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Abstract

We construct a family of dynamical systems whose evolution converges to the
eigenvectors of a general square matrix, not necessarily symmetric. We analyze
the convergence of those systems and perform numerical tests. Some examples and
comparisons with the power methods are presented.
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1 Introduction

In a previous work [1, 2], a method was proposed to solve systems of linear equations
A~x = ~b, by means of considering a dissipative mechanical system associated to the
matrix A. This mechanical system evolves under Newton’s Second Law towards
the solution of the linear system. A numerical simulation was proposed then to
calculate the solution in an iterative procedure.

Following a similar point of view, in this paper we construct dynamical systems
that have as critical points the eigenvectors of a real square matrix and that evolve
towards an eigenvector. In section 2 we present the dynamical systems and their
basic properties. In section 3 a numerical scheme is proposed to simulate the evo-
lution and some examples and applications are presented. The main conclusions
are summarized in Section 4. Finally, we present the proof of the results in an
Appendix.

2 The dynamical systems

Let us consider the dynamical system

~̇x = − A

‖~x‖p
~x +

~xTA~x

‖~x‖p+2
~x (1)

where p ∈ IR, ~x ∈ IRq for some q ∈ IN and A is a real, q× q matrix. The norm ‖ ‖ is
the euclidean vectorial norm. If A is symmetric and p = 2, the system is equivalent
to

~̇x = −~∇U(~x), U(~x) =
1
2

~xTA~x

‖~x‖2
, (2)

but we are not assuming any restriction on A.

This system has the following basic properties:

1. The fixed points are the eigenvectors of A (and conversely).

2. Conservation law:
d‖~x‖2

dt
= ~0. (3)

3. Only if A es symmetric and p = 2, dissipation law:

d
dt

[U(~x)] = − ~̇x 2. (4)

They are established in a straightforward way: in the first case the equivalence is
clear. The conservation and the dissipation laws are obtained taking scalar product
with ~x in (1) and ~̇x in (2), respectively.

The conservation law (3) supposes that given an initial data ~x0, the correspond-
ing solution lies for all times on the sphere ‖~x(t)‖ = ‖~x0‖. By Chillingworth’s
Theorem (see, for instance, Theorem 1.0.3 in [3]), we know that the solution always
exists and is unique provided ~x0 6= ~0.
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By direct calculation, the jacobian Jp(~x) of the dynamical system (1) at a given
vector ~x is:

Jp(~x) =
1

‖~x‖p

([
A− r(~x)I

][
pP (~x)− I

]
+ P (~x)

[
A + AT − 2r(~x)I

])
. (5)

Here I stands for the q × q identity matrix, P (~x) is the orthogonal projector on
span{~x} and r(~x) is the Rayleigh quotient at ~x:

P (~x) =
~x~x+

‖~x‖2
, r(~x) =

~x+A~x

‖~x‖2
,

where the superscript + denotes the transposed, complex conjugate (or in case the
vector is real, just the transposed).

Let us consider now the linear stability of the critical points. Let ~u be an
eigenvector of A associated to the eigenvalue λ. From Lemma 1 in the Appendix,
we have that Jp(~u) is a singular matrix and that the very eigenvector ~u belongs to
the kernel:

Jp(~u)~u =
−1
‖~u‖p

[
I − P (~u)

]
[A− λI]~u = ~0. (6)

Thus, we see that the jacobian at any critical point has at least one eigenvector with
zero real part. This means that in principle nothing can be said on the stability of
the critical points from the study of the linear part. If we consider a symmetric A,
the conservation law would allow us to conclude that the eigensubspace associated
to the smallest eigenvalue is asymptotically stable. In the general case, we have to
consider that given an initial data ~x0, the evolution is confined to the surface of
the sphere ‖~x(t)‖ = ‖~x0‖, thus in order to check linear stability we must restrict
ourselves to this manifold. The normal direction to the surface at ~u is given precisely
by ~u, thus we need to know the local behaviour around ~u in the orthogonal directions
to ~u. To do this, we compute all the eigenvalues of the jacobian, using the following
result:

Theorem 1 Let ~u be an eigenvector of A associated to the eigenvalue λ. The
spectrum of A and that of Jp(~u) are related in the following way:

1. eigenvalue λ for A corresponds to eigenvalue 0 for Jp(~u)

2. eigenvector ~w associated to µ for A corresponds to

eigenvector
[
I − P (~u)

]
~w with eigenvalue

λ− µ

‖~u‖p
for Jp(~u)

and this includes the case where µ = λ, the case of complex eigenvalues and
eigenvectors, as well as the case of generalized eigenvectors.

