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We study the interpolation properties of compact bilinear operators by the general real method among quasi-
Banach couples. As an application we show that commutators of Calder6n-Zygmund bilinear operators .S :
L, x Ly — L, are compact provided that 1/2 <r < 1,1 <p,g<ooand1l/p+1/qg=1/r.

Copyright line will be provided by the publisher

1 Introduction

This paper refers to interpolation theory, a consolidated branch of functional analysis which has found important
applications in harmonic analysis, partial differential equations and operator theory, as one can see in the mono-
graphs by Butzer and Berens [6], Bergh and Lofstrom [4], Triebel [44, 45], Konig [32] or Bennett and Sharpley
[1]. Inside this theory, interpolation of compact linear operators is a very active research area. It started with the
pioneering results of Krasnosel’skii [34], Lions and Peetre [37] and Persson [42] in the early 1960. Since then it
has attracted the attention of many authors (see [9] and the references given there).

As for the real interpolation method (Ag, A1)g,q. it was a long standing problem to show that if any restriction
of the operator is compact, then the interpolated operator is also compact. It was solved in 1992 by Cwikel [17]
and Cobos, Kiihn and Schonbek [13]. Later the result was extended to couples of quasi-Banach spaces by Cobos
and Persson [15].

Interpolation properties of compact bilinear (or multilinear) operators were studied by Calderén [7] in his

foundational paper on the complex interpolation method. The case of the real method has been investigated
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much more recently by Fernandez and Silva [22] and by Ferndndez-Cabrera and Martinez [23, 24] by using the
techniques developed by Cobos and Peetre [14] and Cobos, Kiihn and Schonbek [13] to deal with linear operators.

Results of [23, 24] refer to the general real method which is defined by replacing the weighted L, norm used
in (Ao, A1)g,q by a more general lattice norm. The outcome is a very flexible method. For example, working with
the couple (L1, L), the real method only produce Lebesgue spaces and Lorentz spaces. However, the general
real method can generate any interpolation space with respect to (L1, Lo,) (see [5] or [39]). In particular, Orlicz
spaces and Lorentz-Zygmund spaces arise by using the general real method.

An important motivation for the investigations on interpolation properties of compact bilinear operators has
been the fact that this kind of operators occurs rather naturally in harmonic analysis. This has been shown in
the last few years in the papers by Bényi and Torres [3], Bényi and Oh [2], Hu [27] and other authors. In
particular, Bényi and Torres [3] have established compactness of commutators S of Calderén-Zygmund bilinear
operators (see Section 6 below) when acting from L, x L, into L, provided that 1 < p,q < 00,1 < r < o0
and 1/p + 1/q = 1/r. These operators are bounded in a more broad range for the parameter . Namely, for
1/2 < r < ooand1/p+1/q = 1/r (see the papers by Lerner et al [36] and Pérez et al [41]). So, it is natural
to wonder for compactness of S in the range 1/2 < r < 1, where the target space is no longer a Banach space
but a quasi-Banach space and therefore duality arguments cannot be used. In this paper we solve this problem by
means of interpolation techniques.

We start by reviewing in Section 2 the construction of the general real method for quasi-Banach couples. We
also establish there some auxiliary results for our later considerations. In Section 3 we show the interpolation
theorem for bounded bilinear operators, with a handy estimate for the norm of the interpolated operator. Then we
review the properties of compact bilinear operators among quasi-Banach spaces and we prove other two auxiliary
results. Section 4 contains the abstract results on interpolation of compact bilinear operators in the setting of the
quasi-Banach spaces. The results extend those of Ferndndez-Cabrera and Martinez [23, 24] for the Banach case.
We omit details when the arguments of [23, 24] need only minor modifications, but sometimes we must give
separate proofs. Applications of these abstract results are given in the last two sections. In Section 5 we establish
areinforced version of an interpolation result of Calder6én and Zygmund [8] on bounded bilinear operators among
L, spaces. Finally, in Section 6, we prove compactness of commutators of bilinear Calderén-Zygmund operators
S:LyxLyg— Lyforl <p,g<oo,1/2<r<landl/p+1/q=1/r.

2 Real interpolation of quasi-Banach spaces

Important spaces as the Lebesgue spaces L, or the Schatten-von Neumann operator spaces S, (H ) are defined
for 0 < p < 1. Then they are not Banach spaces but quasi-Banach spaces, that is to say, the triangle inequality
needs an additional constant ¢ > 1.

Let (4, ] - ||a) be a quasi-Banach space with constant ¢ = ¢4 > 1 in the quasi-triangle inequality and let
0 < p < 1 such that ¢ = 2'/P~1, Then there is another quasi-norm ||| - ||| on A which is equivalent to || - || 4
and such that ||| - |||P satisfies the triangle inequality (that is to say, ||| - ||| is a p-norm). See [33, §5.10] or [32,

Proposition 1.c.5]. We say that A is a p-normed quasi-Banach space. Clearly, if 0 < r < p, then A is also an
r-normed quasi-Banach space.

By a (p-normed) quasi-Banach couple A = (Ap, A1) we mean two (p-normed) quasi-Banach spaces A;
which are continuously embedded in the same Hausdorff topological vector space. Given t > 0, Peetre’s K- and
J-functionals are defined by

K(t,a) = K(t,a; A, A1) = inf{||agl|a, + tl|la1]la, : a =ao+a1,a; € A;}
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where a € Ag + Ay = £(A), and

J(t,a) = J(t,a; Ag, A1) = max{||a||a,.t||lalla,}, @€ AgNA = A(A)

(see [4, 44, 5]). Functionals K (¢,-) and J(¢,-) are quasi-norms in X(A) and A(A), respectively. Note that we
can take the same constant ¢ > 1 in the quasi-triangle inequality for any ¢ > 0. The functional K (1, -) coincides

with the quasi-norm || - [|5; 4y of X(A) and J(1, ) is [ - [|a(a)-
Observe that if || - ||.4, and || - || 4, are p-norms then J (¢, -) is a p-norm on A(A), and the functional

. 1/
Kp(t, a) = 1nf{(||ao||f’40 + tp||a1Hi1) b ra=ag+a, Qj S AJ}
is a p-norm on (A), which is equivalent to K (¢, -). Namely,
K(t,a) < Kp(t,a) < 2YPK(t,a), ac %(A).

The general real interpolation method has been studied in the monographs by Peetre [40] and by Brudnyi and
Krugljak [5], and the articles by Cwikel and Peetre [18], Nilsson [38, 39], Cobos, Ferndndez-Cabrera, Manzano
and Martinez [10] and Cobos, Ferndndez-Cabrera and Martinez [11, 12] among other papers. Following [38],
here we consider this method realized in discrete way. Subsequently, by a quasi-Banach sequence lattice I' we

mean a quasi-Banach space of real valued sequences with Z as index set which satisfies the following properties:
(1) T contains all sequences with only finitely many non-zero co-ordinates.
(ii) Whenever |¢,,,| < |1y, | for eachm € Z and (n,,,) € T', then (&,,) € T and ||(§n)lIr < |(9m) |0
We say that I is K -non-trivial if (min(1,2™)) € T..
If A = (Ap, Ay) is a quasi-Banach couple and T is K-non-trivial, the K-space Ar.x = (Ao, A1)r.i is

formed of all @ € 3(A) such that (K (2™,a)) € T'. We put
lall 4r. e = (K™, a))]r-
Since

K(2™, a) <min(1,2™)J(1,a), a € A(A), m € Z,

and
min(1,2™)K(1,a) < K(2™,a), a € X(A), m € Z,

one can check that flp; K 1S an intermediate space with respect to A, that is to say,
AN A — (Ao, Ai)rix — Ao+ As.

