpolated operator is also compact. It was solved in 1992 by Cwikel [17]
and Cobos, Kühn and Schonbek [13]. Later the result was extended to couples of quasi-Banach spaces by Cobos
and Persson [15].

Interpolation properties of compact bilinear (or multilinear) operators were studied by Calderón [7] in his
foundational paper on the complex interpolation method. The case of the real method has been investigated
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much more recently by Fernandez and Silva [22] and by Fernández-Cabrera and Martı́nez [23, 24] by using the
techniques developed by Cobos and Peetre [14] and Cobos, Kühn and Schonbek [13] to deal with linear operators.

Results of [23, 24] refer to the general real method which is defined by replacing the weighted Lq norm used
in (A0, A1)θ,q by a more general lattice norm. The outcome is a very flexible method. For example, working with
the couple (L1, L∞), the real method only produce Lebesgue spaces and Lorentz spaces. However, the general
real method can generate any interpolation space with respect to (L1, L∞) (see [5] or [39]). In particular, Orlicz
spaces and Lorentz-Zygmund spaces arise by using the general real method.

An important motivation for the investigations on interpolation properties of compact bilinear operators has
been the fact that this kind of operators occurs rather naturally in harmonic analysis. This has been shown in
the last few years in the papers by Bényi and Torres [3], Bényi and Oh [2], Hu [27] and other authors. In
particular, Bényi and Torres [3] have established compactness of commutators S of Calderón-Zygmund bilinear
operators (see Section 6 below) when acting from Lp × Lq into Lr provided that 1 < p, q < ∞, 1 ≤ r < ∞
and 1/p + 1/q = 1/r. These operators are bounded in a more broad range for the parameter r. Namely, for
1/2 < r < ∞ and 1/p + 1/q = 1/r (see the papers by Lerner et al [36] and Pérez et al [41]). So, it is natural
to wonder for compactness of S in the range 1/2 < r < 1, where the target space is no longer a Banach space
but a quasi-Banach space and therefore duality arguments cannot be used. In this paper we solve this problem by
means of interpolation techniques.

We start by reviewing in Section 2 the construction of the general real method for quasi-Banach couples. We
also establish there some auxiliary results for our later considerations. In Section 3 we show the interpolation
theorem for bounded bilinear operators, with a handy estimate for the norm of the interpolated operator. Then we
review the properties of compact bilinear operators among quasi-Banach spaces and we prove other two auxiliary
results. Section 4 contains the abstract results on interpolation of compact bilinear operators in the setting of the
quasi-Banach spaces. The results extend those of Fernández-Cabrera and Martı́nez [23, 24] for the Banach case.
We omit details when the arguments of [23, 24] need only minor modifications, but sometimes we must give
separate proofs. Applications of these abstract results are given in the last two sections. In Section 5 we establish
a reinforced version of an interpolation result of Calderón and Zygmund [8] on bounded bilinear operators among
Lp spaces. Finally, in Section 6, we prove compactness of commutators of bilinear Calderón-Zygmund operators
S : Lp × Lq −→ Lr for 1 < p, q <∞, 1/2 < r < 1 and 1/p+ 1/q = 1/r.

2 Real interpolation of quasi-Banach spaces

Important spaces as the Lebesgue spaces Lp or the Schatten-von Neumann operator spaces Sp(H) are defined
for 0 < p < 1. Then they are not Banach spaces but quasi-Banach spaces, that is to say, the triangle inequality
needs an additional constant c ≥ 1.

Let (A, ‖ · ‖A) be a quasi-Banach space with constant c = cA ≥ 1 in the quasi-triangle inequality and let
0 < p ≤ 1 such that c = 21/p−1. Then there is another quasi-norm ‖| · ‖| on A which is equivalent to ‖ · ‖A
and such that ‖| · ‖|p satisfies the triangle inequality (that is to say, ‖| · ‖| is a p-norm). See [33, §5.10] or [32,
Proposition 1.c.5]. We say that A is a p-normed quasi-Banach space. Clearly, if 0 < r < p, then A is also an
r-normed quasi-Banach space.

By a (p-normed) quasi-Banach couple Ā = (A0, A1) we mean two (p-normed) quasi-Banach spaces Aj
which are continuously embedded in the same Hausdorff topological vector space. Given t > 0, Peetre’s K- and
J-functionals are defined by

K(t, a) = K(t, a;A0, A1) = inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj}
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where a ∈ A0 +A1 = Σ(Ā), and

J(t, a) = J(t, a;A0, A1) = max{‖a‖A0 , t‖a‖A1}, a ∈ A0 ∩A1 = ∆(Ā)

(see [4, 44, 5]). Functionals K(t, ·) and J(t, ·) are quasi-norms in Σ(Ā) and ∆(Ā), respectively. Note that we
can take the same constant c ≥ 1 in the quasi-triangle inequality for any t > 0. The functional K(1, ·) coincides
with the quasi-norm ‖ · ‖Σ(Ā) of Σ(Ā) and J(1, ·) is ‖ · ‖∆(Ā).

Observe that if ‖ · ‖A0 and ‖ · ‖A1 are p-norms then J(t, ·) is a p-norm on ∆(Ā), and the functional

Kp(t, a) = inf
{(
‖a0‖pA0

+ tp‖a1‖pA1

)1/p : a = a0 + a1, aj ∈ Aj
}

is a p-norm on Σ(Ā), which is equivalent to K(t, ·). Namely,

K(t, a) ≤ Kp(t, a) ≤ 21/pK(t, a), a ∈ Σ(Ā).

The general real interpolation method has been studied in the monographs by Peetre [40] and by Brudnyı̌ and
Krugljak [5], and the articles by Cwikel and Peetre [18], Nilsson [38, 39], Cobos, Fernández-Cabrera, Manzano
and Martı́nez [10] and Cobos, Fernández-Cabrera and Martı́nez [11, 12] among other papers. Following [38],
here we consider this method realized in discrete way. Subsequently, by a quasi-Banach sequence lattice Γ we
mean a quasi-Banach space of real valued sequences with Z as index set which satisfies the following properties:

(i) Γ contains all sequences with only finitely many non-zero co-ordinates.

(ii) Whenever |ξm| ≤ |ηm| for each m ∈ Z and (ηm) ∈ Γ, then (ξm) ∈ Γ and ‖(ξm)‖Γ ≤ ‖(ηm)‖Γ.

We say that Γ is K-non-trivial if
(

min(1, 2m)
)
∈ Γ.

If Ā = (A0, A1) is a quasi-Banach couple and Γ is K-non-trivial, the K-space ĀΓ;K = (A0, A1)Γ;K is
formed of all a ∈ Σ(Ā) such that (K(2m, a)) ∈ Γ. We put

‖a‖ĀΓ;K
= ‖(K(2m, a))‖Γ.

Since

K(2m, a) ≤ min(1, 2m)J(1, a), a ∈ ∆(Ā), m ∈ Z,

and

min(1, 2m)K(1, a) ≤ K(2m, a), a ∈ Σ(Ā), m ∈ Z,

one can check that ĀΓ;K is an intermediate space with respect to Ā, that is to say,

A0 ∩A1 ↪→ (A0, A1)Γ;K ↪→ A0 +A1 .

Here ↪→ means continuous embeddings.
Let Ā = (A0, A1), B̄ = (B0, B1) be quasi-Banach couples. By T ∈ L(Ā, B̄) we mean that T is a linear

operator from Σ(Ā) into Σ(B̄) whose restriction to each Aj defines a bounded operator from Aj into Bj with
quasi-norm ‖T‖Aj ,Bj , j = 0, 1.

If T ∈ L(Ā, B̄), it is not hard to check that the restriction

T : (A0, A1)Γ;K −→ (B0, B1)Γ;K
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is bounded with quasi-norm

‖T‖(A0,A1)Γ;K ,(B0,B1)Γ;K ≤ max{‖T‖A0,B0 , ‖T‖A1,B1}.

A better estimate can be obtained if we know the behaviour of the norms of the shift operators on Γ (see [11, 12]).
Given k ∈ Z, the shift operator τk is defined by τkξ = (ξm+k)m∈Z for ξ = (ξm)m∈Z. In view of [11, Lemma
2.6], it will be useful for our aims to assume in what follows that τk is bounded in Γ for all k ∈ Z and

lim
n→∞

2−n‖τn‖Γ,Γ = 0 and lim
n→∞

‖τ−n‖Γ,Γ = 0. (2.1)

Following [12] we put

f(t) = fΓ(t) = ‖τ[log2 t]
‖Γ,Γ , t > 0 ,

where the logarithm is taken in base 2 and [ · ] is the greatest integer function.
It follows from (2.1) that

f(t) = o(max(1, t)). (2.2)

Let M1 = max(1, ‖τ1‖Γ,Γ),M2 = sup{f(t) : 0 < t ≤ 1} = sup{‖τ−n‖Γ,Γ : n ≥ 0} and M3 = sup{f(t)/t :
1 ≤ t < ∞} = sup{2−n‖τn‖Γ,Γ : n ≥ 0}. Using that ‖τm+k‖Γ,Γ ≤ ‖τm‖Γ,Γ‖τk‖Γ,Γ, m, k ∈ Z, one can
easily derive that:

For any s, t > 0, we have f(st) ≤M1f(s)f(t). Hence, if (2.3)

s < t we get that f(s) ≤M1M2f(t) and f(t)/t ≤M1M3f(s)/s.