3. If the eigensubspace associated to λ has algebraic multiplicity ma and geometric
multiplicity mg such that mg < ma, then the eigensubspace associated to 0 for
Jp(~u) has algebraic multiplicity equal to ma and geometric multiplicity equal
to either mg or mg +1. In that later case, a generalized eigenvector of A gives
rise to a proper (i.e. not generalized) eigenvector of Jp(~u).
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4. If µ 6= λ, and the eigensubspace associated to µ has algebraic multiplicity ma

and geometric multiplicity mg, then the eigensubspace associated to

λ− µ

‖~u‖p

for Jp(~u) has algebraic multiplicity equal to ma and geometric multiplicity equal
to mg.

We prove this in the Appendix. From here we have the following stability result:

Theorem 2 Let A be such that the eigenvalue with smallest real part, λmin, is
unique and real. Let be ma and mg, respectively, the algebraic and geometric multi-
plicites of λmin. Let Umin be the set of eigenvectors associated to λmin and Ūmin the
set of generalized eigenvectors (in case ma > mg). Then Umin is a limit set for the
system, and:

• Solutions inside Umin are fixed points of the system.
• The components of the solutions ~x(t) outside Ūmin decay towards an eigenvector

~u ∈ Umin with asymptotic behaviour:

‖~x(t)− ~u‖ ∼ exp
[
λmin −Re(λ′)

‖~u‖p
t

]

where λ′ is the eigenvalue with real part nearest to λmin.
• The components of the solutions ~x(t) inside Ūmin decay towards ~u which is the

eigenvector such that ~u = (A−λI) ~w1, in the notation of Lemma 4 of the Appendix,
with asymptotic behaviour:

‖~x(t)− ~u‖ ∼ ma −mg

t
.

See also the Appendix for the proof.
We see that the convergence is much faster in the case ma = mg, when λmin

has no generalized eigenvectors. It must be noted that if ~x0 has not a component
in Umin, the dynamical system cannot reach that eigensubspace. This corresponds
to initial values outside Ūmin. In that case, we should expect convergence towards
an eigenvector associated to the next smaller eigenvalue of A (provided it is real
etc.). In fact, when performing numerical simulations, one would expect that small
errors may give a component on Umin that gets enhanced, and the numerical solution
approaches eventually Umin.

Finally, we have a convergence result in the case where λmin is not unique, for
instance in the sense that A has also eigenvalues of the form λmin ± iα (α 6= 0):

Theorem 3 Let A be real and such that there are several complex eigenvalues with
smallest real part, say Remin. Let U be the direct sum of all the eigensubspaces
associated to those eigenvalues. Then U is a limit set for the system and r(~x)
converges to Remin.

(See the Appendix for the proof.) In this case, there is not convergence towards an
eigenvector, but the Rayleigh quotient converges to the real part of the eigenvalues.
Checking sepparately the behaviour of ~x(t) and of r

(
~x(t)

)
, it is thus possible to

identify the case when λmin is not unique.
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3 Numerical simulations

The idea is now to simulate the dynamical system, starting with some initial data
~x0. We chose, for instance, a simple numerical scheme of the form:

~xn+1 − ~xn

τ
= − A

‖~xn‖p
~xn +

~xn ·A~xn

‖~xn‖p+2
~xn (7)

⇐⇒ ~xn+1 = ~xn − τ
A

‖~xn‖p
~xn + τ

~xn ·A~xn

‖~xn‖p+2
~xn. (8)

This has the advantage of being explicit. If we take scalar product with ~xn, we get
the discrete conservation law

~xn+1 · ~xn = ‖~xn‖2 (9)

which is the discrete analog to the conservation of the norm. With this numerical
scheme the norm is not exactly preserved, but if we consider ~xn+1 = ~xn + ~δn, we
have ~δn orthogonal to ~xn.

We can understand the scheme as a fixed point iterative method. The specific
scheme we have chosen, has the eigenvectors of A as fixed points. So we can consider
the numerical scheme as a method in its own and not an approximation. Obviously
both methods, discrete and continuous, are related as we will see in what follows.

