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1Departamento de Óptica, Universidad Complutense, 28040 Madrid, Spain
2Departamento de Estadı́stica e Investigación Operativa I, Facultad de Matemáticas,
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concerned.
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1. Introduction

The spatial modulation of the dielectric properties of a medium brings about substantial modifi-
cations in light propagation. When the spatial profile is periodic, the resulting structure is called
a photonic crystal, underlining the strong similarities between the distinctive features of light
in these structures and those of electrons in semiconductors [1, 2].

The converse case of a random spatial distribution has also attracted a lot of attention, for it
is at the root of a good many effects, such as Anderson localization [3, 4], coherent backscatte-
ring [5], and optical Hall effect [6], to cite only a few.

Deterministic and yet nonperiodic spatial patterns, dubbed photonic quasicrystals [7–13], fill
the heap of room in between the two aforementioned extreme examples. Even if propagation in
these intriguing arrangements is not thoroughly understood, it has been recently recognized that
they can provide remarkable functionalities [14,15]. This is of utmost significance, because the
rich variety of aperiodic structures adds considerable versatility when engineering the optical
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response of feasible devices.
The first illustration of an aperiodic lattice possessing long-range order was a one-

dimensional semiconductor heterostructure assembled according to the Fibonacci se-
quence [16–18]. Subsequently, a wealth of photonic quasicrystals have been conceived, the
most outstanding ones being Thue-Morse [19–21] and Cantor [22–26]. Both classical (light)
and quantum (electrons) waves in these media have been shown to have a self-similar en-
ergy spectrum [27], a pseudo-bandgap of forbidden frequencies [28], and critically local-
ized states [29] whose wave functions are distinguished by power law asymptotes and self-
similarity [30, 31].

Bragg mirrors, consisting of alternating low- and high-index layers, constitute the simplest
example of one-dimensional photonic crystals [32, 33]. In particular, quarter-wave stacks are
the most extensively studied in connection with omnidirectional reflection (ODR); that is, they
present ranges of frequency in which strong reflection occurs for all angles of incidence and all
polarizations [34–39].

The possibility of achieving ODR from Fibonacci [40] and Thue-Morse [41] quasicrystals
has been put forward lately. However, in those analysis ODR is treated in the limit of an infinite
span. In practice, every system is finite and one needs to quantify ODR in a manner that permits
unambiguous comparison between different layouts. An appropriate tool for that end is the
wavelength- and angle-averaged reflectance [42, 43]. Putting this concept to work is relatively
straightforward and one is right away led to the conclusion that, for the same number of layers,
photonic crystals always offer better performance than Fibonacci or Thue-Morse ones [44].

This upshot seems to rule out any potential benefit of quasicrystals as ODRs. In spite of
this, we examine in this work the so-called generalized Fibonacci quasicrystals. This notion
has developed into a rich field of research [45–56], which besides is buttressed by a list of
remarkable mathematical properties [57], to the extent that there is a journal entirely devoted
to this stuff; the Fibonacci Quarterly.

Surprisingly, the ODR properties of the generalized Fibonacci quasicrystals have not yet been
explored; such is precisely the goal of this paper. Indeed, we find out that these schemes can
exhibit superior ODR performance than the photonic crystals. Only in the narrowband approx-
imation, the latter maintain their supremacy. This unforeseen result opens new perspectives for
generalized quasicrystals and confirms once again that interference works in mysterious ways.

The plan of this paper is as follows. In Sec. 2 we provide a brief account of the mathematical
concepts involved in these generalized quasycristals. Expedient methods to determine their
optical response are outlined in Sec. 3. With all this machinery at hand, we proceed to scrutinize
the ODR performance: in Sec. 4, we restrict ourselves to the narrowband limit, whereas the
general broadband case is considered in Sec. 5. Finally, our conclusions are summarized in
Sec. 6.

2. Generalized Fibonacci sequences

A sequence (also called a word) is an ordered list made up of letters, which are elements of
a finite alphabet. We shall be mainly engaged in a two-letter alphabet, denoted by {L,H}, but
alphabets can be of any size. In physical realizations, each letter corresponds to a different type
of building block (e.g., dielectric layers, nanoparticles, etc).