The argument used in [12, Lemma 4.3] in the Banach case also work in the more general quasi-Banach case
considered here with the effect that if T ∈ L(Ā, B̄) then

‖T‖ĀΓ;K ,B̄Γ;K
≤

 0 if ‖T‖Aj ,Bj = 0 for j = 0 or 1,

f(2)‖T‖A0,B0f(‖T‖A1,B1/‖T‖A0,B0) otherwise.
(2.4)

The following result is proved in [23, (5.2)] for Banach couples but the argument uses the Hahn-Banach
theorem, so we give a new proof which is valid in the quasi-Banach case.

Subsequently, we write δkm for the Kronecker delta. We also put e0 = (δ0
m)m∈Z.

Lemma 2.1 Let Ā = (A0, A1) be a quasi-Banach couple and let Γ be aK-non-trivial quasi-Banach sequence
lattice satisfying (2.1). Then there is a constant C > 0 such that

sup
0<t<∞

K(t, a)
f(t)

≤ C‖a‖ĀΓ;K
, a ∈ ĀΓ;K .

P r o o f. Given any t > 0, we can choose k ∈ Z such that 2k ≤ t < 2k+1. We have

K(t, a) ≤ 2K(2k, a) =
2
‖e0‖Γ

‖K(2k, a)e0‖Γ

≤ 2
‖e0‖Γ

‖τk‖Γ,Γ‖τ−k(K(2k, a)e0)‖Γ

≤ 2
‖e0‖Γ

‖τk‖Γ,Γ‖(K(2m, a))‖Γ

≤ 2
‖e0‖Γ

f(t)‖a‖ĀΓ;K
.
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For 0 < p ≤ 1, the quasi-Banach sequence lattice Γ is said to be (p, J)-non-trivial if

sup
{( ∞∑

m=−∞

(
min(1, 2−m)|ξm|

)p)1/p

: ‖(ξm)‖Γ ≤ 1
}
<∞.

Clearly, if Γ is (p, J)-non-trivial then Γ is also (r, J)-non-trivial for any p ≤ r ≤ 1.
If Ā = (A0, A1) is a p-normed quasi-Banach couple and Γ is (p, J)-non-trivial, the J-space ĀΓ;J =

(A0, A1)Γ;J consists of all sums
∑∞
m=−∞ um (convergence in Σ(Ā)), where (um) ⊆ A0∩A1 and (J(2m, um)) ∈

Γ. The quasi-norm on ĀΓ;J is given by

‖a‖ĀΓ;J
= inf

{
‖(J(2m, um))‖Γ : a =

∞∑
m=−∞

um

}
.

Since Σ(Ā) is a p-normed quasi-Banach space, if (J(2m, um)) ∈ Γ then the series
∑∞
m=−∞ um is convergent

in Σ(Ā) because

∞∑
m=−∞

‖um‖pΣ(Ā)
≤

∞∑
m=−∞

min(1, 2−m)pJ(2m, um)p <∞.

The following estimate is useful.

Lemma 2.2 Let Ā = (A0, A1) be a p-normed quasi-Banach couple and let Γ be a (p, J)-non-trivial quasi-
Banach sequence lattice satisfying (2.1). Then there is a constant C > 0 such that

‖a‖ĀΓ;J
≤ C inf

t>0
f(t)J(t−1, a) , a ∈ ∆(Ā).

P r o o f. Given t > 0, take k ∈ Z such that 2−k ≤ t < 2−k+1. If a ∈ ∆(Ā), using the representation
a =

∑∞
m=−∞ δkma we get

‖a‖ĀΓ;J
≤ ‖(J(2m, δkma))‖Γ = J(2k, a)‖(δkm)‖Γ
= J(2k, a)‖τ−ke0‖Γ ≤ 2J(t−1, a)‖τ−k‖Γ,Γ‖e0‖Γ
= 2J(t−1, a)f(t)‖e0‖Γ.

Corollary 2.3 Let Ā = (A0, A1) be a p-normed quasi-Banach couple and let Γ be a (p, J)-non-trivial quasi-
Banach sequence lattice satisfying (2.1). Then there is a constant C > 0 such that

‖a‖ĀΓ;J
≤ C‖a‖A0fΓ(‖a‖A1/‖a‖A0) , a ∈ ∆(Ā) (2.5)

P r o o f. Take t = ‖a‖A1/‖a‖A0 in Lemma 2.2.

It turns out that (A0, A1)Γ;K ↪→ (A0, A1)Γ;J . The converse embedding depends on the boundedness of the
Calderón transform

Λp(ξm) =
(( ∞∑

k=−∞

(min(1, 2m−k)|ξk|)p
)1/p)

m∈Z
.

Namely, if Λp is bounded in Γ then (A0, A1)Γ;J ↪→ (A0, A1)Γ;K (see [38, Lemma 2.5]).
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Sometimes in our later computations it is useful that ĀΓ;K = ĀΓ;J with equivalence of quasi-norms. To get
it, working with couples of p-normed spaces, we shall assume that

Γ is K-non-trivial , (p, J)-non-trivial and the operator Λp is bounded in Γ. (2.6)

In that case we write ĀΓ for any of the spaces ĀΓ;K or ĀΓ;J and we denote by ‖·‖ĀΓ
any of the two quasi-norms.

This however will not cause any confusion.
For 0 < q ≤ ∞ we let `q be the usual space of q-summable scalar sequences with Z as index set. Let (λm)

be a sequence of positive numbers and let (Wm) be a sequence of quasi-Banach spaces with the same constant
c ≥ 1 in the quasi-triangle inequality for any Wm. We put

`q(λmWm) =
{
w = (wm) : wm ∈Wm and (λm‖wm‖Wm

) ∈ `q
}
.

The quasi-norm in `q(λmWm) is given by ‖w‖`q(λmWm) = ‖ (λm‖wm‖Wm
) ‖`q . Note that in `q(λmWm) the

quasi-triangle inequality holds with constant 21/qc. We define the space Γ(λmWm) similarly. If Wm is equal to
the scalar field K (K = R or C ), then we simply write `q(λm).

Lemma 2.4 Let 0 < q0, q1 ≤ ∞ and let (Wm) be a sequence of quasi-Banach spaces with the same constant
in the quasi-triangle inequality, so (lq0(Wm), lq1(2−mWm)) is a p-normed quasi-Banach couple for some 0 <
p ≤ 1. If Γ is a quasi-Banach sequence lattice satisfying (2.1) and (2.6), then we have with equivalence of
quasi-norms

(lq0(Wm), lq1(2−mWm))Γ = Γ(Wm).

P r o o f. Since p ≤ min(q0, q1), we have that

(lp(Wm), lp(2−mWm))Γ ↪→ (lq0(Wm), lq1(2−mWm))Γ ↪→ (l∞(Wm), l∞(2−mWm))Γ.

Hence, it suffices to show that

Γ(Wm) ↪→ (lp(Wm), lp(2−mWm))Γ and (l∞(Wm), l∞(2−mWm))Γ ↪→ Γ(Wm). (2.7)

Let w = (wm) ∈ Γ(Wm) and write uk = (δkmwk)m∈Z for the vector valued sequence having all co-ordinates
equal to 0 except for the k-th one which is wk. We have that w =

∑∞
k=−∞ uk and

J(2k, uk) = max
(
‖uk‖`p(Wm), 2k‖uk‖`p(2−mWm)

)
= ‖wk‖Wk

.

Hence

‖w‖(`p(Wm),`p(2−mWm))Γ ≤ ‖(J(2m, um))‖Γ = ‖(‖wm‖Wm
)‖Γ = ‖w‖Γ(Wm).

To establish the other embedding in (2.7) let

w = (wm) ∈ (`∞(Wm), `∞(2−mWm))Γ

and take any representation w = u+ v where u = (um) ∈ `∞(Wm) and v = (vm) ∈ `∞(2−mWm). Then

‖wk‖Wk
≤ c
(
‖uk‖Wk

+ ‖vk‖Wk

)
≤ c
(
‖u‖`∞(Wm) + 2k‖v‖`∞(2−mWm)

)
.

This implies that ‖wk‖Wk
≤ cK(2k, w) and therefore

‖w‖Γ(Wm) = ‖(‖wm‖Wm
)‖Γ ≤ c‖(K(2m, w))‖Γ = c‖w‖(`∞(Wm),`∞(2−mWm))Γ .