If the numerical errors are small, we may suppose that the simulations will
reproduce the convergence towards an eigenvector and the minimal eigenvalue of A.
On the other hand we can study the convergence of the fixed point iteration: the
jacobian of the iteration given by (8) is I + τJp(~x) (where Jp is the jacobian of the
dynamical system) and its eigenvalues µ satisfy

|I + τJp(~x)− µI| = 0 ⇐⇒
∣∣∣∣Jp(~x)− µ− 1

τ
I

∣∣∣∣ = 0

which means that if we denote by γ the eigenvalues of Jp, we have

µ = 1 + γτ. (10)

We can thus ensure the convergence of the numerical scheme if max |µ| < 1. Near
the eigenvector ~u of A, to which the dynamical system converges, this supposes

0 <
τ

‖~u‖p
<

2
λ′ − λmin

(11)

where λ′ is the eigenvalue of A nearest to λmin (and bigger).
This means that the choice of τ is relevant to the convergence and also to the rate

of convergence. In fact, numerical simulations show that for a given problem there
is an optimal range of values of τ that minimize the number of iterations required
to obtain the solution with a given precision. That range depends in general on p
but also on the choice of the initial vector, both direction and norm, although the
norm that minimizes the number of iterations is usually close to 1. The case p = 0
is different in the sense that the number of iterations do not depend on the norm
of the initial vector, but only on its direction. On the other hand, if for a given
problem we fix the direction of the initial vector, but consider two different choices
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of p and of the initial norm, the values of τ that optimize employ the same number
of iterations in both cases. We may also perform a rescaling on τ defining the new
time step as τ/‖~u‖p.

For all this, we have chosen to fix p = 0 in all our calculations. This leaves
us with two objects to consider instead of three: τ and the direction of the initial
vector. Of course we do not have a priori indications of which vectors are better
suited: if would amount to know beforehand what are the eigenvectors of A. As
happens for the dynamical system, if the initial vector has not a component on
Umin, the iterative method will not converge to that eigensubspace, but to some
other eigenvectors, unless numerical errors modify the situation. So finaly we just
have one parameter to consider and that is the value of τ , keeping in mind that we
do not need τ to be smaller than 1, since the discrete method can be considered
exact and thus without a truncation error.

It is easily seen that the value of τ such that

τ

‖~u‖p
=

1
λ′ − λmin

(12)

is optimal in the sense that the component of the solution that belongs to eigenvec-
tors of λ′ decays very fast. In that case the next eigenvalue, say λ′′, closer to λmin

gives the asymptotic behaviour. The optimal τ that minimizes the total number of
iterations for a given precision is difficult to establish a priori, but it can be done
minimizing the product of all eigenvalues of the matrix I + τJp(~u) where ~u is the
eigenvector associated to λmin that is the limit of the solution ~x(t). For instance
(12) corresponds to minimizing the eigenvalue that comes from λ′, minimizing that
one and the next gives

τ

‖~u‖p
=

(λ′ − λmin) + (λ′′ − λmin)
2(λ′ − λmin)(λ′′ − λmin)

(13)

and so on. There is not much point to this, since these values can only be deduced
a posteriori. In practice, one should try a value of τ not too small: the discrete time
is tn = τn which means that small vallues of τ imply bigger values of the number
of iterations n.

Let us present details of the method with some simple examples.

3.1 Some examples in dimension 3

3.1.1 Choice of parameters and rate of convergence

Let be

A =




6 0 0
0 4 0
0 0 1


 ; ~x0 =

1√
3
(1, 1, 1)T. (14)

We have chosen the initial data such that it has the same component on the three
eigensubspaces. We have fixed the relative precision of the solution to be less than
10−10 in λ. We can compute the values τ1 and τ2 according to (12) and (13),
respectively. In this case (λmin = 1, λ′ = 4, λ′′ = 6), they are:

τ1 =
1
3
, τ2 =

4
15

. (15)
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In figure 1 we compare the convergence for these values of τ . We have chosen
different initial vectors (normalized to 1):

~v1 = (1, 1, 1)T, ~v2 = (1, 0, 1)T, ~v3 = (1, 1, 0)T. (16)

The first one has components along all three eigensubspaces, the second one has
components only along the eigenvectors associated to λmin and λ′, and the third
one only along the eigenvectors associated to λmin and λ′′. We see that the decay
with τ = τ1 is governed by the asymptotic behaviour of the eigenvectors associated
to λ′′ (first and fourth curves) and that the eigenvectors associated to λ′ decay
superlinearly to zero (second curve). Finally τ2 (third curve) is the optimal choice
in the general case when the initial data has components along all three eigenspaces.

