On M-Spaces and Banach Spaces

Francisco Gallego Lupiañez

Dept. Mathematics, Univ. Complutense, 28040 Madrid, Spain FG_Lupianez@Mat.UCM.Es

Abstract

We define in this paper the concept of C-space, related with M-spaces and Banach spaces. We obtain various properties on these spaces and propose some open problems.

Mathematics Subject Classification: 54E18, 54C25, 46B25

Keywords: topological spaces, M-spaces, Banach spaces, embedding

1 Introduction

There exist three causes that motive this new paper. First, an early theorem of Corson, also the concept of M-space (defined by K.Morita), and finally a paper on Banach spaces by the author:

The Corson Theorem.[3] For any covering \mathcal{U} of a infinite dimensional reflexive Banach space B, where \mathcal{U} is formed by bounded, convex sets, there is not a point x in B such that each neighborhood of x meets only finitely many members of \mathcal{U} , i.e., \mathcal{U} is not locally finite.

In our paper [6], we study some problems related to the Corson Theorem. In particular, we proved that: "For every $r \geq 0$, there exits an open covering of c_0 , which is locally finite and is formed by balls of radius r".

We will use in this paper the concept of M-space:

Definition 1. [7] A paracompact space X is called a M-space if there is some perfect map from X onto some metric space.

760 F. G. Lupiañez

2 Main results.

Definition 2. Let X be a topological space. We will say that X is a C-space if there is some Banach space E and some perfect map f from X onto E such that exists a locally finite covering of X formed by pre-images of open balls of radius 1 by the map f.

Remarks. 1. If X is a C-space then X is a paracompact M-space. **2.** c_0 , E_{∞} , IR^n are C-spaces.

Proposition 1. Let X be a topological space, E be a Banach space and f be a perfect map from X onto E. Then

 $\mathcal{V} = \{f^{-1}(B_1(x_j))|j \in J\}$ is a locally finite covering of X, if and, only if $\{B_1(x_j)|j \in J\}$ is a locally finite covering of E.

Proof. (\Rightarrow) If \mathcal{V} covers X also $\{B_1(x_j)|j\in J\}$ covers E, because f is onto.

For each $z \in E$ and each $x \in f^{-1}(z)$ there exists an open neighborhood U_z^x of x, such that meets only finitely members of \mathcal{V} . Then $\{U_z^x|x\in f^{-1}(z)\}$ is an open covering of $f^{-1}(z)$, and $f^{-1}(z)\subset \bigcup_{k=1}^r U_z^{x_k}$ (for some $x_1,...,x_r\in f^{-1}(z)$) because f is a perfect map.

Since f is closed, there exists an open neighborhood W^z of z such that $f^{-1}(W^z) \subset \bigcup_{k=1}^r U_z^{x_k}$.

Then, $f^{-1}(W^z)$ meets only finitely members of \mathcal{V} , and also W^z meets only finitely members of $\{B_1(x_j)|j\in J\}$.

 (\Leftarrow) If $\{B_1(x_j)|j\in J\}$ covers E, then V covers X.

For each $x \in X$ there exists an open neighborhood $V^{f(x)}$ of f(x) such that meets only finitely members of $\{B_1(x_j)|j \in J\}$. Clearly, $f^{-1}(V^{f(x)})$ is an open neighborhood of x and meets only finitely members of \mathcal{V} .

Corollary 1. Let X be a topological space. Then, X is a C-space if and only if there exists a Banach space E such that has a locally finite open covering formed by balls of fixed radius, and a perfect map f from X onto E.

Corollary 2. For each compact space K, we have that $c_0 \times K$ is a C-space. **Proof.** Since the projection map p_1 is a perfect map from $c_0 \times K$ onto c_0 .

Corollary 3. For each compact space K, we have that $IR^{IN} \times K$ is a C-space.

- **Proof.** It follows from the above Corollary, because c_0 is homeomorphic to IR^{IN} (theorems of Kadec [5] and Anderson [1]).
- **Proposition 2.** Let X be a topological space. If X is separable and C-space, then it is homeomorphic to some closed subset of $IR^{IN} \times I^{IN}$.
- **Proof.** Since X is a separable C-space, there is some separable Banach space E and some perfect map from X onto E. From [8, Theorem 2] it follows that X is homeomorphic to a closed subset in $E \times I^{IN}$. Finally, therems of Kadec [5] and Anderson [1] yield the conclusion.

3 Open problems.

- 1. Let X be a topological space. Have we that X is a C-space if and only if X is homeomorphic to a closed subset of $IR^{IN} \times I^{w(X)}$? (where w(X) is the weight of X).
- 2. Have the normed spaces whith locally finite coverings by balls analogous properties to totally bounded spaces?

4 References

- [1] R.D. Anderson: "Hilbert space is homeomorphic to the countable infinite product of lines", Bull. Amer. Math. Soc. **72** (1966), 515-519.
- [2] C. Bessaga and A. Pełczyński: "Select topics in infinite-dimensional Topology", PWN-Polish Sc.Publ. (Warszawa, 1975).
- [3] H.H. Corson: "Collections of convex sets which cover a Banach space", Fund. Math. 49 (1961), 143-145.
- [4] R.B. Holmes: "Geometric functional Analysis and its applications", Spriger-Verlag (New York, 1975).
- [5] M.I. Kadec: "On topological equivalence of separable Banach space", Soviet Math. Dokl. 7 (1966), 319-322.

762 F. G. Lupiañez

[6] F.G. Lupiáñez: "Total paracompactness and Banach spaces", Proc. Amer. Math. Soc. 103 (1988), 210-214.

- [7] K. Morita: "Product of normal spaces with metric spaces", Math. Annalen **154** (1964), 365-382.
- [8] J. Nagata: "A note on M-space and topologically complete space", Proc. Japan Acad. 45 (1969), 541-543.

Received: November 21, 2007