Here — means continuous embeddings.

Let A = (Ag, A1), B = (Bo, B1) be quasi-Banach couples. By T' € £(A, B) we mean that T is a linear
operator from X(A) into ¥(B) whose restriction to each A; defines a bounded operator from A; into B; with
quasi-norm ||T'[| 4,5, j = 0, 1.

If T € L(A, B), itis not hard to check that the restriction

T: (AO;Al)F;K — (BO7BI)F;K
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4 F. Cobos, L.M. Ferndndez-Cabrera, and A. Martinez: Interpolation of compact bilinear operators

is bounded with quasi-norm

||TH(Ao,Al)r;K,(Bo,Bﬂr;K < maX{HT||A07Bo’ ”THAhBl}'

A better estimate can be obtained if we know the behaviour of the norms of the shift operators on I" (see [11, 12]).
Given k € Z, the shift operator 7y, is defined by 746 = (§4%)mez for € = (&mn)mez. In view of [11, Lemma
2.6], it will be useful for our aims to assume in what follows that 7, is bounded in I" for all k¥ € Z and

lim 27n||7_n||1_‘71_‘ =0 and lim HT—"L”F,F =0. (21)
Following [12] we put
f@t) = fr®) = ITpog, g Ire >0,

where the logarithm is taken in base 2 and [ -] is the greatest integer function.
It follows from (2.1) that

f(t) = o(max(1,1)). (2.2)

Let M; = max(1, ||71|lr,r), M2 = sup{f(t) : 0 <t < 1} = sup{||7—n|lr,0 : » > 0} and M3 = sup{f(¢)/t :
1 <t < oo} =sup{27"||m|
easily derive that:

rr:n > 0} USiIlg that H7—m+k||F,F < ||7—mHF,F||7—kHF,Fa m,k S Z, one can

For any s,t > 0, we have f(st) < Mj f(s)f(t). Hence, if (2.3)

s < twegetthat f(s) < MyMsf(t)and f(t)/t < MiMsf(s)/s.

The argument used in [12, Lemma 4.3] in the Banach case also work in the more general quasi-Banach case
considered here with the effect that if T € £(A, B) then

0 if |T'||a; B, =0 forj=0orl,

. 2.4)
TN 40,8, f(ITN| 4y, 8, /| T|| 40,8, ) Otherwise.

|7l Ap s Brox <
The following result is proved in [23, (5.2)] for Banach couples but the argument uses the Hahn-Banach
theorem, so we give a new proof which is valid in the quasi-Banach case.
Subsequently, we write 5%, for the Kronecker delta. We also put eg = (62, ) ez

Lemma 2.1 Let A = (A, Ay) be a quasi-Banach couple and let T be a K -non-trivial quasi-Banach sequence
lattice satisfying (2.1). Then there is a constant C' > 0 such that

K(t,a B
0<Sll<p f((t) ) < CHaHAF;K , a€Ark.
o
Proof. Givenany ¢ > 0, we can choose k € Z such that 2% < t < 2¥+1 We have
2
K(t,a) < 2K(2",a) = - | K (2", a)eo]r
lleollr
2 k
< WHTH rollm e (K (2%, a)eo)|r
< oo el IO 2™, @)l
< e lall e

O
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For 0 < p < 1, the quasi-Banach sequence lattice I is said to be (p, J)-non-trivial if

oo

) m 1/p
swp { (3 (min(1,27)lgnl)") 5 (En)lir <1} < o0,
Clearly, if I" is (p, J)-non-trivial then T" is also (r, J)-non-trivial for any p < r < 1.
If A = (Ap, A1) is a p-normed quasi-Banach couple and T is (p, J)-non-trivial, the J-space Ar,; =
(Ap, A1)r. consists of all sums U, (convergence in X(A)), where (u,,) C AgNA; and (J(2™,u,,)) €
I. The quasi-norm on Ar.; is given by

oo
m=—00

o0

lallr,, = inf {I(JC™ wa)lr:a= > .

m=—0o0

Since 3(A) is a p-normed quasi-Banach space, if (J (2™, u,,)) € T then the series >

in X(A) because

oo
m=—0o0

Uy, 1S convergent

o0 oo

5 lunlfo £ 32 mint 2w < .

m=—0o0 m=—oo

The following estimate is useful.

Lemma 2.2 Let A = (Ao, A1) be a p-normed quasi-Banach couple and let T be a (p, J)-non-trivial quasi-
Banach sequence lattice satisfying (2.1). Then there is a constant C > 0 such that

_ : -1 i
lalla., < Cif (DI a) , ac A(A),

Proof. Givent > 0, take k € Z such that 27% < t < 275+ If g € A(ﬁ), using the representation
a=>5"> ok a we get

lall 4., < I(T@2™, 65a)r = J(2*, )55
= J(2",a)||7-reollr < 2J(t7",a)l|7-k]Ir,rlleollr
=2J(t™", a)f(t)]eollr-

O

Corollary 2.3 Let A = (Ao, A1) be a p-normed quasi-Banach couple and let T be a (p, J)-non-trivial quasi-
Banach sequence lattice satisfying (2.1). Then there is a constant C > 0 such that

lall 4., < Cllallagfr(llalla,/llalla,) a€ A(A) (2.5)
Proof. Take ¢t = ||a||4,/||a|| 4, in Lemma 2.2. O

It turns out that (Ao, A1)r;x — (Ao, A1)r,s. The converse embedding depends on the boundedness of the
Calderén transform

oo

Ap(&m) = (D (min(1,2775)[eul)?) )

o
A, me

Namely, if A, is bounded in I" then (Ao, A1)r.s — (Ao, A1)r;kx (see [38, Lemma 2.5]).
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6 F. Cobos, L.M. Ferndndez-Cabrera, and A. Martinez: Interpolation of compact bilinear operators

Sometimes in our later computations it is useful that Ar.jx = flp; J with equivalence of quasi-norms. To get

it, working with couples of p-normed spaces, we shall assume that
I' is K-non-trivial , (p, J)-non-trivial and the operator A, is bounded in I'. 2.6)

In that case we write Ar for any of the spaces Ar,;x or Ar,; and we denote by ||- || 5. any of the two quasi-norms.
This however will not cause any confusion.

For 0 < ¢ < oo we let £, be the usual space of g-summable scalar sequences with Z as index set. Let (\,;,)
be a sequence of positive numbers and let (1¥,,,) be a sequence of quasi-Banach spaces with the same constant

¢ > 1 in the quasi-triangle inequality for any W,,,. We put
LA Win) = {w = () w0 € Won and Al|wnllw,) € £ }-

The quasi-norm in £, (A, W, ) is given by [[wl|¢, (x,.w,.) = | (Amllwmllw,,) lle,. Note that in £, (A, Wiy,) the
quasi-triangle inequality holds with constant 2'/9¢. We define the space L'(\,,W,,) similarly. If W,, is equal to
the scalar field K (K = R or C), then we simply write £, (\,,).