In this example, we may wish to compute all three eigenvalues and the corre-
sponding eigenvectors. The mimimum is computed using the method. The maxi-
mum can be obtained using the method on the matrix −A, in which case we have
to change the sign of the eigenvalue. As for the intermediate value, we can obtain
it using the method on A but with an initial data with no components on Umin.
In this case, and once the eigenvector associated to λmin is known, it is very sim-
ple. In a more general situation, it is possible to compute all eigenvalues and their
eigenvectors: the details will be presented elsewhere.

3.1.2 Real eigenvectors

Let us compare now the cases of diagonalizable versus non-diagonalizable: we will
consider four cases, given by matrices

A1 = A =




6 0 0
0 3 0
0 0 1


 ; A2 =




6 0 0
0 1 0
0 0 1


 ;

A3 =




6 0 0
0 1 1
0 0 1


 ; A4 =




1 1 0
0 1 1
0 0 1


 .

The first case corresponds to a diagonalizable problem with dimUmin = 1. In the
second one dimUmin = 2, with algebraic and geometric dimensions equal to 2. The
third case is nondiagonalizable with algebraic dimension 2 and geometric dimension
1. Finally, the fourth case has algebraic dimension 3 and geometric dimension 1. In
all cases λmin = 1. We have represented in figure 2 the two dimensional projection
of trajectories on a semi-sphere.

In case 1, we have plotted the projection on the z-plane of the attracting basin of
eigenvector ~u = (0, 0, 1)T, which corresponds to vectors with positive z component,
and trajectories of solutions from different initial values, all of them with unit norm.
The arrows give the indication of movement along the solutions as time increases.
The eigenvalues of the jacobian J0(~u) are −2 with eigenvector ~v1 = (0, 1, 0)T and
−5 with eigenvector ~v2 = (1, 0, 0)T. As we see, near the equilibrium point (that
coresponds to the origin of the plot) the y component of the solutions decays faster
than the x component, which agrees with the linear approximation. The picture is
similar to that of a node in a planar system.
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In case 2, Umin = span{~u1, ~u2} with ~u1 = (0, 0, 1)T, ~u2 = (0, 1, 0)T, and all the
points of the sphere with x = 0 correspond to eigenvectors of λmin. It is represented
in the plot by a dotted line. Solutions tend towards an eigenvector, in fact following
a geodesic on the sphere.

In case 3, ~u = (0, 1, 0)T, the other eigenvector (both of A and of J0(~u)) being
~v = (1, 0, 0)T. The third direction corresponds to a generalized eigenvector of λmin:
~w = (0, 0, 1)T. We have plotted the projections on the y-plane. Simulations show
that the x component decays rapidly and, as we see in the plot, the trajectories
approach the generalized eigensubspace of λmin, that is span{~u, ~w}, and eventually
they reach the equilibrium point ~u. The general picture is similar to that of case 1.

Case 4 is clearly different. Here we have only one eigenvector: ~u = (1, 0, 0)T, and
two generalized eigenvectors ~w1 = (0, 1, 0)T, ~w2 = (0, 0, 1)T, such that A~w1 = ~u+ ~w1

and A~w2 = ~w1 + ~w2. We have projected the trajectories with positive z component
on the z-plane. The behaviour is similar to that of a parabolic sector in a planar
system. As we see, near ~u the direction along ~w1 is unstable and that along −~w1

stable, such that eventually all trajectories approach the equilibrium point. The
behaviour on the other semisphere is similar and approaches −~u.

3.1.3 Complex eigenvectors

Although our hypothesis is that λmin is real, we present in case 5 an example where
the (generalized) eigenvectors of a second eigenvalue are complex. We also consider
case 6 where λmin is unique but imaginary and there is another real eigenvalue with
bigger real part. Finally we consider case 7 where λmin is not unique, but there are
two eigenvalues with same real part, one real and the other imaginary. In this two
last cases, the convergence is not guaranteed since we do not fulfill the fundamental
hypothesis of λmin being unique and real. The matrices we are considering in these
examples are:

A5 =




6 −2 0
2 6 0
0 0 1


 ; A6 =




1 −2 0
2 1 0
0 0 3


 ; A7 =




1 −2 0
2 1 0
0 0 1


 .