A time-honored method to generate deterministic aperiodic sequences relies on symbolic
substitutions [58,59]. A specific substitution rule replaces each letter in the alphabet by a finite
word, viz

L �→ ϕ1(L,H) , H �→ ϕ2(L,H) , (1)

where ϕ1 and ϕ2 can be any string of L and H. In addition, one must start from a given letter,
which is called a seed or initiator.
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L

H

Periodic

FS(1,1) FS(2,1) FS(3,1)

FS(1,2) FS(1,3)

Fig. 1. Illustrating different arrangements considered in this work. In the top panel, we
have the periodic case (40 letters). In the mid panel, the Olympic-metal family FS (h,1 ),
with (from left to right) h = 1 (golden mean, 34 letters), h = 2 (silver mean, 41 letters),
and h = 3 (bronze mean, 43 letters). In the bottom panel, the non-Olympic-metal family
FS (1, �), with � = 2 (copper mean, 43 letters) and � = 3 (nickel mean, 40 letters). The
differences can be appreciated at a simple glance.

More concretely, we are interested in the generalized Fibonacci sequences FS(h, �), which
are generated by the inflation rule

L �→ H , H �→ Hh L� , (2)

where � and h are arbitrary positive integers and we adopt the convention that the seed is L.
Alternatively, the words {Wα} of FS(h, �) are defined through the scheme

Wα+1 =W h
α W �

α−1 , (3)

with W0 = L and W1 = H. Here the integer α labels the corresponding iteration, which is also
known as the generation.

The length (i.e., the total number of letters L and H) of the word Wα is denoted by wα and
satisfies the recursion relation

wα+1 = hwα + �wα−1 . (4)

In the limit of an infinite sequence, the lengths of two successive words satisfy

lim
α→∞

wα
wα−1

≡ σ(h, �) =
1
2
(h+

√
h2 +4�) . (5)

For �= 1, the resulting sequence fulfills

σ(h,1) = [h̄] , (6)

[h̄] being the irrational number with a continued-fraction representation [h̄] = [h,h,h, . . .] [57].
In particular, for h = 1 (the standard Fibonacci sequence) we get the golden mean, σ(1,1) =
Φ = (1+

√
5)/2, for h = 2 the silver mean, σ(2,1) = 1+

√
2, for h = 3 the bronze mean

σ(3,1) = (3+
√

13)/2, and so on. This family generalizes in quite a natural way the golden
ratio [60] and will be designated here, by obvious reasons, the Olympic-metal family.
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On the other hand, when we fix h = 1, the sequences are, for instance,

σ(1,2) = [2, 0̄] , σ(1,3) = [2, 3̄] , (7)

and the like. These two examples are known as the copper and nickel means and the complete
FS(1, h) series will be termed as the non-Olympic-metal family. In Fig. 1 we roughly schematize
some of these strings.

To each substitution rule (1) we associate a substitution matrix T, defined as

T=

⎛

⎝
|ϕ1(L,H)|L |ϕ2(L,H)|L

|ϕ1(L,H)|H |ϕ2(L,H)|H

⎞

⎠ , (8)

where | · |L,H is the number of letters L (resp. H). This matrix does not depend on the precise
form of the substitutions, only on the number of letters L or H. The eigenvalues of T contain
a lot of information. Actually, as discovered by Bombieri and Taylor [61, 62], if the spectrum
of T contains a Pisot number as an eigenvalue, the sequence is quasiperiodic; otherwise it
is not (and then is purely aperiodic). We recall that a Pisot number is a positive algebraic
number (i.e., a number that is a solution of an algebraic equation) greater than one, all of whose
conjugate elements (the other solutions of the defining algebraic equation) have modulus less
than unity [63].

For FS(h, �) we have

Th,� =

(
h 1
� 0

)
, (9)

whose eigenvalues are

τ(±)
h,� =

1
2

(
h±

√
h2 +4�

)
. (10)

Incidentally, the largest eigenvalue τ(+)
h,� , which is often known as the Perron-Frobenius eigen-

value [64], coincides with the ratio σ(h, �).
The eigenvalues τh,1 are Pisot numbers, so all the sequences in the Olympic-metal family

FS(h,1) are quasiperiodic. In contradistinction, τ1,� are not Pisot numbers and the correspond-
ing non-Olympic-metal systems FS (1, �), are aperiodic.