Lemma 2.4 Let 0 < qo,q1 < oo and let (W,,,) be a sequence of quasi-Banach spaces with the same constant
in the quasi-triangle inequality, 5o (lgo(Wi),lg, (27" W,y,)) is a p-normed quasi-Banach couple for some 0 <
p < 1. If T is a quasi-Banach sequence lattice satisfying (2.1) and (2.6), then we have with equivalence of

quasi-norms
(Lgg(Win), lg, 27" Win))r = T(Wh,).
Proof. Since p < min(qo, ¢1), we have that
(Lp(Win ), Lp (27" Won ))r = (Lgg (Wi ), lgy (27" Wi ) = (loo(Win ), Loo (27" Wi ).
Hence, it suffices to show that
T(Win) = (p(Win), (27" Wi))r - and - (loo(Win), loo (27" Win))r = T'(Win). @7

Let w = (wy,) € I'(W,,) and write uj, = (6% wy,)mez for the vector valued sequence having all co-ordinates
equal to 0 except for the k-th one which is wy. We have that w = Z?;_OO uy, and

J (2%, ur) = max (|[urle, (w,.)> 2% urlle, 2-mw,y) = llwillw,-
Hence
lwlle,(won)ep@-mwir < T ER™ um))lle = [[([wmllw,)lle = llwllcw,,)-
To establish the other embedding in (2.7) let
W= (W) € (looWn), loc (27" W)
and take any representation w = u + v where u = (uy,) € loo(Wy,) and v = (vy,) € Lo (27™W,,). Then
lwillw, < e(llurllws, + lorllw) < e(lullewwn) + 2810l @-mw,))-

This implies that ||wy ||y, < cK (2%, w) and therefore

lwllrow,,) = [lwmlw,) e < el (K™ w)lr = elwlew W) b 2-mWn))e-

This completes the proof.
O
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We end this section with some examples. Before them, we recall that two functions f, g : (0, 00) — (0, 00)
are said to be equivalent (f ~ g) if there are positive constants ¢, c2 such that ¢;g(t) < f(t) < cog(t) for all
t > 0. A function p : (0,00) — (0, 00) is said to be a function parameter if p(t) increases from 0 to oo, p(t)/t
decreases from oo to 0 and, for every t > 0, 5,,(t) = sup{p(ts)/p(s) : s > 0} is finite with s,,(t) = o(max(1,t))
ast — 0 and t — oo (see [26, 28, 43]).

Example 2.5 Let 0 < ¢ < oo and let p be a function parameter. Then I' = ¢,(1/p(2™)) is a quasi-
Banach sequence lattice. Shift operators in £,(1/p(2™)) satisty [|7x|e,(1/p(2m)),0,(1/p(2m)) < 5,(2F), so (2.1)
is satisfied. Moreover, if 0 < p < g, the quasi-norm of the Calderén transform A, in ¢,(1/p(2™)) is bounded

by the series (Z:‘;foo (min(1, 27’)30(2_T))p) v which converges because for some § > 0 we have s,(t) =
O(max(t°,t179)) (see [43, Proposition 1.3]). The space ¢,(1/p(2™)) is also (p, J)-non-trivial and K-non-
trivial. The interpolation method generated by ¢,(1/p(2™)) is known in the literature as the real method with a
function parameter (Ao, A1)y, (1/p(2m)) = (Ao, A1)p,q- It has been studied in [26, 28, 43] among other papers.

Example 2.6 Let g : (0,00) — (0, 00) be a measurable function which is equivalent to a function parameter
pandlet0 < ¢ < oo. ThenI' = ¢,(1/g(2™)) is also a quasi-Banach sequence lattice. If we choose g(t) =
t9(1 + |logt|)* where 0 < 0 < 1, A = (g, o) € R% and

(I—-logt)=™ if 0<t<1

(1 + |logt))* =
(1+logt)~ if 1<t<o0

then we obtain logarithmic interpolation spaces, studied in [20, 21, 19, 16]. Note that here it is not allow that ¢
takes the values 0 or 1 because we want that (2.1) and (2.6) are satisfied.

Example 2.7 Let 0 < 6 < 1. The special case in Example 2.5 when p(t) = t? gives the classical real
interpolation method (Ao, A1)e,q (see [4, 44, 1, 5]).

3 Bilinear operators

Let A, B, E be quasi-Banach spaces and let 7' : A x B — FE be a bilinear operator. The operator 7 is said to
be bounded if

Tl axp,5 = sup {|[T(a,0)|e : lalla <1, bl < 1} < co.

We write B(A x B, E) for the set of all bounded bilinear operators from A x B into E.

Let A = (Ag, A1), B = (By, B1), E = (Ey, E1) be quasi-Banach couples. We write T': A x B — E to
mean that T is a bounded bilinear operator T' € B(X(A) x X(B), %(E)) such that for j = 0, 1, the restriction of
T to A; x Bj defines a bounded bilinear operator T' € B(A; x Bj, E;).

Next we describe the interpolation properties of bounded bilinear operators by the general real method.

Given two sequences & = (&)mez, 1 = (m )mez of non-negative scalars, we define their convolution by the
sequence £ * 0 = (Y pe _ EkMm—k)mez. 0 <7 <1, we write " = (£, )mez.

Theorem 3.1 Let A = (Ag, Ay) be a quasi-Banach couple, let B = (By, By) be a p-normed quasi-Banach
couple and let E = (Ey, Ey) be an r-normed quasi-Banach couple (0 < p,r < 1). Assume that 'y and T,
are K-non-trivial quasi-Banach sequence lattices and Ty is a (p, J)-non-trivial quasi-Banach sequence lattice
satisfying (2.1). Furthermore, we suppose that there is a constant M > 0 such that for all non-negative scalar

sequences & € I'g and n € I'; we have

1€ * ") " |y < MIIEIro lInllr, - 3.1)
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8 F. Cobos, L.M. Ferndndez-Cabrera, and A. Martinez: Interpolation of compact bilinear operators

Let T : Ax B — Eand put |T||; = |T||a,xB,,5,.J = 0,1. Then the restriction of T to Ary;x X Br,.;
defines a bounded bilinear operator T : AFO;K X B]“l;J — EFQ;K with

0 i Tl =0,5=00r1

TN A s x Bry oo Bry e <
ro;K XBry;7,Ery 5 C\Tlofr, ITN:/IIT|lo) otherwise.

Here C' is a constant independent of T..

Proof. Leto; > ||T||;,j = 0,1 and choose n € Z such that 2" < o/0y < 2""!. Take any a € Ar,. k.,
any v € BoNByandm,k € Z. If a = ap + a1 witha; € A;, we get

K(2™,T(a,u)) < [[T(a0, u)ll, + 2" T (a1, u)|| e,

+ 2m7k7n2k+n

< aollao] 4, [|ul 5, a1llala, [|ul 5,

< max(0o, 2" "o1)(llao]l 4y + 27 [lar|La, ) (27", w).

Taking the infimum over all possible decompositions a = ag + a; with a; € A; and having in mind the choice

of n we get

K(©2™,T(a,u)) < 200K (2™, a)J (28", u). (3.2)

Take b € Br,,; and let b = > 72wy, any J-representation of b. Then in X(B) we also have that b =
> e Uk4n. Moreover, since K, (t,; Eo, E1) is an r-norm on X(E) which is equivalent to K (¢, .; Ey, E1),

we obtain that K (2™, T(a, b)) < C1 (> pe_ o K(2™, T(a, uksn))") v Using (3.2) and (3.1), we derive that

o0

m m1l/r
IT(a,0) 1, e < Ol Y. K™ T(a,uein)) " s

k=—o0
oo

<2100l (Y K@, a) T upn)) i,

k=—o00
0o

= QCIUOH( Z K(Zj’ a)TJ(QmJF"_j,uern_j)r)

Jj=—00
< 201 Moo [[(K (2™, a)) o (T (2™ tmtn)) I,
< 2C1 Moo || 7allrrs llall ap,, 0 1T (27, wm)) I, -

1/r
Hrz

Since |7, ||r,,r, = fr,(01/00), we get that

||THA1"O;K><BF1;J,EF2:K S CUOfFl (01/00)

Now, if [|T|; = 0 for j = 0 or 1, letting 0; — 0 and using (2.2) we derive that [|T'|| 1. x5y, ;. 5p, = 0- I
IT||; # 0for j = 0,1, taking o; = (1 + ¢)||T||; and letting ¢ — 0 we conclude that HT”A[‘O;KXBFI;J;EFQ:K <
ClIT o fr, (IT]1 /1T o) O

Writing down Theorem 3.1 for A, B, E Banach couples, p = r = 1 and I'g, I';, I'; Banach sequence lattices
satisfying (2.1), (2.6) and (3.1), we recover [23, Theorem 3.1].