The corresponding plots are in figure 3

In case 5, λmin = 1 associated to (0, 0, 1)T and we have two complex conjugate
eigenvalues: 6± i2 associated to (1, 0, 0)T and(0, 1, 0)T. We have plotted the projec-
tion of trajectories with z > 0 on the z-plane. The eigenvector is an asymptotically
stable focus.

In case 6, we have that the eigenvalues with minimal real part are 1± i2, asso-
ciated to ~u1 = (1, 0, 0)T and ~u2 = (0, 1, 0)T. Besides, there is a real eigenvalue, 3,
associated to (0, 0, 1)T. This last eigenvector behaves as an unstable focus and the
trajectories tend to span{~u1, ~u2}, and describe a circular motion. Although there
is no convergence towards any vector, if we compute r(~x), we see that it converges
towards the real part of the complex eigenvalues.
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Finally, in case 7, all eigenvalues have the same real part. The complex eigen-
values are 1 ± i2, associated to ~u1 = (1, 0, 0)T and ~u2 = (0, 1, 0)T, and the real
eigenvalue is 1, associated to (0, 0, 1)T. This eigenvector behaves as a center and
the trajectories describe a circular motion. As in the previous case, there is no
convergence towards any vector, but if we compute r(~x), we see that it is always
equal to 1.

3.2 Examples in dimension 5: comparison with the Power
Methods

We will now compare the performance of the method and that of similar iterative
methods such as the Direct Power Method (DPM) and the Inverse Power Method
with Seed (IPMS)[4].

We define different matrices with a specific spectrum and use them as a test.
Let us consider matrices

M1 =




−6 6 −4 4 1
−23 21 −14 14 5
−23 20 −14 15 6

22 −18 13 −12 −5
−68 56 −42 42 17




, M2 =




−7 8 −5 6 2
−24 23 −15 16 6
−23 20 −14 15 6

13 −10 8 −8 −4
−46 37 −30 33 15




.

These matrices have canonical Jordan forms Λi, such that PΛiP
−1 = Mi with:

Λ1 =




−1 0 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 3




, Λ2 =




1 1 0 0 0
0 1 1 0 0
0 0 1 0 0
0 0 0 3 1
0 0 0 0 3




,

P =




1 0 1 1 0
1 0 0 1 1
0 1 −2 0 1

−1 1 0 1 −1
3 0 −1 −2 2




.

Matrix P has been chosen assigning arbitrarily the values 0, ±1, ±2 to its elements
(an element has been changed to 3 so that the resulting matrices Mi have all the
elements with integer values, for sake of simplicity). In this way, the eigenvectors
are not mutually orthogonal.

In figure 4 we compare the results of simulating the dynamical system (DS) with
different values of τ and of the DPM for matrix M1 in order to obtain λmax ≡ 3. In
order to have DS converging towards the maximum eigenvalue, we have taken −M1.
In all computations the initial vector is (0, 0, 1, 1, 1)T, normalized. As we see, the
number of iterations is similar for both methods, provided we chose a reasonable
value of τ for the DS.

In figure 5 we compare the results of simulating the dynamical system (DS) with
different values of τ and of the IDPS for matrix M1 in order to obtain λmin = −1.
We cannot start the IPMS with seed 0, since 1 is also an eigenvalue and the method
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do not converge. As we see, the number of iterations is similar for both methods,
provided we chose a reasonable value of τ for the DS and of the seed for the IPMS.

In figure 6 we compare the results of simulating the dynamical system (DS) with
different values of τ and of the DPM for matrix M2 in order to obtain λmax ≡ 3.
In order to have DS converging towards the maximum eigenvalue, we have taken
−M2. In all computations the initial vector is (0, 0, 1, 1, 1)T, normalized. As we see,
the precition of both methods is similar for a number of iterations fixed. We are in
the case of generalized eigenvectors where the decay towards the eigenvector is not
exponential.

In figure 7 we compare the results of simulating the dynamical system (DS) with
different values of τ and of the IDPS for matrix M2 in order to obtain λmin = 1. We
start the IPMS with seed 0. The precition of both methods is similar for a number
of iterations fixed.