This completes the proof.
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We end this section with some examples. Before them, we recall that two functions f, g : (0,∞) −→ (0,∞)
are said to be equivalent (f ∼ g) if there are positive constants c1, c2 such that c1g(t) ≤ f(t) ≤ c2g(t) for all
t > 0. A function ρ : (0,∞) −→ (0,∞) is said to be a function parameter if ρ(t) increases from 0 to∞, ρ(t)/t
decreases from∞ to 0 and, for every t > 0, sρ(t) = sup{ρ(ts)/ρ(s) : s > 0} is finite with sρ(t) = o(max(1, t))
as t→ 0 and t→∞ (see [26, 28, 43]).

Example 2.5 Let 0 < q ≤ ∞ and let ρ be a function parameter. Then Γ = `q(1/ρ(2m)) is a quasi-
Banach sequence lattice. Shift operators in `q(1/ρ(2m)) satisfy ‖τk‖`q(1/ρ(2m)),`q(1/ρ(2m)) ≤ sρ(2k), so (2.1)
is satisfied. Moreover, if 0 < p ≤ q, the quasi-norm of the Calderón transform Λp in `q(1/ρ(2m)) is bounded

by the series
(∑∞

r=−∞
(

min(1, 2r)sρ(2−r)
)p)1/p

which converges because for some δ > 0 we have sρ(t) =

O(max(tδ, t1−δ)) (see [43, Proposition 1.3]). The space `q(1/ρ(2m)) is also (p, J)-non-trivial and K-non-
trivial. The interpolation method generated by `q(1/ρ(2m)) is known in the literature as the real method with a
function parameter (A0, A1)`q(1/ρ(2m)) = (A0, A1)ρ,q . It has been studied in [26, 28, 43] among other papers.

Example 2.6 Let g : (0,∞) −→ (0,∞) be a measurable function which is equivalent to a function parameter
ρ and let 0 < q ≤ ∞. Then Γ = `q(1/g(2m)) is also a quasi-Banach sequence lattice. If we choose g(t) =
tθ(1 + | log t|)A where 0 < θ < 1,A = (α0, α∞) ∈ R2 and

(1 + | log t|)A =

(1− log t)−α0 if 0 < t ≤ 1

(1 + log t)−α∞ if 1 < t <∞

then we obtain logarithmic interpolation spaces, studied in [20, 21, 19, 16]. Note that here it is not allow that θ
takes the values 0 or 1 because we want that (2.1) and (2.6) are satisfied.

Example 2.7 Let 0 < θ < 1. The special case in Example 2.5 when ρ(t) = tθ gives the classical real
interpolation method (A0, A1)θ,q (see [4, 44, 1, 5]).

3 Bilinear operators

Let A,B,E be quasi-Banach spaces and let T : A × B −→ E be a bilinear operator. The operator T is said to
be bounded if

‖T‖A×B,E = sup
{
‖T (a, b)‖E : ‖a‖A ≤ 1 , ‖b‖B ≤ 1

}
<∞.

We write B(A×B,E) for the set of all bounded bilinear operators from A×B into E.
Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be quasi-Banach couples. We write T : Ā × B̄ −→ Ē to

mean that T is a bounded bilinear operator T ∈ B(Σ(Ā)×Σ(B̄),Σ(Ē)) such that for j = 0, 1, the restriction of
T to Aj ×Bj defines a bounded bilinear operator T ∈ B(Aj ×Bj , Ej).

Next we describe the interpolation properties of bounded bilinear operators by the general real method.
Given two sequences ξ = (ξm)m∈Z, η = (ηm)m∈Z of non-negative scalars, we define their convolution by the

sequence ξ ? η = (
∑∞
k=−∞ ξkηm−k)m∈Z. If 0 < r ≤ 1, we write ξr = (ξrm)m∈Z.

Theorem 3.1 Let Ā = (A0, A1) be a quasi-Banach couple, let B̄ = (B0, B1) be a p-normed quasi-Banach
couple and let Ē = (E0, E1) be an r-normed quasi-Banach couple (0 < p, r ≤ 1). Assume that Γ0 and Γ2

are K-non-trivial quasi-Banach sequence lattices and Γ1 is a (p, J)-non-trivial quasi-Banach sequence lattice
satisfying (2.1). Furthermore, we suppose that there is a constant M > 0 such that for all non-negative scalar
sequences ξ ∈ Γ0 and η ∈ Γ1 we have

‖(ξr ? ηr)1/r‖Γ2 ≤M‖ξ‖Γ0‖η‖Γ1 . (3.1)
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Let T : Ā × B̄ −→ Ē and put ‖T‖j = ‖T‖Aj×Bj ,Ej , j = 0, 1. Then the restriction of T to ĀΓ0;K × B̄Γ1;J

defines a bounded bilinear operator T : ĀΓ0;K × B̄Γ1;J −→ ĒΓ2;K with

‖T‖ĀΓ0;K×B̄Γ1;J ,ĒΓ2;K
≤

0 if ‖T‖j = 0, j = 0 or 1

C‖T‖0fΓ1(‖T‖1/‖T‖0) otherwise.

Here C is a constant independent of T .

P r o o f. Let σj > ‖T‖j , j = 0, 1 and choose n ∈ Z such that 2n ≤ σ1/σ0 < 2n+1. Take any a ∈ ĀΓ0;K ,
any u ∈ B0 ∩B1 and m, k ∈ Z. If a = a0 + a1 with aj ∈ Aj , we get

K(2m, T (a, u)) ≤ ‖T (a0, u)‖E0 + 2m‖T (a1, u)‖E1

≤ σ0‖a0‖A0‖u‖B0 + 2m−k−n2k+nσ1‖a1‖A1‖u‖B1

≤ max(σ0, 2−nσ1)(‖a0‖A0 + 2m−k‖a1‖A1)J(2k+n, u).

Taking the infimum over all possible decompositions a = a0 + a1 with aj ∈ Aj and having in mind the choice
of n we get

K(2m, T (a, u)) ≤ 2σ0K(2m−k, a)J(2k+n, u). (3.2)

Take b ∈ B̄Γ1;J and let b =
∑∞
k=−∞ uk any J-representation of b. Then in Σ(B̄) we also have that b =∑∞

k=−∞ uk+n. Moreover, since Kr(t, ·;E0, E1) is an r-norm on Σ(Ē) which is equivalent to K(t, .;E0, E1),

we obtain that K(2m, T (a, b)) ≤ C1

(∑∞
k=−∞K(2m, T (a, uk+n))r

)1/r
. Using (3.2) and (3.1), we derive that

‖T (a, b)‖ĒΓ2;K
≤ C1‖

( ∞∑
k=−∞

K(2m, T (a, uk+n))r
)1/r‖Γ2

≤ 2C1σ0‖
( ∞∑
k=−∞

K(2m−k, a)rJ(2k+n, uk+n)r
)1/r‖Γ2

= 2C1σ0‖
( ∞∑
j=−∞

K(2j , a)rJ(2m+n−j , um+n−j)r
)1/r‖Γ2

≤ 2C1Mσ0‖(K(2m, a))‖Γ0‖(J(2m+n, um+n))‖Γ1

≤ 2C1Mσ0‖τn‖Γ1Γ1‖a‖ĀΓ0;K
‖(J(2m, um))‖Γ1 .

Since ‖τn‖Γ1,Γ1 = fΓ1(σ1/σ0), we get that

‖T‖ĀΓ0;K×B̄Γ1;J ,ĒΓ2;K
≤ Cσ0fΓ1(σ1/σ0).

Now, if ‖T‖j = 0 for j = 0 or 1, letting σj → 0 and using (2.2) we derive that ‖T‖ĀΓ0;K×B̄Γ1;J ,ĒΓ2;K
= 0. If

‖T‖j 6= 0 for j = 0, 1, taking σj = (1 + ε)‖T‖j and letting ε → 0 we conclude that ‖T‖ĀΓ0;K×B̄Γ1;J ,ĒΓ2;K
≤

C‖T‖0fΓ1(‖T‖1/‖T‖0).

Writing down Theorem 3.1 for Ā, B̄, Ē Banach couples, p = r = 1 and Γ0,Γ1,Γ2 Banach sequence lattices
satisfying (2.1), (2.6) and (3.1), we recover [23, Theorem 3.1].

Theorem 3.1 applies to the real method with a function parameter (Example 2.5) and the real method (Example
2.7). Previous results on interpolation of bilinear operators by the real method among quasi-Banach couples can
be found in the papers by Karadzhov [30] and König [31].
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Let A,B,E be quasi-Banach spaces. We say that T ∈ B(A × B,E) is compact if for any bounded sets
V ⊆ A and W ⊆ B, we have that the closure of T (V,W ) = {T (a, b) : a ∈ V, b ∈W} is compact in E. We put
K(A×B,E) for the collection of all compact operators from A×B into E.