Theorem 3.1 applies to the real method with a function parameter (Example 2.5) and the real method (Example
2.7). Previous results on interpolation of bilinear operators by the real method among quasi-Banach couples can
be found in the papers by Karadzhov [30] and Kénig [31].
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Let A, B, E be quasi-Banach spaces. We say that T € B(A x B, E) is compact if for any bounded sets
V C Aand W C B, we have that the closure of T'(V, W) = {T'(a,b) : a € V,b € W} is compact in E. We put
K(A x B, E) for the collection of all compact operators from A x B into E.

It is not hard to check that compactness of T € B(A x B, E) is equivalent to the fact that T (U4, Up) is
precompact in . Here U is the closed unit ball of A and Up the corresponding ball of B. Moreover, as in the
Banach case (see [3, Proposition 1]), T' € B(A x B, E) is compact if, and only if, for any bounded sequences
(an) € A, (by,) C B, the sequence (T'(a,,by,)) has a convergent subsequence.

Using the characterization of compactness by sequences, it is not hard to check that if T € IC(A x B, E),
E; is another quasi-Banach space and R is a bounded linear operator R € L(E,E;), then RT = RoT €
K(A x B, Ey). Moreover, if Ay, By are quasi-Banach spaces and Ry, Ry are bounded linear operators Ry €
L(A1,A),Ry € L(By,B), then T o (Ry, Rz)(a,b) = T(Ry,Rz)(a,b) = T(Rya, R2b) belongs to IC(A; x
By, E). Itis also clear that if 71,75 € K(A x B,E)and o, 8 € K, then T = oT1 + 15 € K(A X B, E).

Minor changes in the arguments given by Bényi and Torres [3, Proposition 3] for the Banach case, show
that if (7,,) € K(A x B, E) and (T,,) converges to the bounded bilinear operator 7' € B(A x B, E) then
T € K(A x B, E). In what follows, we will use freely all these properties of compact bilinear operators.

The following results will be useful in the proof of the main interpolation theorem of the next section. We

write cp for the constant in the quasi-triangle inequality in the space E.

Lemma 3.2 Let A, B, E, Z be quasi-Banach spaces, let D be a dense subspace of A and let V' be a dense
subspace of B. Assume that T € K(A x B, E) is a compact bilinear operator and let S,, € L(E,Z) be a
bounded linear operator for each n € N such that sup,,cy |Snllg,z = M < oo. Iflim, .« ||SyTul|z = 0 for
allu € D x V, thenlim,, o ||SnT||axB,z = 0.

Proof. Using compactness of 7" and density of D in A and of V in B, given any £ > 0, we can find a finite

set {uy,...,u,} €D xV withu; = (aj,b;),[la;|la, <1,[bj]|, <1 and such that
" €
T(Ua,Ug) C Tu, Ug}.
(Ua, B)_JL:Jl{ Uit ey 2

By the assumption on (S,,), there exists N € N such that for any n > N and any 1 < j < r, we have that
|SnTu;||z < €/2cz. Consequently, given any u € Uy x Up if we choose 1 < j < rsuch that ||[Tu —Tu;|| g <
€/2Mcyz, then we obtain for n > N that

[SnTullz < ez ([[Sn(Tu = Tuy)llz + 1SnTujllz) < czM|Tu—Tuj|p +e/2 <e.
O

Lemma 3.3 Let A = (Ay, A1), B = (Bo, B1), E = (Ey, E1) be quasi-Banach couples and let A, B, E be
intermediate spaces with respect to A, B, E, respectively. Assume that T : ¥(A) x ¥(B) — X(E) is bounded
with T € K(A x B,E). Let X,Y be quasi-Banach spaces and let R,, € L(X, A), S, € L(Y, B) such that
sup,en [ Bnllx,a = M < 00, sup,,ey [|Snllv,p = L < 00 and limy, .0 | T (R, Sn)ll x xv,x(E) = 0. Then

Jim [T (R, Sn)llxxv,m = 0.
Proof. We proceed by contradiction. Since
sup | T (R, Sn)llxxv,e < ML|T||axp.E < o0,
neN
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10 F. Cobos, L.M. Ferndndez-Cabrera, and A. Martinez: Interpolation of compact bilinear operators

iflimy, o0 ||T(Rp, Sn) || xxv,E 7 0then we can find A > 0, a subsequence (n') and vectors (z,,) C Ux, (yn/) C
Uy such that

lim HT(Rn’zn’»Sn’yn’wE = A

n’—oo

The assumption on (R,,) and (S,) yields that the sequence (R, ) is bounded in A and (S,y,) in B. Com-
pactness of T : A x B — F implies, passing to another subsequence if necessary, that (T(Rnuacnu7 Snuynu))
converges to some w in E. So ||lw||g = A > 0 and (T(Rnuxnu, Snuynu)) converges also to w in Ey + Ej.
However, using that limy, oo | T'(Rn, Sn)ll x xv,x(&) = 0, we get that (T(Ryr @y, Spiynrr)) — 0in Eg + Ey,
which contradicts that w # 0. O

4 Interpolation of compact bilinear operators

Using Lemma 2.1 the arguments in [23, Theorem 5.1] can be modified to give the following.

Theorem 4.1 Let Ty, I'; be K -non-trivial quasi-Banach sequence lattices satisfying (2.1). Let A = (4o, Ay),
B = (By, By) be quasi-Banach couples and let E be a quasi-Banach space. Assume that T € B(X(A) x
Y(B),E) with T : Aj x Bj — E compact for j =0or 1. ThenT : AFO;K X BFl;K — F is also compact.

The next result can be derived by using (2.5) and proceeding as in [23, Theorem 5.3] for the Banach case.

Theorem 4.2 Let I" be a (p, J)-non-trivial quasi-Banach sequence lattice (0 < p < 1) satisfying (2.1).
Assume that A, B are quasi-Banach spaces and let E = (Ey, E1) be a p-normed quasi-Banach couple. If
T € B(A x B, A(E)) satisfies that T : A x B — Ej is compact for j =0 or 1, then T : Ax B — Er.j is
compact as well.

Writing down these results for the real method with a function parameter (Example 2.5) we get the following.

Corollary 4.3 Let A = (Ag, A1), B = (Bo, B1) be quasi-Banach couples and let E be a quasi-Banach

space. Assume that T € B(X(A) x X(B), E) satisfies that T : A; x Bj — E is compact for j = 0 or 1. Then,

forany 0 < qo,q1 < oo and any function parameters pg, p1 we have that

T: (A07A1)p0,q0 X (30781) — F

P15q1

is compact as well.

Corollary 4.4 Let A, B are quasi-Banach spaces and let E = (Eq, Ey) be a quasi-Banach couple. Assume
that T € B(A x B, A(E)) satisfies that T : A x B — Ej is compact for j = 0 or 1. Then, for any 0 < q < o0

and any function parameter p, we have that
T:Ax B — (E()?El)p’q

is also compact.