4 Conclusions

We have presented a new family of methods to obtain the eigenvectors of the given
matrix A. The different kinds of behaviour allow in pratice to know whether the
associated eigenvalue is real and unique or if there are others with the same real
part. We also can deduce whether there are generalized eigenvectors.

From the numerical point of view, its performance is similar to that of the Power
Methods, with the difference of the conditions of applicability: this method can be
used in situations where the Power Methods do not converge because there are two
eigenvalues with same absolute value or equally distant from the seed.
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A Appendix: proof of the theorems

In this Appendix, we give proofs of the three theorems. Each section corresponding
to one of the results.

A.1 Proof of Theorem 1

In order to build the proof, we start with some preliminary Lemmas.

Lemma 1 Let ~u be an eigenvector of A associated to eigenvalue λ. We have

Jp(~u) =
−1
‖~u‖p

[
I − P (~u)

]
[A− λI]
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Proof: we just consider the hypothesis and perform the computations. The result
is obtained from (5) using that AP (~u) = λP (~u) = P (~u)AT.

Lemma 2 Let ~u be an eigenvector of A associated to eigenvalue λ. Let µ be an
arbitray value. We have

(
Jp(~u)− λ− µ

‖~u‖p
I

) [
I − P (~u)

]
=

−1
‖~u‖p

[
I − P (~u)

]
[A− µI].

Proof: The result is obtained by direct calculations and Lemma 1.

Lemma 3 Let ~u and ~v be mutually linearly independent eigenvectors of A, associ-
ated respectively to eigenvalues λ and µ. Then

[
I − P (~u)

]
~v is an eigenvector of Jp(~u) with eigenvalue

λ− µ

‖~u‖p
.

Furthermore: that eigenvector of Jp(~u) is orthogonal to ~u.

Proof: Using Lemma 2 we have
(

Jp(~u)− λ− µ

‖~u‖p
I

) [
I − P (~u)

]
~v =

−1
‖~u‖p

[
I − P (~u)

]
[A− µI]~v.

This is null since [A − µI]~v = ~0. On the other hand, ~u and ~v being linearly inde-
pendent, we have

[
I − P (~u)

]
~v 6= ~0. Thus we prove the existence of the eigenvector

and eigenvalue of Jp(~u).
Besides, since I−P (~u) is the orthogonal projector on span{~x}⊥, the eigenvector

is by construction orthogonal to ~u.

What happens if A is not diagonalizable is dealt with in the next lemmas:

Lemma 4 Let ~u be an eigenvector of A associated to λ. We suppose that λ has
an algebraic multiplicity ma and a geometric multiplicity mg < ma. Let ~wk be a
generalized eigenvector associated to λ such that:





(A− λI)~wk 6= ~0,
. . .

(A− λI)k ~wk 6= ~0,

(A− λI)k+1 ~wk = ~0,

with 1 ≤ k ≤ mg.

We have two possibilities:

a) If (A− λI)~w1 ∈ span{~u} then b) If (A− λI)~w1 /∈ span{~u} then



Jp(~u)~wk 6= ~0,
. . .

Jk−1
p (~u)~w 6= ~0,

Jk
p (~u)~w = ~0.





Jp(~u)~wk 6= ~0,
. . .

Jk
p (~u)~w 6= ~0,

Jk+1
p (~u)~w = ~0.
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Proof:
From Lemma 1 we know that for any vector ~w

Jp(~u)~w =
−1
‖~u‖p

[
I − P (~u)

]
[A− λI]~w

and thus, to the power `,

J `
p(~u)~w =

(−1)`

‖~u‖`p

([
I − P (~u)

]
[A− λI]

)`
~w =

(−1)`

‖~u‖`p

[
I − P (~u)

]
[A− λI]` ~w

since:
[A− λI]

[
I − P (~u)

]
= [A− λI].

Applying this to ~w = ~wk with ` = 1, . . . , k +1 proves case b). On the other hand, if

(A− λI)~w1 ∈ span{~u}

we have that [
I − P (~u)

]
[A− λI]~w1 = ~0

and then
Jp(~u)~w1 = ~0,

which is the difference needed to prove case a).

Case a) always happens if mg = ma − 1. It also happens by chance if, among
all the proper eigenvectors associated to λ, we choose our vector ~u belonging to
span{(A− λI)~w1}.