The main differences of these two situations can be appreciated by the nature of their Fourier
spectrum [65]. For a specific word of length N, the discrete Fourier transform reads

ŴN(k) =
1√
N

N−1

∑
j=1

W ( j)exp

(−2πi jk
N

)
, k = 1,2 . . . ,N , (11)

where W ( j) is a numerical array obtained from the word by assigning to each letter of the
alphabet a fixed number. This assignment is otherwise arbitrary and does not change any con-
clusion. In consequence, one could, e.g., use L �→−1 and H �→ 1. The structure factor (or power
spectrum) is [66]

FN(k) = |ŴN(k)|2 . (12)

From a rigorous perspective, the only well-established concept attached to the Fourier spec-
trum is its spectral measure. If dνN(k) = FN(k)dk, we will be concerned with the nature of
the limit dν(k) = limN→∞ dνN(k), which corresponds to an infinite structure and a continuous
variable k. Just as any positive measure, dν(k) has a unique decomposition

dν(k) = dνpp(k)+dνac(k)+dνsc(k) (13)
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Fig. 2. Normalized power spectrum for words up to 1500 letters for different generalized
Fibonacci sequences. In the left panel, for the Olympic-metal family FS(h,1), with h = 1,2,
and 3. In the right panel, for the non-Olympic-metal sequences FS(1,2) and FS(1,3).

into its pure point, absolutely continuous and singular continuous parts [15]. The pure point part
refers to the presence of Bragg peaks; the absolute continuous part is a differentiable function
(diffuse scattering), while the singular continuous part it is neither continuous nor does it have
Bragg peaks; it shows broad peaks, which are never isolated and, with increasing resolution,
split again into further broad.

In Fig. 2 we have plotted the power spectrum FN(k) for the Olympic- and non-Olympic-metal
families. The former, exhibit δ -like Bragg peaks that can be properly labeled in terms of the
eigenvalues τh,1 as

km1m2 =
2π
Λ0

m1τm2
h,1 , (14)

with m1 and m2 integers and Λ0 being a suitable average period of the structure. We can verify
the existence of incommensurate intervals between peaks, confirming the quasiperiodicity of
these arrangements. Moreover, a relevant result, known as the gap-labelling theorem [67, 68],
relates the position of the peaks in Eq. (14) with the location of the gaps in the energy spectra
of the elementary excitations supported by the structure.

For non-Olympic metals, the global structure looks blurred. Individual Bragg peaks are not
separated by well-defined intervals, but tend to cluster forming “broad bands”. The strength of
the dominant peaks is considerably bigger for the copper, which suggests that the nickel-mean
lattice is more disordered than the copper one. A complete account of these issues is outside the
scope of this work; however, a thorough analysis [69] shows that these spectra are multifractal
and their Fourier-spectral measures are singular continuous ones.

3. Optical response

In an optical implementation of the generalized Fibonacci sequences FS (h, �), the letters in the
alphabet {L,H} are realized as layers made of materials with refractive indices (nL,nH) and
thicknesses (dL,dH), respectively. The material L has a low refractive index, while H is of a
high refractive index, which justifies the notation employed thus far.

To properly compare the optical response we take advantage of the transfer-matrix tech-
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nique [70]. For a single layer, say L, the transfer matrix reads as

ML(θ ,λ ) =

⎛

⎝
cosβL −qL sinβL
1
qL

sinβL cosβL

⎞

⎠ . (15)

Here, βL = (2π/λ )nLdL cosθL is the layer phase thickness, θL being the angle of refraction,
which is determined by Snell’s law. The wavelength in vacuum of the incident radiation is λ .
The parameter qL can be written for each basic polarization (parallel ‖ or perpendicular ⊥) as

q‖L =
nL cosθ
cosθL

, q⊥L =
cosθ

nL cosθL
. (16)

For simplicity, we have assumed that the layer is imbedded in air and henceforth θ will indicate
the incidence angle. Expressions completely analogous hold for the layer H.

According to Eq. (3), the αth word of FS(h, �) has the associated transfer matrix

Mα+1 =Mh
α M�

α−1 , (17)

starting from M0 =ML and M1 =MH . The reverse order of M0 and M1 is also admissible, but
gives poorer results. Once Mα is known, the reflectance is

R
‖,⊥
α (θ ,λ ) = 1− 4

‖Mα‖2 +2
, (18)

where ‖Mα‖2 = ∑i j |mi j|2 (the sum of the absolute squares of the matrix elements) is the
(Frobenius) norm of Mα .