In particular, taking the function parameters as power functions, we derive the following interpolation result

for the real method.

Corollary 4.5 Let A = (Ag, A1), B = (By, B1) be quasi-Banach couples and let E be a quasi-Banach

space. Let T € B(X(A) x ¥(B), E) such that T : Aj x B;j — E is compact for j = 0 or 1. Then, for any
0 < qo,q1 <ooandany0 < by,0, < 1, we have that

T : (Ao, A1)og,q0 X (Bo, B1)oysqy — E

is compact as well.
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Note that in Corollary 4.5 no relationship is assumed between parameters 6y and 6;. Such freedom will be

useful in the application given in Section 5.

Corollary 4.6 Let A, B be quasi-Banach spaces and let E = (Ey, Ey) be a quasi-Banach couple. Assume
that T € B(A x B,A(E)) with T : A x B — E; compact for j = 0 or 1. Then, for any 0 < q < oo and any
0 < 0 < 1, we have that

T:AXxB— (Ey,E1)s,q

is also compact.
Now we prove the main result of this section.

Theorem 4.7 Let A = (Ag, A1), B = (Bg, B1) be p-normed quasi-Banach couples (0 < p < 1), let
E = (Ey, E1) be an r-normed quasi-Banach couple (0 < r < 1) and let o, T'y, T'y be quasi-Banach sequence
lattices. We suppose that I'g and ' satisfy (2.6) and that s satisfies (2.1) and (2.6) with parameter r. Assume
also that the sequence spaces satisfy the condition (3.1) on convolutions. Let T : A x B — E such that any
of the restrictions T : A; x Bj — Ej is compact for j = 0orj = 1. Then T : Ar, x Br, — Er, is also

compact.

Proof. Let A$ be the closure of A(A) in A;. The couple A° = (A§, A?) is also a p-normed quasi-Banach
couple. Moreover, using the J-representation of Ar,, it is not difficult to check that (Ag, A1)r, = (45, AY)r, =
A°r,. Similarly, (Bg, B1)r, = (B§, Bj)r, = B°r,. Note also that the operator T satisfies that T : A° x B> —
E, with T : A;? X Bj — E; being compact provided that T" : A; x B; — Ej is so. This allows us to work
with the couples A°, B° instead of A, B.

For m € Z, consider the p-normed spaces

Fp = (ASHA(I’7 J(Zm"; 8>A(f)) ;o Gy = (B[())mBi)> J(2m"5B(())aBi)))
and Wm = (EQ—FE]_, KT(2”L,-;EQ,E1)).

These vector-valued sequence spaces are closely linked with the construction of the general real method. Namely,
o0
m=—oo

if we realized A°p, by means of the J-functional, then the map 7(u,,) = > um (convergence in X (A°))
is surjective from I'g(F},,) into A°p, and it induces the quasi-norm || - ”Fro;,f Moreover, since A$ is p-normed,
we also have that 7 : £,(277™F,,) — A$ is bounded for j = 0,1. Similarly, 7 : T'1(G,,) — B°r, is
surjective, bounded, it induces the quasi-norm || - Hﬁrlu and 7 : £,(277"G,,) — B is bounded for j = 0, 1.
For E and Er, the relevant mapis 7w = (..., w,w,w,...). Indeed, if we realize Er, as a K -space but replacing
the K -functional by the equivalent K ,.-functional, then 7 is a metric injection from Ep2 into I' (W,,,). Moreover,

the restrictions 7 : E; — {00 (277™W,,) are bounded for j = 0, 1. We have the following diagram

(,m)

Co(Fpn) X £,(Grn) AS x B - Ey - loo(Win)

(m,m

(27 ) % £y(2 M G) — T A9 % BY T By T 00 (27 W)

(,m)

FO(FTYL) X Fl(Gm) FFO X ﬁl"l L EFQ L) FZ(Wm)

Let T = 7T (mw, 7). The properties of the maps 7 and 7 yield that a necessary and sufficient condition for
T : A°p, x B°r, — Er, to be compact is that

T :To(Fy) x T1(Gp) — Da(Wyy,)  is compact. (4.1)
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12 F. Cobos, L.M. Ferndndez-Cabrera, and A. Martinez: Interpolation of compact bilinear operators

Since the sequences (F,), (G,,) are formed by p-normed quasi-Banach spaces, we have that the couples
0p(F) = (Ly(Fn), £p(27™Fy,)) and £,(G) = (£y(Gym),£p(27"G\y)) are p-normed quasi-Banach couples.
Moreover, the couple oo (W) = (boo(Win), oo (27™W,y,)) is an r-normed quasi-Banach couple. These three
couples are the relevant couples to work with 7'. In fact, the operator T belongs to B (Up(F) x £p(G), oo (W))
and Lemma 2.4 shows that I'g(F},), T'1(G,,) and T'2(W,,,) are interpolation spaces with respect to the couples
Ly(F), £,(G) and £ (W), respectively.

The following families of projections are useful in order to show the compactness of T in (4.1). Forn € N,

put

R'IL(Z'HL) = ( .. 70707 Z—nyR—n+ly---52n—1, Z7L70707 s )7
Ry—t(zm) = ( -+, 0,0, Zn+1; An+2, Zn+3, - - - )a

R, (zm)="(+y2-n-3,2-n-2,2-n-1,0,0,...).

All these maps belong to £ ((,,(F), ép(F)) and R,, € L (E(KP(F))7 A(KP(F))) . One can easily check that they
satisfy the following conditions:

(i) Each one of the maps R,, R}, R;, has quasi-norm 1 acting from ¢,(F,,) into ¢,(F,,), from £,(2""F,,)

n

into ¢,(2~™F,,) and from I'y(F,;,) into T'o(Fy,).
(ii) The identity operator I on (¢, (F)) can be decomposed as I = R, + R} + R,;,n € N.

(iii) Foreachn € N, projections Ry, : £,(Fy,) — £,(27™Fy,) and Ry, : £,(27™F,,) — {,(F,) are bounded
with

| Rulle, (Fn).tp2-m ) = 2" = [|Rulle,2-m Pty (F)-

Moreover R} : £,(Fy,) — £,(27™F,,) and R;, : £,(27™F,,) — {,(Fy,) are also bounded with

IR ey (F) sty (2-m )y = 27T = (IR (g, 2 By (B -

Similar sequences of projections can be defined on the couples ¢,,(G) and £ (W). We call them S,,, S;

o S
and P,, P;F, P, respectively. They satisfy the corresponding versions of (i), (ii) and (iii).

Next we split the operator T as in the Banach case [24, Theorem 3.1] and we work with each piece with the
help of results of Section 3 and Theorems 4.1 and 4.2.