It is not hard to check that compactness of T ∈ B(A × B,E) is equivalent to the fact that T (UA, UB) is
precompact in E. Here UA is the closed unit ball of A and UB the corresponding ball of B. Moreover, as in the
Banach case (see [3, Proposition 1]), T ∈ B(A × B,E) is compact if, and only if, for any bounded sequences
(an) ⊆ A, (bn) ⊆ B, the sequence (T (an, bn)) has a convergent subsequence.

Using the characterization of compactness by sequences, it is not hard to check that if T ∈ K(A × B,E),
E1 is another quasi-Banach space and R is a bounded linear operator R ∈ L(E,E1), then RT = R ◦ T ∈
K(A × B,E1). Moreover, if A1, B1 are quasi-Banach spaces and R1, R2 are bounded linear operators R1 ∈
L(A1, A), R2 ∈ L(B1, B), then T ◦ (R1, R2)(a, b) = T (R1, R2)(a, b) = T (R1a,R2b) belongs to K(A1 ×
B1, E). It is also clear that if T1, T2 ∈ K(A×B,E) and α, β ∈ K, then T = αT1 + βT2 ∈ K(A×B,E).

Minor changes in the arguments given by Bényi and Torres [3, Proposition 3] for the Banach case, show
that if (Tn) ⊆ K(A × B,E) and (Tn) converges to the bounded bilinear operator T ∈ B(A × B,E) then
T ∈ K(A×B,E). In what follows, we will use freely all these properties of compact bilinear operators.

The following results will be useful in the proof of the main interpolation theorem of the next section. We
write cE for the constant in the quasi-triangle inequality in the space E.

Lemma 3.2 Let A,B,E,Z be quasi-Banach spaces, let D be a dense subspace of A and let V be a dense
subspace of B. Assume that T ∈ K(A × B,E) is a compact bilinear operator and let Sn ∈ L(E,Z) be a
bounded linear operator for each n ∈ N such that supn∈N ‖Sn‖E,Z = M < ∞. If limn→∞ ‖SnTu‖Z = 0 for
all u ∈ D × V , then limn→∞ ‖SnT‖A×B,Z = 0.

P r o o f. Using compactness of T and density of D in A and of V in B, given any ε > 0, we can find a finite
set {u1, . . . , ur} ⊆ D × V with uj = (aj , bj), ‖aj‖Aj ≤ 1, ‖bj‖Bj ≤ 1 and such that

T (UA, UB) ⊆
r⋃
j=1

{Tuj +
ε

2McZ
UE}.

By the assumption on (Sn), there exists N ∈ N such that for any n ≥ N and any 1 ≤ j ≤ r, we have that
‖SnTuj‖Z ≤ ε/2cZ . Consequently, given any u ∈ UA×UB if we choose 1 ≤ j ≤ r such that ‖Tu−Tuj‖E ≤
ε/2McZ , then we obtain for n ≥ N that

‖SnTu‖Z ≤ cZ
(
‖Sn(Tu− Tuj)‖Z + ‖SnTuj‖Z

)
≤ cZM‖Tu− Tuj‖E + ε/2 ≤ ε.

Lemma 3.3 Let Ā = (A0, A1), B̄ = (B0, B1), Ē = (E0, E1) be quasi-Banach couples and let A,B,E be
intermediate spaces with respect to Ā, B̄, Ē, respectively. Assume that T : Σ(Ā)× Σ(B̄) −→ Σ(Ē) is bounded
with T ∈ K(A × B,E). Let X,Y be quasi-Banach spaces and let Rn ∈ L(X,A), Sn ∈ L(Y,B) such that
supn∈N ‖Rn‖X,A = M <∞, supn∈N ‖Sn‖Y,B = L <∞ and limn→∞ ‖T (Rn, Sn)‖X×Y,Σ(Ē) = 0. Then

lim
n→∞

‖T (Rn, Sn)‖X×Y,E = 0.

P r o o f. We proceed by contradiction. Since

sup
n∈N
‖T (Rn, Sn)‖X×Y,E ≤ML‖T‖A×B,E <∞,
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if limn→∞ ‖T (Rn, Sn)‖X×Y,E 6= 0 then we can find λ > 0, a subsequence (n′) and vectors (xn′) ⊆ UX , (yn′) ⊆
UY such that

lim
n′→∞

‖T (Rn′xn′ , Sn′yn′)‖E = λ.

The assumption on (Rn) and (Sn) yields that the sequence (Rn′xn′) is bounded in A and (Sn′yn′) in B. Com-
pactness of T : A×B −→ E implies, passing to another subsequence if necessary, that

(
T (Rn′′xn′′ , Sn′′yn′′)

)
converges to some w in E. So ‖w‖E = λ > 0 and

(
T (Rn′′xn′′ , Sn′′yn′′)

)
converges also to w in E0 + E1.

However, using that limn→∞ ‖T (Rn, Sn)‖X×Y,Σ(Ē) = 0, we get that
(
T (Rn′′xn′′ , Sn′′yn′′)

)
→ 0 in E0 + E1,

which contradicts that w 6= 0.

4 Interpolation of compact bilinear operators

Using Lemma 2.1 the arguments in [23, Theorem 5.1] can be modified to give the following.

Theorem 4.1 Let Γ0, Γ1 beK-non-trivial quasi-Banach sequence lattices satisfying (2.1). Let Ā = (A0, A1),
B̄ = (B0, B1) be quasi-Banach couples and let E be a quasi-Banach space. Assume that T ∈ B(Σ(Ā) ×
Σ(B̄), E) with T : Aj ×Bj −→ E compact for j = 0 or 1. Then T : ĀΓ0;K × B̄Γ1;K −→ E is also compact.

The next result can be derived by using (2.5) and proceeding as in [23, Theorem 5.3] for the Banach case.

Theorem 4.2 Let Γ be a (p, J)-non-trivial quasi-Banach sequence lattice (0 < p ≤ 1) satisfying (2.1).
Assume that A, B are quasi-Banach spaces and let Ē = (E0, E1) be a p-normed quasi-Banach couple. If
T ∈ B(A× B,∆(Ē)) satisfies that T : A× B −→ Ej is compact for j = 0 or 1, then T : A× B −→ ĒΓ;J is
compact as well.

Writing down these results for the real method with a function parameter (Example 2.5) we get the following.

Corollary 4.3 Let Ā = (A0, A1), B̄ = (B0, B1) be quasi-Banach couples and let E be a quasi-Banach
space. Assume that T ∈ B(Σ(Ā)×Σ(B̄), E) satisfies that T : Aj ×Bj −→ E is compact for j = 0 or 1. Then,
for any 0 < q0, q1 ≤ ∞ and any function parameters ρ0, ρ1 we have that

T : (A0, A1)ρ0,q0 × (B0, B1)ρ1;q1 −→ E

is compact as well.

Corollary 4.4 Let A, B are quasi-Banach spaces and let Ē = (E0, E1) be a quasi-Banach couple. Assume
that T ∈ B(A×B,∆(Ē)) satisfies that T : A×B −→ Ej is compact for j = 0 or 1. Then, for any 0 < q ≤ ∞
and any function parameter ρ, we have that

T : A×B −→ (E0, E1)ρ,q

is also compact.

In particular, taking the function parameters as power functions, we derive the following interpolation result
for the real method.

Corollary 4.5 Let Ā = (A0, A1), B̄ = (B0, B1) be quasi-Banach couples and let E be a quasi-Banach
space. Let T ∈ B(Σ(Ā) × Σ(B̄), E) such that T : Aj × Bj −→ E is compact for j = 0 or 1. Then, for any
0 < q0, q1 ≤ ∞ and any 0 < θ0, θ1 < 1, we have that

T : (A0, A1)θ0,q0 × (B0, B1)θ1;q1 −→ E

is compact as well.
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Note that in Corollary 4.5 no relationship is assumed between parameters θ0 and θ1. Such freedom will be
useful in the application given in Section 5.

Corollary 4.6 Let A, B be quasi-Banach spaces and let Ē = (E0, E1) be a quasi-Banach couple. Assume
that T ∈ B(A× B,∆(Ē)) with T : A× B −→ Ej compact for j = 0 or 1. Then, for any 0 < q ≤ ∞ and any
0 < θ < 1, we have that

T : A×B −→ (E0, E1)θ,q

is also compact.

Now we prove the main result of this section.

Theorem 4.7 Let Ā = (A0, A1), B̄ = (B0, B1) be p-normed quasi-Banach couples (0 < p ≤ 1), let
Ē = (E0, E1) be an r-normed quasi-Banach couple (0 < r ≤ 1) and let Γ0, Γ1, Γ2 be quasi-Banach sequence
lattices. We suppose that Γ0 and Γ1 satisfy (2.6) and that Γ2 satisfies (2.1) and (2.6) with parameter r. Assume
also that the sequence spaces satisfy the condition (3.1) on convolutions. Let T : Ā × B̄ −→ Ē such that any
of the restrictions T : Aj × Bj −→ Ej is compact for j = 0 or j = 1. Then T : ĀΓ0 × B̄Γ1 −→ ĒΓ2 is also
compact.