Please, note carefully that this reflectance must be separately calculated for both basic polar-
izations. As usual, to avoid separate discussions for these two polarizations, we will work with
the unpolarized reflectance

Rα(θ ,λ ) =
1
2
[R

‖
α(θ ,λ )+R⊥

α (θ ,λ )] . (19)

As stressed by its explicit dependence, the expression for Rα(θ ,λ ) is valid for a fixed direction
and wavelength. To deal with ODR, it seems convenient to average Rα(θ ,λ ) over the incidence
angles (from 0 to π/2) and over the wavelengths in the spectral interval of interest Δλ = λmax−
λmin. Accordingly, we introduce

R̄α =
1

Δλ

∫ λmax

λmin

[
2
π

∫ π/2

0
Rα(θ ,λ ) dθ

]
dλ . (20)

When this wavelength- and angle-averaged reflectance satisfies R̄α = 1, we have broadband
ODR. Yet this can be strictly accomplished only in the limit of infinite chains: in a finite sys-
tem, one has to content oneself with R̄α being close enough to unity, which we refer to as
approximate broadband ODR.

The quantity R̄α can be understood as a merit function respect to the unit ideal reflectance. In
principle, more sophisticated merit functions are at hand [71–73], although the physical results
do not depend of such a choice.

For given materials, R̄α is a function of the layer thicknesses dL and dH . However, while the
reflectance Rα(θ ,λ ) is a periodic function of dL and dH , this is not longer true for R̄α .

In what follows, we investigate the optimal thicknesses giving maximum R̄α . In all our
computations the two thicknesses are varied independently from 0.02 μm to 0.30 μm. This
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range is in turn subdivided into 50 even intervals, so all in all we get a set of 50× 50 equal
rectangles. The center of each rectangle is picked as an initial guess and we seek for the best
point (i.e., the local optimum) by using a random permutation of the two thicknesses and an
iterative search with fixed (positive or negative) increment.

In the next optimization step, we apply a quasiNewton algorithm (available in the NAG
library) to improve the points of the previous exploration. Finally, the best of the 2500 local
optima is taken as the global optimum thicknesses.

4. Narrowband ODR

For the time being, we analyze the narrowband approximation, in which the incident radiation
can be regarded as monochromatic at wavelength λ . In such an instance, one can ignore the
integration over the wavelength in (20) and the averaged reflectance reduces to

R̄α =
2
π

∫ π/2

0
Rα(θ ,λ ) dθ . (21)

Following the case study in [43] , we take the materials to be cryolite (Na3AlF6) and Zinc Se-
lenide (ZnSe), with refractive indices nL = 1.34 and nH = 2.568, respectively, at λ = 0.65 μm.
This simple example allows one to work out easily the details of the method, which can be
immediately extended to other media.

We have calculated the optimal thicknesses for several generations of the generalized Fi-
bonacci sequences. All the information can be found in the datasets included in the Supple-
mentary Material.

We recall that the usual ODR Bragg solution [39] consists of alternating quarter-wavelength
layers (at normal incidence), namely

nLdL/λ = 1/4 , nHdH/λ = 1/4 , (22)

which corresponds to physical thicknesses dL = 0.1213 μm and dH = 0.0633 μm. We cling to
the practice of expressing the thicknesses in an adimensional form. For almost all the situations
(except nickel and copper means), nLdL/λ 	 0.28. The optimal H thicknesses considerably
vary from system to system. We thus end up that the quarter-wavelength solution (22) is not the
optimal for ODR, as already noticed in [37].

In Fig. 3 we have represented − ln(1−R̄α) (calculated at the optimal thicknesses) as a func-
tion of the number of layers Nα . For all the generalized Fibonacci sequences, this magnitude
increases linearly with Nα . As a matter of fact, we have applied the fitting

− ln(1− R̄α) = a0 +a1Nα . (23)

Table 1. Fitting parameters of the narrowband model (23) and the broadband model (25).
In both cases, we include the Pearson correlation coefficients.