Using (ii), for n € N we obtain 7' = P, T + P;T + P; T. Moreover, P; T = P T(R,, + R} + Ry, , Sp +
S+ S,). Whence

T =P, T+ P, T(Rn,S,) + PIT + Py T(R}, S,) + Py T(Ry, 5;)
+ Py T(RE.ST) + Py T(R, ST + PrT(R,S))
+ P T (R, Sy) + PrT(RE,S;) + PyT(R;,, S).
Suppose that T' : A; x By — F is compact. The case when we have compactness in 7' : Ay x By — Ej
is similar. We are going to check that acting from Ig(F,,) x I'1(G,,) into I'y(W,,) the operators P, T and
P f(Rn, Sp,) are compact. Then we will show that the remaining nine operators have norms converging to zero

as m — oo. This will show that 7 in (4.1) is the limit of a sequence of compact bilinear operators and it is
therefore compact.
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Having in mind the corresponding property to (iii) for P,, and Lemma 2.4, we can factorize Pnf by means of

the diagram

0(F) X 0(G) " Loa (W) —Ps A(Goa() < T W),

‘We also have

027 F) X £y (2 G) s L2 W) T Ao (W) < Ta(Win)

and this last operator is compact because compactness of T : A; x By — FEj yields that T : L,(27™F,,) X
(27" Gyy,) — Lo (27™W,,) is compact. Using the diagram

p(Fin) X Lp(Gm)

0,(27F ) % £,(27G )

and applying Theorem 4.1 and Lemma 2.4, compactness of Pnf :Do(Fy) X T'1(Gh) — To(W,,) follows.

Since

YREY AN (Rn,Sn)
ey

To(Fn) % T1(Gm) — S(6(F)) x £(0,(G)) AL, (F)) x A(6,(G))

for the operator P, T (Ry, Sy) we can use the following diagram

P;T
Up(Fin) X £yp(Gm) loo (W)
(R, Sy
Fo(Fm) X Fl(Gm)
0,2 ™) X £y (27 Gin) o (27™W,)

with Pn‘f(Rn, Sn) :Do(Fp) xT1(Gr) — £oo(27™W,,) being compact. Whence, according to Theorem 4.2
and Lemma 2.4, we derive that P, T (R,,, Sp) : To(Fpn) X Ty (Gyn) — To(W,y,) is also compact.

Next we show that the norm of P, T tends to 0 as n — oo. Consider the operator PrrT : A} x By —
lso(27™W,,). Using the corresponding property to (iii) for P;", given any a € A(A) and b € A(B), we have
that

1P 7T (a,b) e 2-mw,y < 27" )7T(a,b) |l () — 0 as 1 — oo
Then, applying Lemma 3.2, we get that lim,, oo || P,/ 77'|| 4o x B2 ¢ (2-mw,,) = 0 and consequently

: +7 _
Jim [P T, 2mm ), (277 G e (27 m W) = O
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14 F. Cobos, L.M. Ferndndez-Cabrera, and A. Martinez: Interpolation of compact bilinear operators

Using now Theorem 3.1 and having in mind properties (2.3) and (2.2) of fr,, we obtain that

1P T (| T () X T (G ) T2 (W)

~ 1P T, 2= Py (2= G ) e (2= W1
S CLIPS T e, (B xy (Gon) b (W) S ( i“ Ll Lol )
1P T ey () % 0 ( G e (W)

A 1
S ol BT |0, (P %y (Gon) o (W) ST ( = )
NPT ey 5y (Gt (W)

X fr, (llPJTHep(z—mFm)xep@—mc:m),eoo(2—mwm))

< Cs fr, (||PJT||EP(2*7"FM)XZP(Q*me),Zoo@*me)) — 0 when 7 — oo.

For the operator P, T(R;}, S,,), factorization

(RF,Sn)
_—

n’

p-

0y(F) X £y(Gon) 027 F) X Ly(27 G — Lo (27 W) —2 Lo (Wi

and (iii) give that

1Py TR, Su)lley (Fo) (G st (Win)
<R ey (Bt 2 Fn) 1Sl (G (2 )
X T lle, 2-m )y @m0 Gon) oo 2-m W) 1P e (2= Wi e (W)
<272 T gowpop, 27T — 0 as n— oo

On the other hand,

1P TR, Sn)le, 2m )ty (2-m G oo (2- Wi
<N B e, 2-m By 2= o) 1Snlle, 2-mGon) by 2= Gin)
X T, 2-m o yxy @Gt - W) 1P Nl 2= m Wi s (2= W)
<|T|asxBs,E,-
Hence, it follows from Theorem 3.1 and properties (2.3) and (2.2) of fr, that

nh—>ngo HP';T\(R:’ STL)||FO(F,")XFl(G"L),F2(W7n) =0.

Operators P, T(R,,, S;F) and Py T(R;, S;) can be treated similarly.
Next we consider the operator P, T(R;;, S;7) = PrT(xR;;,7S;"). For the quasi-norm of T(wR;;, wS;)
acting from £,(27 ™ F;,) x £,(27™G,y,) into Ey + E; we have that
IT(x Ry, 7S ) le, 2 Fyy sty (2 G ) S(F)
< ||T||z(ﬁ)xz(ﬁ),2(é)||7TREHzp(zfmpm),z(ﬁ)H7TSI||zp(2—me),z(ﬁ)
< | Tls@e xs@) s@ 7, (7, 5@ 1By e, -7 P e, (F)
X 7 llg, 2-me @ 157 ley@mGu) by @-man)
< 2_("+1)HTHz(F)xz(ﬁ),E(E) — 0 as n—oo

Since T': A} x BY — E; is compact, Lemma 3.3 yields that

Jim | T(7R,,, TS e, (2=m ) xy(2=mGon) By = 0
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Therefore, lim,, o, HP;?(R;, SH) e, (2= Fpn) 30y (2= G ) £ (2= m W) = 0. For the norm of the other restric-
tion we get || Py T(R;, , SN ep (o) 0 (Grn) boe (W) < 1Tl 49 x B, B, Consequently, using again Theorem 3.1
and the properties of fr, we derive that

Tim (| 2T (R, S Iro()x0s (Gn) Pa (W) = 0-

For the remaining operators P; TRy, S7 ), Py T(R,, i), Py T(RY, S;7) and P, T (R, S,,) we can proceed

similarly as with P, f(RfL ,S;7") and show that their norms converge also to 0 as n — oo. This completes the

proof. O

For the Banach case, that is, when A, B, E are Banach couples, p = r = 1 and Iy, I';, 'y are Banach sequence
lattices satisfying (2.1), (2.6) and (3.1), then Theorem 4.7 recovers [24, Theorem 3.1]. In particular, in the Banach
case Theorem 4.7 improves [23, Theorem 5.8].

Applying Theorem 4.7 to the case of the real method with a function parameter described in Example 2.5, we

get the following result.
Theorem 4.8 Let A = (Ag, A1), B = (By, B1) be quasi-Banach couples and let E = (Ey, Ey) be an r-

normed quasi-Banach couple (0 < r < 1). Suppose that po, p1, p2 are function parameters such that for some

constant C' > 0 we have
po(t)p1(s) < Cpa(ts) t,s>0. 4.2)

Let 0 < qo,q1 < 0o and write

1,1 1
1_ wto -5 i wazr

q — L if qo<rorq <r.

max(qo,q1)

IfT:Ax B —>E’andT:Aj x Bj — Ej is compact for j = 0 or 1, then
T : (Ao A1) po,ao % (Bos Bi)pyav — (B0, E1)ps
is also compact.

Proof. Assume first that go,q1 > r,sor/q+1=1r/q +7/q:1. I = (&m) € Ly (1/p0(2™)), 1 = () €
£4,(1/p1(2™)) are non-negative scalar sequences, then according to (4.2) and Young’s inequality we obtain

SIS RN
€ ) g = (30 (30 Gintuidoa2y)")

m=—o0 k=—o0

SC’( Z ( Z (gk/po(Qk))r(nm_k/pl(2mfk))r)q/r)1/‘1

m=—o0 k=—o0
1/r
qu/r

1/r
eq1/T

< C|[(Em/po@™) "N, (1 /or(2™)"]]
= Cll€lleg, (1/00@m ) 1Moy, (1701 2m))-

This shows that inequality (3.1) holds. Hence, the result follows from Theorem 4.7.
Suppose now that ¢y < r or ¢; < r. Then either

(a) q1 =max(qo,q1) =q and gqo <,
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16 F. Cobos, L.M. Ferndndez-Cabrera, and A. Martinez: Interpolation of compact bilinear operators

or

(b) go = max(qo,q1) =¢q and q <.