Now we study the case when the generalized eigenvectors are associated to an
eigenvalue µ of A such that µ 6= λ:

Lemma 5 Let ~u be an eigenvector of A associated to λ. Let be µ 6= λ and ~wk a
generalized eigenvector associated to µ, such that:





(A− µI)~wk 6= ~0,
. . .

(A− µI)k ~wk 6= ~0,

(A− µI)k+1 ~wk = ~0.

We have: 



(
Jp(~u)− λ−µ

‖~u‖p I
) [

I − P (~u)
]
~wk 6= ~0,

. . .(
Jp(~u)− λ−µ

‖~u‖p I
)k [

I − P (~u)
]
~wk 6= ~0,

(
Jp(~u)− λ−µ

‖~u‖p I
)k+1 [

I − P (~u)
]
~wk = ~0.

Proof:
We use Lemma 2, repetedly, on any vector ~w:

(
Jp(~u)− λ− µ

‖~u‖p
I

)` [
I − P (~u)

]
~w =

(−1)`

‖~u‖`p

[
I − P (~u)

]
[A− µI]` ~w

12



and apply this to ~w = ~wk, ` = 1, . . . , k + 1. Now, contrarily to what happened in
the case a) of Lemma 4, [A−µI]k ~w never belongs to span{~u} since λ 6= µ, and only
when ` = k + 1 can this be null.

We are now in a position to prove Theorem 1: the first point is proven using
Lemma 3 with λ = µ. The second point is proven using Lemma 3 in the case of
proper eigenvectors, and Lemmas 4 and 5 in the case of generalized eigenvectors. It
is easily seen that the complex case is also fulfilled. The third point is given directly
by Lemma 4. Finally, the fourth point is proven by Lemma 5, which completes the
proof.

A.2 Proof of Theorem 2

As for the proof of Theorem 2, if the solution belongs to Umin it is an eigenvector
and thus a fixed point. Even if we have several eigenvectors linearly independent
(say {~ui}q

i=1, where q = mg) associated to the eigenvalue, any solution of the form

~x(t) =
q∑

i=1

ai(t)~ui is a constant: substituting in the equation we have

q∑

i=1

ȧi(t)~ui +
λmin

‖~x‖p

q∑

i=1

ai(t)~ui − λmin

‖~x‖p

q∑

i=1

ai(t)~ui = ~0

⇐⇒
q∑

i=1

ȧi(t)~ui = ~0 ⇐⇒ ∀i, ȧi = 0. (17)

Thus, any point of Umin is a fixed point.
We suppose thus that a general solution has components outside Umin. Those

can be of two types: outside Ūmin and inside Ūmin − Umin.
Let us start considering the first case. It is the only possibility, for instance,

if ma = mg. From point 2 in theorem 1, we have that all eigenvectors of Jp(~u)
but ~u (either true or generalized) belong to span{~u}⊥. Thus the local behaviour
around ~u is given by those other eigenvectors. Let be ~umin ∈ Umin such that it lies
on the surface of the sphere ‖~x‖ = ‖~x0‖. If the geometric multiplicity mg of λmin

is 1 and if we force the solutions to lie on that same sphere, it is clear that ~umin

is asymptotically stable. We only have to show that something similar is also true
if mg > 1. Let us denote by Ūmin the set of generalized eigenvectors associated to
λmin. We have that on one hand Jp(~umin) has no eigenvalues with positive real part,
and that all other eigenvectors associated to λmin are eigenvectors of Jp(~umin) with
zero real part. On the other hand, for any other eigenvector ~v of A (either true
or generalized), any eigenvector of A that belongs to Umin give rise to eigenvectors
of Jp(~v) with negative real part. Thus any trajectory outside Ūmin decays towards
Ūmin, and its behaviour is governed by the smallest eigenvalue of Jp(~u) which is

λmin − λ′

‖~u‖p
,

hence the asymptotic behaviour.
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We study now the second case, and consider trajectories evolving inside Ūmin.
We will see that they tend to some true eigenvector of λmin. In order to simplify the
computations we choose ‖~x(0)‖ = 1, but this is not necessary. We use a notation
similar to that of Lemma 4: let be B =

{
~u1, ~u2, . . . , ~uq

}
an orthonormal basis of

Umin and B′ =
{

~w1, ~w2, . . . , ~wK

}
a basis of Ūmin−Umin (the subspace of generalized

but not true eigenvectors of λmin) such that:
{

(A− λminI)~wj = ~wj−1, j = 2, 3, . . . , K,
(A− λminI)~w1 = ~uq.