P r o o f. Let A◦j be the closure of ∆(Ā) in Aj . The couple A◦ = (A◦0, A
◦
1) is also a p-normed quasi-Banach

couple. Moreover, using the J-representation of ĀΓ0 , it is not difficult to check that (A0, A1)Γ0 = (A◦0, A
◦
1)Γ0 =

A◦Γ0 . Similarly, (B0, B1)Γ1 = (B◦0 , B
◦
1)Γ1 = B◦Γ1 . Note also that the operator T satisfies that T : A◦×B◦ −→

Ē, with T : A◦j × B◦j −→ Ej being compact provided that T : Aj × Bj −→ Ej is so. This allows us to work
with the couples A◦, B◦ instead of Ā, B̄.

For m ∈ Z, consider the p-normed spaces

Fm = (A◦0 ∩A◦1 , J(2m, · ;A◦0, A◦1)) , Gm = (B◦0 ∩B◦1 , J(2m, · ;B◦0 , B◦1))

and Wm = (E0 + E1 , Kr(2m, · ;E0, E1)) .

These vector-valued sequence spaces are closely linked with the construction of the general real method. Namely,
if we realized A◦Γ0 by means of the J-functional, then the map π(um) =

∑∞
m=−∞ um (convergence in Σ(A◦))

is surjective from Γ0(Fm) into A◦Γ0 and it induces the quasi-norm ‖ · ‖A◦Γ0;J
. Moreover, since A◦j is p-normed,

we also have that π : `p(2−jmFm) −→ A◦j is bounded for j = 0, 1. Similarly, π : Γ1(Gm) −→ B◦Γ1 is
surjective, bounded, it induces the quasi-norm ‖ · ‖B◦Γ1;J

and π : `p(2−jmGm) −→ B◦j is bounded for j = 0, 1.
For Ē and ĒΓ2 the relevant map is τw = (. . . , w, w,w, . . . ). Indeed, if we realize ĒΓ2 as aK-space but replacing
theK-functional by the equivalentKr-functional, then τ is a metric injection from ĒΓ2 into Γ2(Wm). Moreover,
the restrictions τ : Ej −→ `∞(2−jmWm) are bounded for j = 0, 1. We have the following diagram

`p(Fm)× `p(Gm)
(π,π)−−−−−→ A◦0 ×B◦0

T−−−→ E0
τ−−−→ `∞(Wm)

`p(2−mFm)× `p(2−mGm)
(π,π)−−−−−→ A◦1 ×B◦1

T−−−→ E1
τ−−−→ `∞(2−mWm)

Γ0(Fm)× Γ1(Gm)
(π,π)−−−−−→ A◦Γ0 ×B◦Γ1

T−−−→ ĒΓ2

τ−−−→ Γ2(Wm)

Let T̂ = τT (π, π). The properties of the maps π and τ yield that a necessary and sufficient condition for
T : A◦Γ0 ×B◦Γ1 −→ ĒΓ2 to be compact is that

T̂ : Γ0(Fm)× Γ1(Gm) −→ Γ2(Wm) is compact. (4.1)
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Since the sequences (Fm), (Gm) are formed by p-normed quasi-Banach spaces, we have that the couples
`p(F ) = (`p(Fm), `p(2−mFm)) and `p(G) = (`p(Gm), `p(2−mGm)) are p-normed quasi-Banach couples.
Moreover, the couple `∞(W ) = (`∞(Wm), `∞(2−mWm)) is an r-normed quasi-Banach couple. These three
couples are the relevant couples to work with T̂ . In fact, the operator T̂ belongs to B(`p(F ) × `p(G), `∞(W ))
and Lemma 2.4 shows that Γ0(Fm), Γ1(Gm) and Γ2(Wm) are interpolation spaces with respect to the couples
`p(F ), `p(G) and `∞(W ), respectively.

The following families of projections are useful in order to show the compactness of T̂ in (4.1). For n ∈ N,
put

Rn(zm) = (. . . , 0, 0, z−n, z−n+1, . . . , zn−1, zn, 0, 0, . . . ),

R+
n (zm) = (. . . , 0, 0, zn+1, zn+2, zn+3, . . . ),

R−n (zm) = (. . . , z−n−3, z−n−2, z−n−1, 0, 0, . . . ).

All these maps belong to L
(
`p(F ), `p(F )

)
andRn ∈ L

(
Σ(`p(F )),∆(`p(F ))

)
. One can easily check that they

satisfy the following conditions:

(i) Each one of the maps Rn, R+
n , R

−
n has quasi-norm 1 acting from `p(Fm) into `p(Fm), from `p(2−mFm)

into `p(2−mFm) and from Γ0(Fm) into Γ0(Fm).

(ii) The identity operator I on Σ(`p(F )) can be decomposed as I = Rn +R+
n +R−n , n ∈ N.

(iii) For each n ∈ N, projectionsRn : `p(Fm) −→ `p(2−mFm) andRn : `p(2−mFm) −→ `p(Fm) are bounded
with

‖Rn‖`p(Fm),`p(2−mFm) = 2n = ‖Rn‖`p(2−mFm),`p(Fm).

Moreover R+
n : `p(Fm) −→ `p(2−mFm) and R−n : `p(2−mFm) −→ `p(Fm) are also bounded with

‖R+
n ‖`p(Fm),`p(2−mFm) = 2−(n+1) = ‖R−n ‖`p(2−mFm),`p(Fm).

Similar sequences of projections can be defined on the couples `p(G) and `∞(W ). We call them Sn, S+
n , S−n

and Pn, P+
n , P−n , respectively. They satisfy the corresponding versions of (i), (ii) and (iii).

Next we split the operator T̂ as in the Banach case [24, Theorem 3.1] and we work with each piece with the
help of results of Section 3 and Theorems 4.1 and 4.2.

Using (ii), for n ∈ N we obtain T̂ = PnT̂ +P+
n T̂ +P−n T̂ . Moreover, P−n T̂ = P−n T̂ (Rn +R+

n +R−n , Sn +
S+
n + S−n ). Whence

T̂ = PnT̂ + P−n T̂ (Rn, Sn) + P+
n T̂ + P−n T̂ (R+

n , Sn) + P−n T̂ (Rn, S+
n )

+ P−n T̂ (R+
n , S

+
n ) + P−n T̂ (R−n , S

+
n ) + P−n T̂ (R−n , S

−
n )

+ P−n T̂ (Rn, S−n ) + P−n T̂ (R+
n , S

−
n ) + P−n T̂ (R−n , Sn).

Suppose that T : A1 ×B1 −→ E1 is compact. The case when we have compactness in T : A0 ×B0 −→ E0

is similar. We are going to check that acting from Γ0(Fm) × Γ1(Gm) into Γ2(Wm) the operators PnT̂ and
P−n T̂ (Rn, Sn) are compact. Then we will show that the remaining nine operators have norms converging to zero
as n → ∞. This will show that T̂ in (4.1) is the limit of a sequence of compact bilinear operators and it is
therefore compact.
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Having in mind the corresponding property to (iii) for Pn and Lemma 2.4, we can factorize PnT̂ by means of
the diagram

`p(Fm)× `p(Gm) T̂−−−→ `∞(Wm) Pn−−−−→ ∆(`∞(W )) ↪→ Γ2(Wm).

We also have

`p(2−mFm)× `p(2−mGm) T̂−−−→ `∞(2−mWm) Pn−−−−→ ∆(`∞(W )) ↪→ Γ2(Wm)

and this last operator is compact because compactness of T : A1 × B1 −→ E1 yields that T̂ : `p(2−mFm) ×
`p(2−mGm) −→ `∞(2−mWm) is compact. Using the diagram

`p(Fm)× `p(Gm)

Γ2(Wm)

`p(2−mFm)× `p(2−mGm)

@
@
@R

�
�
��

PnT̂

PnT̂

and applying Theorem 4.1 and Lemma 2.4, compactness of PnT̂ : Γ0(Fm)× Γ1(Gm) −→ Γ2(Wm) follows.

Since

Γ0(Fm)× Γ1(Gm) ↪→ Σ
(
`p(F )

)
× Σ

(
`p(G)

) (Rn,Sn)−−−−−−−→ ∆
(
`p(F )

)
×∆

(
`p(G)

)
for the operator P−n T̂ (Rn, Sn) we can use the following diagram

`p(Fm)× `p(Gm)

Γ0(Fm)× Γ1(Gm)

`p(2−mFm)× `p(2−mGm)

`∞(Wm)

`∞(2−mWm)

�
�
��

@
@
@R

-

-
P−n T̂

P−n T̂

(Rn, Sn)

(Rn, Sn)

with P−n T̂ (Rn, Sn) : Γ0(Fm)×Γ1(Gm) −→ `∞(2−mWm) being compact. Whence, according to Theorem 4.2
and Lemma 2.4, we derive that P−n T̂ (Rn, Sn) : Γ0(Fm)× Γ1(Gm) −→ Γ2(Wm) is also compact.