If (a) holds, then 1/¢ = 1/qo + 1/q1 — 1/go. Moreover, since the couple (Ey, E1) is r-normed, it is also go-
normed. Therefore, we are in the situation considered before and the result follows. If (b) holds, we can proceed

similarly. O

If we choose po(t) = p1(t) = p2(t) = t? with 0 < 6 < 1 then we get the following result for the real method.

Theorem 4.9 Let A = (Ag, A1), B = (By, B1) be quasi-Banach couples and let E = (Ey, Ey) be an r-
normed quasi-Banach couple (0 < r < 1). Let 0 < 0 < 1,0 < go,q1 < oo and let 0 < q < oo satisfying
that

1 1 1 .
1 _ Juta—r ¥ wazrn
1 .
a max(q0.a1) if q<rorq <r.

IfT:AxB— FEandT: Aj x Bj — E; is compact for j = 0 or 1, then
T : (Ao, A1)o,q0 % (Bo, B1)o,q, — (Eo, E1)a,q

is compact as well.

Remark 4.10 Assumption 7' : A x B — E implies that
T € B(X(A) x 2(B),%(E)) and that T € B(A; x Bj, Ej), j =0, 1.
Hence, there is a constant M > 0 such that
IT(a,b)l|5, < Mllalla, b5, « € A(A), be A(B), j = 0,1. “3)

In applications sometimes we have (4.3) but we do not have that T’ € B(3(A) x ¥(B), $(E)). However, if we
have (4.3) and some extra information on the operator 7" then there is a certain replacement for the assumption
T € B(%(A) x X(B), %(E)). Next we show it.

Suppose that (4.3) holds. Let a € A(A), b € A(B) withb = by + by and b; € B;, j = 0,1, then b; € A(B)
and so

IT(a,b)llszy < IT(a,bo)ll g, + IT(a,b1)|| 2, < MJI1,a)(|lbollB, + [1b1ll5,)-
This yields that
1T (a,0)lls5) < Mllallapna, [1b]l 5o+, -
If A(B) is dense in By and By, then T may be uniquely extended to a bounded bilinear operator
T :A(A) x X(B) — X(E). “4.4)

Similarly, if A(A) is dense in A and A1, it follows from (4.3) that 7" has a unique extension to a bounded bilinear
operator

T:(4) x A(B) — S(E).
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Next we follow an idea of Janson [29]. Let 0 < 6;,; < 1,0 < gj,7; < 00, j = 0,1,2. Suppose that the

operator T satisfies that
IT(a. 515, ,, < Millala, . lblls, , . a€A), beAB), 4.5)
and

1T (a,0)l|5,,.., < Msllalli

151l 5 ,a € A(A),be A(B). (4.6)

K2,72 K070 K171

Estimates (4.5) and (4.6) may be deduced from (4.3) by means of the bilinear interpolation theorem for the
real method provided parameters 0;, 115, g5, r; satisfy suitable conditions. Assume in addition that we have the

following extra information on T’

|7 (a,0)| 5o+5, < Mzllalla,, , I1bl5,, ., a € A(A), be AB), (4.7)

K171

1T (a,0)l| o1 < Malla]l 2

Since gj,7; < 0o, then A(A) is dense in Ay, 4, and A,,, ,, (see [4, Theorem 3.4.2/(b) and page 66]), and A(B)
is dense in B@l,ql and BM,TI. Proceeding as we have done to established (4.4), it follows from (4.5) and (4.7)

161l By, ., @ € A(A), be A(B). 4.8)

10570

that 7" may be uniquely extended to a bounded bilinear operator

T : Agg,qo % (Boygy + Buy i) — Eo + En. 4.9
On the other hand, by (4.6) and (4.8), T" has a unique extension to a bounded bilinear operator

T: Auoro X (Boy,gy + By i) — Eo + En. (4.10)
Finally, from (4.9) and (4.10), it follows that 7' may be uniquely extended to a bounded bilinear operator

T: (Aeo,qo + A#oyro) X (Bﬁl,ql + B,ul,rl) — Ey + En,

which may be used as a replacement for the assumption 7' € B(2(A) x X(B), 5(E)).

5 Compact bilinear operators among L, spaces

Let (92, ) be a o-finite measure space. We denote by M (u) the collection of all (equivalence classes of) measur-
able functions f on €2 which are finite almost everywhere. We endow M (1) with the topology of convergence in
measure on each measurable set of finite measure. In this way, M () is a metrizable topological vector space.

For 0 < p < o0, we let Lp(Q) be the usual Lebesgue space. Given 0 < p < oo and 0 < ¢ < o0, the Lorentz
space Ly, ,(€) is defined to be the set of all (equivalence classes of) measurable functions f on § which have a
finite quasi-norm

#E) dt\1/a
Hf”Lp,q(Q) = (/O (tl/pf*(t))q%)

(the integral should be replaced by the supremum if ¢ = 0o0). Here f* stands for the non-increasing rearrangement
of f. When p = ¢ we have L,,(?) = L, ,(€2). The Lebesgue spaces L, (£2) and the Lorentz spaces L, ,(2) are
continuously embedded in M ().

If 0 < p < oo it turns out that

tp

Kt L) L) ~ ([ (1 0)at)

0

1/p
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Moreover, for 0 < ¢ < 00, 0 <rg #711 <00,0<é <land1l/r=(1—0)/ro+ 0/r1, then we have

(Lo (), Ly, (), . = Ly 4(€)  (equivalent quasi-norms)

»d

(see [4, Theorems 5.2.1 and 5.3.1] or [44, 1.18.6]).
The following interpolation result is a consequence of Theorem B in the paper [8] by Calderén and Zygmund.

Theorem 5.1 Let (Qy, pi) be o-finite measure spaces for k = 0,1,2. Suppose 1 < pj,q; < oo and 0 <
r; < 00,5 = 0,1 Let 0 < § < landput 1/p = (1 —6)/po +0/p1, 1/q¢ = (1 —0)/q0 + 0/q1 and
1/r=(1—=6)/ro+ 0/r1. Assume that p # co,q # oo and let

T+ (Lpo(Q0) + Lp, () * (Lgo () + Lgy (1)) — (Lry (Q2) + Ly, (Q2))
be a bounded bilinear operator such that for j = 0, 1 the restriction

T: Ly () x Lg; (1) — Ly, (2)
is bounded with quasi-norm M. Then

T: Lp(Qo) x Lg(§1) — Lr(22)

is also bounded with quasi-norm M < M&_er.

Next we are going to establish a reinforced version of this result.
If D C Qs is a uo-measurable set, we put Pp for the linear operator defined by Ppf = xp f.

Theorem 5.2 Let (Q, pi) be o-finite measure spaces for k = 0,1,2. Suppose 1 < p;,q; < oo and 0 <
r; < 00,j =0,1. Let 0 < 0 < landput1/p = (1 —0)/po + 68/p1, 1/qg = (1 — 6)/q0 + 0/¢q1 and
1/r=(1—6)/ro + 0/r1. Suppose that p # o0, q # oo and let

Tt (Lo (0) + Lp, (R0)) % (Lo (1) + Lgy (1)) — Lo (Q2) + L, (R2)
be a bounded bilinear operator such that for j = 0, 1 the restriction

Tt Ly, () x Ly (1) — Ly, (Q)
is bounded. Assume, in addition, that rq # oo and that

T : Ly, (0) X Lgy (1) — Ly, (22) is compact.
Then

T : Ly(Qo) x Lg(1) — Ly (Q2) is also compact.