(18)

(q = mg and K = ma − mg, but we have chosen this in order to simplify the
notation).

Let us now consider a more general solution of the form

~x(t) =
q∑

i=1

ai(t)~ui +
K∑

j=1

bj(t)~wj . (19)

Using (18) we have

A~x(t) = λmin~x(t) + b1(t)~uq +
K−1∑

j=1

bj+1(t)~wj (20)

and from here

~x(t)TA~x(t) = λmin‖~x(t)‖2 + b1(t)~x(t)T~uq +
K−1∑

j=1

bj+1(t)~x(t)T ~wj . (21)

Let us, for the time being, call

h(t) ≡ b1(t)~x(t)T~uq +
K−1∑

j=1

bj+1(t)~x(t)T ~wj . (22)

Substituting in the dynamical system we have

~̇x(t) = −λmin~x(t)− b1(t)~uq −
K−1∑

j=1

bj+1(t)~wj + λmin~x(t) + h(t)~x

= −b1(t)~uq −
K−1∑

j=1

bj+1(t)~wj + λmin~x(t) + h(t)~x, (23)

while by direct and differentiation of the solution:

~̇x(t) =
q∑

i=1

ȧi(t)~ui +
K∑

j=1

ḃj(t)~wj . (24)

Putting all this together, and using the fact that all the ~u’s and ~w’s are linearly
independent, we get the following set of equations for the coefficients:





ȧi = h(t)ai, i = 1, . . . , q − 1;
ȧq = h(t)aq − b1;
ḃj = h(t)bj − bj+1, j = 1, . . . , K − 1;
ḃK = h(t)bK .

(25)
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The solution of this system is of the form




ai(t) = ±αi

[
R(t, 2K)

]−2
, i = 1, . . . , q − 1;

aq(t) = ±P(t,K)
[
R(t, 2K)

]−2
;

bj(t) = ±P(t,K − j)
[
R(t, 2K)

]−2
, j = 1, . . . , K − 1;

bK(t) = ±
[
R(t, 2K)

]−2
;

(26)

where αi = ai(0)/bK(0), and P(t,K) and R(t, 2K) are polynomial with leading
terms of the form, respectively,

(−1)KtK

K!
and

t2K

(K!)2
. (27)

A few words about this solution: first of all, none of these coefficients can become
singular, since ~x exists for all times and is bounded. Secondly, none of them can be
equal to zero, unless they were zero at the initial time, and in that case remain zero
for all times. This also means that the sign (±) we should consider is just that of
bK(0). Finally, due to the form of the leading terms (27), we see that all coefficients
but aq(t), tend to zero as t goes to infinity, and that aq(t) tends to ±1, as should
be expected. The coefficient that goes to zero more slowly is b1(t), its asymptotic
behaviour is

|b1(t)| ∼ 1
(K − 1)!

tK−1

(
t2K

(K!)2

)−2

=
K

t
=

ma −mg

t
. (28)

Thus we see that any trajectory inside Ūmin decays towards the proper eigenvector
~uq.

A.3 Proof of Theorem 3

We finally present the proof of Theorem 3: in this case there is not in principle
convergence to a vector, but as in the previous theorem, all solutions decay towards
the eigenvectors of A associated to the eigenvalues with smallest real part. This
means the space U . On the other hand, it is easy to check that for any vector
belonging to U , the Rayleigh quotient is just Remin.
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Figure 2: Projection of solutions in the cases 1 to 4: matrices with real eigenvalues
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Figure 4: Comparison of |r(~xn)− λmax| versus number of iterations n for matrix M1 with
the Power Method and the dynamical system with three different values of τ .
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Figure 5: Comparison of |r(~xn)− λmin| versus number of iterations n for matrix M1 with
the Inverse Power Method with three seeds and the dynamical system with three different
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the Power Method and the dynamical system with three different values of τ . Due to the
big number of iterations, the data are represented by lines rather that points
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Figure 7: Comparison of |r(~xn)− λmin| versus number of iterations n for matrix M2 with
the Inverse Power Method and the dynamical system with three different values of τ .
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