Next we show that the norm of P+
n T̂ tends to 0 as n → ∞. Consider the operator P+

n τT : A◦1 × B◦1 −→
`∞(2−mWm). Using the corresponding property to (iii) for P+

n , given any a ∈ ∆(Ā) and b ∈ ∆(B̄), we have
that

‖P+
n τT (a, b)‖`∞(2−mWm) ≤ 2−(n+1)‖τT (a, b)‖`∞(Wm) → 0 as n→∞.

Then, applying Lemma 3.2, we get that limn→∞ ‖P+
n τT‖A◦1×B◦1 ,`∞(2−mWm) = 0 and consequently

lim
n→∞

‖P+
n T̂‖`p(2−mFm)×`p(2−mGm),`∞(2−mWm) = 0.
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Using now Theorem 3.1 and having in mind properties (2.3) and (2.2) of fΓ1 , we obtain that

‖P+
n T̂‖Γ0(Fm)×Γ1(Gm),Γ2(Wm)

≤ C1 ‖P+
n T̂‖`p(Fm)×`p(Gm),`∞(Wm) fΓ1

(
‖P+

n T̂‖`p(2−mFm)×`p(2−mGm),`∞(2−mWm)

‖P+
n T̂‖`p(Fm)×`p(Gm),`∞(Wm)

)

≤ C2‖P+
n T̂‖`p(Fm)×`p(Gm),`∞(Wm)fΓ1

(
1

‖P+
n T̂‖`p(Fm)×`p(Gm),`∞(Wm)

)
× fΓ1

(
‖P+

n T̂‖`p(2−mFm)×`p(2−mGm),`∞(2−mWm)

)
≤ C3 fΓ1

(
‖P+

n T̂‖`p(2−mFm)×`p(2−mGm),`∞(2−mWm)

)
−→ 0 when n→∞.

For the operator P−n T̂ (R+
n , Sn), factorization

`p(Fm)× `p(Gm)
(R+
n ,Sn)−−−−−−−→ `p(2−mFm)× `p(2−mGm) T̂−−→ `∞(2−mWm)

P−n−−−→ `∞(Wm)

and (iii) give that

‖P−n T̂ (R+
n , Sn)‖`p(Fm)×`p(Gm),`∞(Wm)

≤ ‖R+
n ‖`p(Fm),`p(2−mFm) ‖Sn‖`p(Gm),`p(2−mGm)

× ‖T̂‖`p(2−mFm)×`p(2−mGm),`∞(2−mWm) ‖P−n ‖`∞(2−mWm),`∞(Wm)

≤ 2−(n+1) 2n ‖T‖A◦1×B◦1 ,E1 2−(n+1) −→ 0 as n→∞.

On the other hand,

‖P−n T̂ (R+
n , Sn)‖`p(2−mFm)×`p(2−mGm),`∞(2−mWm)

≤ ‖R+
n ‖`p(2−mFm),`p(2−mFm) ‖Sn‖`p(2−mGm),`p(2−mGm)

× ‖T̂‖`p(2−mFm)×`p(2−mGm),`∞(2−mWm) ‖P−n ‖`∞(2−mWm),`∞(2−mWm)

≤ ‖T‖A◦1×B◦1 ,E1 .

Hence, it follows from Theorem 3.1 and properties (2.3) and (2.2) of fΓ1 that

lim
n→∞

‖P−n T̂ (R+
n , Sn)‖Γ0(Fm)×Γ1(Gm),Γ2(Wm) = 0.

Operators P−n T̂ (Rn, S+
n ) and P−n T̂ (R+

n , S
+
n ) can be treated similarly.

Next we consider the operator P−n T̂ (R−n , S
+
n ) = P−n τT (πR−n , πS

+
n ). For the quasi-norm of T (πR−n , πS

+
n )

acting from `p(2−mFm)× `p(2−mGm) into E0 + E1 we have that

‖T (πR−n , πS
+
n )‖`p(2−mFm)×`p(2−mGm),Σ(Ē)

≤ ‖T‖Σ(A◦)×Σ(B◦),Σ(Ē)‖πR
−
n ‖`p(2−mFm),Σ(A◦)‖πS

+
n ‖`p(2−mGm),Σ(B◦)

≤ ‖T‖Σ(A◦)×Σ(B◦),Σ(Ē)‖π‖`p(Fm),Σ(A◦)‖R
−
n ‖`p(2−mFm),`p(Fm)

× ‖π‖`p(2−mGm),Σ(B◦)‖S
+
n ‖`p(2−mGm),`p(2−mGm)

≤ 2−(n+1)‖T‖Σ(A◦)×Σ(B◦),Σ(Ē) −→ 0 as n→∞.

Since T : A◦1 ×B◦1 −→ E1 is compact, Lemma 3.3 yields that

lim
n→∞

‖T (πR−n , πS
+
n )‖`p(2−mFm)×`p(2−mGm),E1 = 0.
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Therefore, limn→∞ ‖P−n T̂ (R−n , S
+
n )‖`p(2−mFm)×`p(2−mGm),`∞(2−mWm) = 0. For the norm of the other restric-

tion we get ‖P−n T̂ (R−n , S
+
n )‖`p(Fm)×`p(Gm),`∞(Wm) ≤ ‖T‖A◦0×B◦0 ,E0 . Consequently, using again Theorem 3.1

and the properties of fΓ1 we derive that

lim
n→∞

‖P−n T̂ (R−n , S
+
n )‖Γ0(Fm)×Γ1(Gm),Γ2(Wm) = 0.

For the remaining operators P−n T̂ (R−n , S
−
n ), P−n T̂ (Rn, S−n ), P−n T̂ (R+

n , S
−
n ) and P−n T̂ (R−n , Sn) we can proceed

similarly as with P−n T̂ (R−n , S
+
n ) and show that their norms converge also to 0 as n → ∞. This completes the

proof.

For the Banach case, that is, when Ā, B̄, Ē are Banach couples, p = r = 1 and Γ0,Γ1,Γ2 are Banach sequence
lattices satisfying (2.1), (2.6) and (3.1), then Theorem 4.7 recovers [24, Theorem 3.1]. In particular, in the Banach
case Theorem 4.7 improves [23, Theorem 5.8].

Applying Theorem 4.7 to the case of the real method with a function parameter described in Example 2.5, we
get the following result.

Theorem 4.8 Let Ā = (A0, A1), B̄ = (B0, B1) be quasi-Banach couples and let Ē = (E0, E1) be an r-
normed quasi-Banach couple (0 < r ≤ 1). Suppose that ρ0, ρ1, ρ2 are function parameters such that for some
constant C > 0 we have

ρ0(t)ρ1(s) ≤ Cρ2(ts) t, s > 0. (4.2)

Let 0 < q0, q1 ≤ ∞ and write

1
q

=

 1
q0

+ 1
q1
− 1

r if q0, q1 ≥ r,
1

max(q0,q1) if q0 < r or q1 < r.

If T : Ā× B̄ −→ Ē and T : Aj ×Bj −→ Ej is compact for j = 0 or 1, then

T : (A0, A1)ρ0,q0 × (B0, B1)ρ1,q1 −→ (E0, E1)ρ2,q

is also compact.

P r o o f. Assume first that q0, q1 ≥ r, so r/q + 1 = r/q0 + r/q1. If ξ = (ξm) ∈ `q0(1/ρ0(2m)), η = (ηm) ∈
`q1(1/ρ1(2m)) are non-negative scalar sequences, then according to (4.2) and Young’s inequality we obtain

‖(ξr ? ηr)1/r‖`q(1/ρ2(2m)) =
( ∞∑
m=−∞

( ∞∑
k=−∞

ξrkη
r
m−k/ρ2(2m)r

)q/r)1/q

≤ C
( ∞∑
m=−∞

( ∞∑
k=−∞

(ξk/ρ0(2k))r(ηm−k/ρ1(2m−k))r
)q/r)1/q

≤ C
∥∥(ξm/ρ0(2m)

)r∥∥1/r

`q0/r

∥∥(ηm/ρ1(2m)
)r∥∥1/r

`q1/r

= C‖ξ‖`q0 (1/ρ0(2m))‖η‖`q1 (1/ρ1(2m)).

This shows that inequality (3.1) holds. Hence, the result follows from Theorem 4.7.
Suppose now that q0 < r or q1 < r. Then either

(a) q1 = max(q0, q1) = q and q0 < r,
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or

(b) q0 = max(q0, q1) = q and q1 < r.

If (a) holds, then 1/q = 1/q0 + 1/q1 − 1/q0. Moreover, since the couple (E0, E1) is r-normed, it is also q0-
normed. Therefore, we are in the situation considered before and the result follows. If (b) holds, we can proceed
similarly.

If we choose ρ0(t) = ρ1(t) = ρ2(t) = tθ with 0 < θ < 1 then we get the following result for the real method.