Proof. Let Uy, be the closed unit ball of L, and let Uy, be the corresponding ball in L,. Our aim is to show
that T(Uy,,Ur,) = {T(f,9) : f € Ur,,g € Uy, } is relatively compact set in L, (€2). Since r¢ < oo, we also
have r < oco. Then, according to [35, Lemma I.1.1] or [1, page 31], the set T(ULP, ULq) is relatively compact in
L, () if, and only if, the following two properties hold:

(a) limuz(D)_,o ||PDT||LP><L,1,LT = 0.

(b) T(Uy,,Uy,) is relatively compact in M (uz).
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Let D C 9 be any po-measurable set. Since ||PDTfHLTj < ||TfHLTj , we have that

PpT : (LPO(QO)7LP1 (QO)) X (qu(Ql)7LQ1 (Ql)) - (LTO(Q2)7LT1 (92))

Moreover lim,,,(p)—o [[PpT || L, x1 = 0 because T : L, () X Ly, (1) — Ly, (Q2) is compact.

L,
q0°~T0
Hence, using Theorem 5.1, we derive that

-0 0
I1PDT || L,y x L. L, < ||PDT||£,,OXL(,O,LTO HPDTHL,D1 X Lgy Ly
1-6 0
< ||PDT||LPO><LqO,LTO HTHLP1 XLgy Lry — 0 as piz(D) — 0.

This establishes (a).
In order to check (b), take 0 < £ < 1 and let s = min(rg, 71, 1,ep, £q). Then the couple (Ly,(Q2), Ly, (Q2))
is s-normed. Whence, Theorem 4.9 yields that the restrictions

T: (LPO(QO)’LM (QO))&S X (qu(Ql)7LlZ1 (Ql))gpo — (LTO(QQ)’LH(QQ»QOO (51)

T: (LPO(QO)’LM (QO))G’OO X (LQO(QI)’LIH (Ql))g_’S - (LTO(QQ)aLﬁ (92))9700 5.2)

are compact. The target space being

L’r,oo(Q2) if To 7é T,

(Lro(Qz)an(QZ))e,oo - L () it ro=r1=r
862 o= =0

Choose 0 < 19,11 < 1suchthat 1/p = (1 —1g)/sand 1/q = n;/s. According to [4, Theorem 5.2.4], we get

((Lpo (QO)’ Lm (QO)) 0,5’ (LPU (90)7 LP1 (QO))Q’OO> = (Lpo (Qo)v LG (QO))Q,p = LP(QO)

70,P

and

= (Lo (), Ly, (), = La().

(Lo (90 Loy (91)) s (Lay (1), Ly (1)), )

01,9 9

Now applying Corollary 4.5 to restrictions (5.1) and (5.2) and having in mind the previous reiteration formulae,
we conclude that T' : L, (€0) X Ly(£21) — Ly 0 (€22) is compact. Therefore, T(U L, U Lq) is relatively compact
in L, »(£22) and so it is also relatively compact in M (7). This proves (b) and completes the proof.

O

6 Compactness of bilinear commutators of Calderon-Zygmund operators

In this final section we work with the measure space (2, u) = (R™,dz). For this reason we drop the measure
space in the notation for function spaces.

By a bilinear Calderdén-Zygmund operator T' we mean a bounded bilinear operator T" : L, X L; — L,
where 1 < p,q < o0, 1/r = 1/p + 1/q, such that there exits a kernel K (x,y, z) defined away of the diagonal

x = y = z such that
1

(lz =yl + |z — 2])>
1
(lz =yl + |z —2[)>r+t

|K (2, y,2)] < c

VK (z,y,2)| <c

and
T(f9)(x) = / | K@y 2)f(y)g(z) dydz, @ & supp f N suppg
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where f, g are bounded functions with compact support. See the paper by Grafakos and Torres [25] and the
references given there.

Consider the following bilinear commutators

[T,b]2(f,9) = T(f,bg) — bT'(f,g), (6.1)
([T, b1)1. bl (£, 9) = [T.ba)1(f, b2g) — b2[T, bi]1(f. 9).

[

where the functions b, b1, by belongs to C M O, the closure in BM O of the space of C'*° functions with compact
support.

Let S be any of the bilinear commutators in (6.1). It has been shown by Lerner et al [36] and Pérez et al [41]
that S : L, x Ly — L, is bounded for 1 < p,¢ < coand 1/r = 1/p+1/g,s0 1/2 < r < co. Bényi and
Torres [3, Theorem 1] have established compactness of S provided 1 < r < oo. Next we use the interpolation
results of the previous sections to show that S : L, x L, — L, is also compactif 1/2 < r < 1.

Theorem 6.1 Let T be a bilinear Calderén-Zygmund operator, let b, by, bo € CMO and let S be any of the
bilinear commutators defined in (6.1). If 1 < p,q < 00, 1/2 <r <land1/p+1/q = 1/r, then

S:Lp,x Ly — L, iscompact.
Proof. Take0 < ¢ <min(1 —1/2r,1—1/p, 1 —1/q) and put
rm=0-¢er, pp=0-¢)p, ¢g=(1-¢e).

Then1/2 < r; <r<1,1<p <p 1<q <gqand1l/p; +1/q. = 1/r1. Hence, according to [36, 41],
S: Ly, x Ly, — Ly, is bounded.

Choose m € N such that mr > 1 and write
ro=mr>1, po=mp>p, q=mqg>gq.

Again 1/py + 1/qo = 1/r¢ and, since ro > 1, it follows from [3, Theorem 1] that S : L,,, X Ly, — Ly, is
compact.

Next we show that S may be uniquely extended to a bounded bilinear operator
S (LPO +LP1) X (qu + qu) - LTO +L7‘1'
Put1/so = 1/po + 1/q1 and 1/s; = 1/p1 + 1/qo. Then
S:Lp, X Lgy — Lgyand S : Ly, X Lgy — L,

are bounded. By our choices for parameters, we have that 1/rg < 1/sg < 1/r1, so there is 0 < 79 < 1 such that
1/so = (1 —no)/ro + no/r1. Hence Ly, — L., + L,,. On the other hand, since 1/r¢ < 1/s1 < 1/rq, there
is0 < < lsuchthat1/s; = (1 —m)/ro+n1/r1. Whence Ls, — L,, + L,,. Consequently, the following
restrictions are bounded

S:Lpy X Lgyg — Lyy + Ly,
S:Lp XLy — Lyy+ Ly,

S:Lp, X Lgy — Lypy + Ly,
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S:Lp X Lgy— Ly, + Ly, .

Now, proceeding as in Remark 4.10, we get that S has a unique extension to a bounded bilinear operator
S (Lo + Lp,) X (Lgy + Lg,) — Ly + Ly,

as we claimed.
Next we choose 0 < @ < 1suchthat 1/r = (1—0)/ro+0/r1. Thatis to say, satisfying that 1 = (1 —0)/m +
0/(1 — €). Then we also have that 1/p = (1 — 0)/po + 6/p1 and 1/q¢ = (1 — 6)/qo + 6/¢1. Since

S (LPWLZH) X (LQleh) B (erLrl)
with S : L, x Ly, — L, compactly and ro # oo, applying Theorem 5.2 we conclude that

S:L,x Ly — L, compactly.
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