Theorem 4.9 Let Ā = (A0, A1), B̄ = (B0, B1) be quasi-Banach couples and let Ē = (E0, E1) be an r-
normed quasi-Banach couple (0 < r ≤ 1). Let 0 < θ < 1, 0 < q0, q1 ≤ ∞ and let 0 < q ≤ ∞ satisfying
that

1
q

=

 1
q0

+ 1
q1
− 1

r if q0, q1 ≥ r,
1

max(q0,q1) if q0 < r or q1 < r.

If T : Ā× B̄ −→ Ē and T : Aj ×Bj −→ Ej is compact for j = 0 or 1, then

T : (A0, A1)θ,q0 × (B0, B1)θ,q1 −→ (E0, E1)θ,q

is compact as well.

Remark 4.10 Assumption T : Ā× B̄ −→ Ē implies that

T ∈ B
(
Σ(Ā)× Σ(B̄),Σ(Ē)

)
and that T ∈ B(Aj ×Bj , Ej), j = 0, 1.

Hence, there is a constant M > 0 such that

‖T (a, b)‖Ej ≤M‖a‖Aj‖b‖Bj , a ∈ ∆(Ā), b ∈ ∆(B̄), j = 0, 1. (4.3)

In applications sometimes we have (4.3) but we do not have that T ∈ B
(
Σ(Ā)× Σ(B̄),Σ(Ē)

)
. However, if we

have (4.3) and some extra information on the operator T then there is a certain replacement for the assumption
T ∈ B

(
Σ(Ā)× Σ(B̄),Σ(Ē)

)
. Next we show it.

Suppose that (4.3) holds. Let a ∈ ∆(Ā), b ∈ ∆(B̄) with b = b0 + b1 and bj ∈ Bj , j = 0, 1, then bj ∈ ∆(B̄)
and so

‖T (a, b)‖Σ(Ē) ≤ ‖T (a, b0)‖E0 + ‖T (a, b1)‖E1 ≤MJ(1, a)
(
‖b0‖B0 + ‖b1‖B1

)
.

This yields that

‖T (a, b)‖Σ(Ē) ≤M‖a‖A0∩A1‖b‖B0+B1 .

If ∆(B̄) is dense in B0 and B1, then T may be uniquely extended to a bounded bilinear operator

T : ∆(Ā)× Σ(B̄) −→ Σ(Ē). (4.4)

Similarly, if ∆(Ā) is dense inA0 andA1, it follows from (4.3) that T has a unique extension to a bounded bilinear
operator

T : Σ(Ā)×∆(B̄) −→ Σ(Ē).
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Next we follow an idea of Janson [29]. Let 0 < θj , µj < 1, 0 < qj , rj < ∞, j = 0, 1, 2. Suppose that the
operator T satisfies that

‖T (a, b)‖Ēθ2,q2 ≤M1‖a‖Āθ0,q0 ‖b‖B̄θ1,q1 , a ∈ ∆(Ā), b ∈ ∆(B̄), (4.5)

and

‖T (a, b)‖Ēµ2,r2
≤M2‖a‖Āµ0,r0

‖b‖B̄µ1,r1
, a ∈ ∆(Ā), b ∈ ∆(B̄). (4.6)

Estimates (4.5) and (4.6) may be deduced from (4.3) by means of the bilinear interpolation theorem for the
real method provided parameters θj , µj , qj , rj satisfy suitable conditions. Assume in addition that we have the
following extra information on T

‖T (a, b)‖E0+E1 ≤M3‖a‖Āθ0,q0 ‖b‖B̄µ1,r1
, a ∈ ∆(Ā), b ∈ ∆(B̄), (4.7)

‖T (a, b)‖E0+E1 ≤M4‖a‖Āµ0,r0
‖b‖B̄θ1,q1 , a ∈ ∆(Ā), b ∈ ∆(B̄). (4.8)

Since qj , rj <∞, then ∆(Ā) is dense in Āθ0,q0 and Āµ0,r0 (see [4, Theorem 3.4.2/(b) and page 66]), and ∆(B̄)
is dense in B̄θ1,q1 and B̄µ1,r1 . Proceeding as we have done to established (4.4), it follows from (4.5) and (4.7)
that T may be uniquely extended to a bounded bilinear operator

T : Āθ0,q0 ×
(
B̄θ1,q1 + B̄µ1,r1

)
−→ E0 + E1. (4.9)

On the other hand, by (4.6) and (4.8), T has a unique extension to a bounded bilinear operator

T : Āµ0,r0 ×
(
B̄θ1,q1 + B̄µ1,r1

)
−→ E0 + E1. (4.10)

Finally, from (4.9) and (4.10), it follows that T may be uniquely extended to a bounded bilinear operator

T :
(
Āθ0,q0 + Āµ0,r0

)
×
(
B̄θ1,q1 + B̄µ1,r1

)
−→ E0 + E1,

which may be used as a replacement for the assumption T ∈ B
(
Σ(Ā)× Σ(B̄),Σ(Ē)

)
.

5 Compact bilinear operators among Lp spaces

Let (Ω, µ) be a σ-finite measure space. We denote byM(µ) the collection of all (equivalence classes of) measur-
able functions f on Ω which are finite almost everywhere. We endowM(µ) with the topology of convergence in
measure on each measurable set of finite measure. In this way,M(µ) is a metrizable topological vector space.

For 0 < p ≤ ∞, we let Lp(Ω) be the usual Lebesgue space. Given 0 < p < ∞ and 0 < q ≤ ∞, the Lorentz
space Lp,q(Ω) is defined to be the set of all (equivalence classes of) measurable functions f on Ω which have a
finite quasi-norm

‖f‖Lp,q(Ω) =
(∫ µ(Ω)

0

(
t1/pf∗(t)

)q dt
t

)1/q

(the integral should be replaced by the supremum if q =∞). Here f∗ stands for the non-increasing rearrangement
of f . When p = q we have Lp(Ω) = Lp,p(Ω). The Lebesgue spaces Lp(Ω) and the Lorentz spaces Lp,q(Ω) are
continuously embedded inM(µ).

If 0 < p <∞ it turns out that

K(t, f ;Lp(Ω), L∞(Ω)) ∼
(∫ tp

0

(
f∗(t)

)p
dt
)1/p

.
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Moreover, for 0 < q ≤ ∞, 0 < r0 6= r1 ≤ ∞, 0 < θ < 1 and 1/r = (1− θ)/r0 + θ/r1, then we have(
Lr0(Ω), Lr1(Ω)

)
θ,q

= Lr,q(Ω) (equivalent quasi-norms)

(see [4, Theorems 5.2.1 and 5.3.1] or [44, 1.18.6]).
The following interpolation result is a consequence of Theorem B1 in the paper [8] by Calderón and Zygmund.

Theorem 5.1 Let (Ωk, µk) be σ-finite measure spaces for k = 0, 1, 2. Suppose 1 ≤ pj , qj ≤ ∞ and 0 <

rj ≤ ∞, j = 0, 1. Let 0 < θ < 1 and put 1/p = (1 − θ)/p0 + θ/p1, 1/q = (1 − θ)/q0 + θ/q1 and
1/r = (1− θ)/r0 + θ/r1. Assume that p 6=∞, q 6=∞ and let

T :
(
Lp0(Ω0) + Lp1(Ω0)

)
×
(
Lq0(Ω1) + Lq1(Ω1)

)
−→

(
Lr0(Ω2) + Lr1(Ω2)

)
be a bounded bilinear operator such that for j = 0, 1 the restriction

T : Lpj (Ω0)× Lqj (Ω1) −→ Lrj (Ω2)

is bounded with quasi-norm Mj . Then

T : Lp(Ω0)× Lq(Ω1) −→ Lr(Ω2)

is also bounded with quasi-norm M ≤M1−θ
0 Mθ

1 .

Next we are going to establish a reinforced version of this result.
If D ⊆ Ω2 is a µ2-measurable set, we put PD for the linear operator defined by PDf = χDf .

Theorem 5.2 Let (Ωk, µk) be σ-finite measure spaces for k = 0, 1, 2. Suppose 1 ≤ pj , qj ≤ ∞ and 0 <

rj ≤ ∞, j = 0, 1. Let 0 < θ < 1 and put 1/p = (1 − θ)/p0 + θ/p1, 1/q = (1 − θ)/q0 + θ/q1 and
1/r = (1− θ)/r0 + θ/r1. Suppose that p 6=∞, q 6=∞ and let

T :
(
Lp0(Ω0) + Lp1(Ω0)

)
×
(
Lq0(Ω1) + Lq1(Ω1)

)
−→ Lr0(Ω2) + Lr1(Ω2)

be a bounded bilinear operator such that for j = 0, 1 the restriction

T : Lpj (Ω0)× Lqj (Ω1) −→ Lrj (Ω2)

is bounded. Assume, in addition, that r0 6=∞ and that

T : Lp0(Ω0)× Lq0(Ω1) −→ Lr0(Ω2) is compact.

Then

T : Lp(Ω0)× Lq(Ω1) −→ Lr(Ω2) is also compact.

P r o o f. Let ULp be the closed unit ball of Lp and let ULq be the corresponding ball in Lq . Our aim is to show
that T

(
ULp , ULq

)
= {T (f, g) : f ∈ ULp , g ∈ ULq} is relatively compact set in Lr(Ω2). Since r0 <∞, we also

have r <∞. Then, according to [35, Lemma I.1.1] or [1, page 31], the set T
(
ULp , ULq

)
is relatively compact in

Lr(Ω2) if, and only if, the following two properties hold:

(a) limµ2(D)→0 ‖PDT‖Lp×Lq,Lr = 0.

(b) T
(
ULp , ULq

)
is relatively compact inM(µ2).
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Let D ⊆ Ω2 be any µ2-measurable set. Since ‖PDTf‖Lrj ≤ ‖Tf‖Lrj , we have that

PDT :
(
Lp0(Ω0), Lp1(Ω0)

)
×
(
Lq0(Ω1), Lq1(Ω1)

)
−→

(
Lr0(Ω2), Lr1(Ω2)

)
.

Moreover limµ2(D)→0 ‖PDT‖Lp0×Lq0 ,Lr0 = 0 because T : Lp0(Ω0) × Lq0(Ω1) −→ Lr0(Ω2) is compact.
Hence, using Theorem 5.1, we derive that

‖PDT‖Lp×Lq,Lr ≤ ‖PDT‖1−θLp0×Lq0 ,Lr0
‖PDT‖θLp1×Lq1 ,Lr1

≤ ‖PDT‖1−θLp0×Lq0 ,Lr0
‖T‖θLp1×Lq1 ,Lr1

−→ 0 as µ2(D)→ 0.

This establishes (a).
In order to check (b), take 0 < ε < 1 and let s = min(r0, r1, 1, εp, εq). Then the couple

(
Lr0(Ω2), Lr1(Ω2)

)
is s-normed. Whence, Theorem 4.9 yields that the restrictions

T :
(
Lp0(Ω0), Lp1(Ω0)

)
θ,s
×
(
Lq0(Ω1), Lq1(Ω1)

)
θ,∞ −→

(
Lr0(Ω2), Lr1(Ω2)

)
θ,∞ (5.1)

T :
(
Lp0(Ω0), Lp1(Ω0)

)
θ,∞ ×

(
Lq0(Ω1), Lq1(Ω1)

)
θ,s
−→

(
Lr0(Ω2), Lr1(Ω2)

)
θ,∞ (5.2)

are compact. The target space being

(
Lr0(Ω2), Lr1(Ω2)

)
θ,∞ =

Lr,∞(Ω2) if r0 6= r1 ,

Lr(Ω2) if r0 = r1 = r .

Choose 0 < η0, η1 < 1 such that 1/p = (1− η0)/s and 1/q = η1/s. According to [4, Theorem 5.2.4], we get((
Lp0(Ω0), Lp1(Ω0)

)
θ,s
,
(
Lp0(Ω0), Lp1(Ω0)

)
θ,∞

)
η0,p

=
(
Lp0(Ω0), Lp1(Ω0)

)
θ,p

= Lp(Ω0)

and ((
Lq0(Ω1), Lq1(Ω1)

)
θ,∞,

(
Lq0(Ω1), Lq1(Ω1)

)
θ,s

)
η1,q

=
(
Lq0(Ω1), Lq1(Ω1)

)
θ,q

= Lq(Ω1).

Now applying Corollary 4.5 to restrictions (5.1) and (5.2) and having in mind the previous reiteration formulae,
we conclude that T : Lp(Ω0)×Lq(Ω1) −→ Lr,∞(Ω2) is compact. Therefore, T

(
ULp , ULq

)
is relatively compact

in Lr,∞(Ω2) and so it is also relatively compact inM(µ2). This proves (b) and completes the proof.

6 Compactness of bilinear commutators of Calderón-Zygmund operators

In this final section we work with the measure space (Ω, µ) = (Rn, dx). For this reason we drop the measure
space in the notation for function spaces.

By a bilinear Calderón-Zygmund operator T we mean a bounded bilinear operator T : Lp × Lq −→ Lr

where 1 < p, q < ∞, 1/r = 1/p + 1/q, such that there exits a kernel K(x, y, z) defined away of the diagonal
x = y = z such that

|K(x, y, z)| ≤ c 1
(|x− y|+ |x− z|)2n

,

|∇K(x, y, z)| ≤ c 1
(|x− y|+ |x− z|)2n+1

,

and
T (f, g)(x) =

∫
Rn

∫
Rn
K(x, y, z)f(y)g(z) dydz , x /∈ supp f ∩ supp g
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where f, g are bounded functions with compact support. See the paper by Grafakos and Torres [25] and the
references given there.

Consider the following bilinear commutators
[T, b]1(f, g) = T (bf, g)− bT (f, g),

[T, b]2(f, g) = T (f, bg)− bT (f, g),

[[T, b1]1, b2]2 (f, g) = [T, b1]1(f, b2g)− b2[T, b1]1(f, g).

(6.1)

where the functions b, b1, b2 belongs to CMO, the closure in BMO of the space of C∞ functions with compact
support.

Let S be any of the bilinear commutators in (6.1). It has been shown by Lerner et al [36] and Pérez et al [41]
that S : Lp × Lq −→ Lr is bounded for 1 < p, q < ∞ and 1/r = 1/p + 1/q, so 1/2 < r < ∞. Bényi and
Torres [3, Theorem 1] have established compactness of S provided 1 ≤ r < ∞. Next we use the interpolation
results of the previous sections to show that S : Lp × Lq −→ Lr is also compact if 1/2 < r < 1.

Theorem 6.1 Let T be a bilinear Calderón-Zygmund operator, let b, b1, b2 ∈ CMO and let S be any of the
bilinear commutators defined in (6.1). If 1 < p, q <∞, 1/2 < r < 1 and 1/p+ 1/q = 1/r, then

S : Lp × Lq −→ Lr is compact.

P r o o f. Take 0 < ε < min(1− 1/2r, 1− 1/p, 1− 1/q) and put

r1 = (1− ε)r , p1 = (1− ε)p , q1 = (1− ε)q .

Then 1/2 < r1 < r < 1, 1 < p1 < p, 1 < q1 < q and 1/p1 + 1/q1 = 1/r1. Hence, according to [36, 41],
S : Lp1 × Lq1 −→ Lr1 is bounded.

Choose m ∈ N such that mr > 1 and write

r0 = mr > 1 , p0 = mp > p , q0 = mq > q .

Again 1/p0 + 1/q0 = 1/r0 and, since r0 > 1, it follows from [3, Theorem 1] that S : Lp0 × Lq0 −→ Lr0 is
compact.

Next we show that S may be uniquely extended to a bounded bilinear operator

S :
(
Lp0 + Lp1

)
×
(
Lq0 + Lq1

)
−→ Lr0 + Lr1 .

Put 1/s0 = 1/p0 + 1/q1 and 1/s1 = 1/p1 + 1/q0. Then

S : Lp0 × Lq1 −→ Ls0 and S : Lp1 × Lq0 −→ Ls1

are bounded. By our choices for parameters, we have that 1/r0 < 1/s0 < 1/r1, so there is 0 < η0 < 1 such that
1/s0 = (1 − η0)/r0 + η0/r1. Hence Ls0 ↪→ Lr0 + Lr1 . On the other hand, since 1/r0 < 1/s1 < 1/r1, there
is 0 < η1 < 1 such that 1/s1 = (1− η1)/r0 + η1/r1. Whence Ls1 ↪→ Lr0 + Lr1 . Consequently, the following
restrictions are bounded

S : Lp0 × Lq0 −→ Lr0 + Lr1 ,

S : Lp1 × Lq1 −→ Lr0 + Lr1 ,

S : Lp0 × Lq1 −→ Lr0 + Lr1 ,
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mn header will be provided by the publisher 21

S : Lp1 × Lq0 −→ Lr0 + Lr1 .

Now, proceeding as in Remark 4.10, we get that S has a unique extension to a bounded bilinear operator

S :
(
Lp0 + Lp1

)
×
(
Lq0 + Lq1

)
−→ Lr0 + Lr1

as we claimed.
Next we choose 0 < θ < 1 such that 1/r = (1−θ)/r0 +θ/r1. That is to say, satisfying that 1 = (1−θ)/m+

θ/(1− ε). Then we also have that 1/p = (1− θ)/p0 + θ/p1 and 1/q = (1− θ)/q0 + θ/q1. Since

S :
(
Lp0 , Lp1

)
×
(
Lq0 , Lq1

)
−→

(
Lr0 , Lr1

)
with S : Lp0 × Lq0 −→ Lr0 compactly and r0 6=∞, applying Theorem 5.2 we conclude that

S : Lp × Lq −→ Lr compactly.
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