System Metal a0 a1 R2 b0 b1 b2 R2

Periodic — 1.249 0.279 0.999 0.450 2.675 0.253 0.931
FS(1,1) Gold 2.186 0.112 0.991 0.831 2.086 0.046 0.939
FS(2,1) Silver 1.469 0.134 0.997 0.811 2.790 0.030 0.937
FS(3,1) Bronze 1.374 0.095 0.978 0.792 2.890 0.019 0.989
FS(1,2) Copper 0.770 0.130 0.997 0.132 2.339 0.087 0.967
FS(1,3) Nickel 1.715 0.035 0.953 0.799 4.123 0.010 0.961
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Fig. 3. Logarithm (with changed sign) of 1 − R̄α [R̄α is the angle-averaged re-
flectance (21)] for the optimal thicknesses and several generations of different generalized
Fibonacci sequences as a function of the number of layers Nα .

The linear dependence is clearly observed for the periodic case, whereas for the other examples
(especially, the nickel), the cloud of points is not large enough to appraise at a glance the good-
ness of the fit. Nonetheless, the correlation coefficients in Table 1 (which have been validated
by enlarging the range of Nα ) confirm that (23) is indeed a good approximation. Note, in pass-
ing, that this implies that R̄α approaches the unity exponentially with Nα , as one would expect
from an omnidirectional bandgap [39].

The periodic stack has the biggest slope, followed by the Olympic-metal family (taken in
the order silver, bronze, and gold). Finally, the non-Olympic family performs the worst (cop-
per and nickel). To sum up, as narrowband ODR is concerned, periodicity always beats both
quasiperiodic and aperiodic orders.

Fig. 4. Averaged reflectance R̄α as a function of the adimensional thicknesses nLdL/λ and
nHdH/λ (at a working wavelength of 0.65 μm) for the periodic system with 218 layers
(left panel) and the nickel-mean system with 217 layers (right panel). In both figures, we
include a plane of constant reflectance 0.98.
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The long-range order of these arrangements is responsible for the anomalous interference
giving rise to pseudo-bandgaps wherein R̄α is close to unity. That order is reflected in the
position and strength of the Bragg peaks in the Fourier spectrum, as illustrated in Fig. 2. In this
respect, the photonic crystals present the sharpest localized peaks.

To gain further insights into these features, in Fig. 4 we have depicted the averaged re-
flectance R̄α for the two most extreme situations according to the performance in the Fig. 3;
periodic (with 218 layers) and nickel mean (with 217 layers), in terms of the adimensional
thicknesses nLdL/λ and nHdH/λ . We have also included a plane of constant reflectance 0.98,
so that the regions above this plane determine the parameters in which approximate ODR hap-
pens.

For the periodic stack, R̄α exhibits four fairly smooth humps, the highest centered around
nLdL/λ 	 0.30 and nHdH/λ 	 0.28: the quarter-wavelength solution is accurate enough in
this example. In contradistinction, the nickel-mean shows quite an oscillatory behavior, with
slightly smaller peaks.

To round out the analysis, in Fig. 5 we have outlined the isocontours of R̄α = 0.98 for the
generalized Fibonacci quasicrystals and generations picked out in such a way that all of them
have a comparable number of layers. The filled regions represent again the range of adimen-
sional thicknesses for which approximate ODR holds (we have restricted the values of these
variables to the most interesting zone up to 0.5, i.e., half-wavelength thickness). We caution
that the centers of these isles do not necessarily coincide with the optimal values listed in the
Supplementary Material.

Several remarkable facts can be observed in this figure. First of all, for the periodic and
the Olympic-metal family, these sectors are close to ellipses with the major axes orientated
predominantly along the vertical axis (except the silver mean). For the non-Olympic metal
family they are of irregular shape. The shaky contours are due to the strong oscillations already
apparent in Fig. 4. As a second comment, the centers of the ellipses are distributed along either
nHdH/λ 	 0.28 or nHdH/λ 	 0.12. The coordinates in the nLdL/λ axis are, however, pretty
diverse.
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Fig. 5. Contours of R̄α = 0.98, as a function of the adimensional thicknesses nLdL/λ and
nHdH/λ for the systems: periodic (218 layers), Olympic-metal family [gold (233 layers),
silver (239 layers), bronze (142 layers)], and non-Olympic-metal family [copper (171 lay-
ers) and nickel (217 layers)].
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These regions also delimit the thickness tolerances: the greater their extent, the better the
tolerance. Consequently, the periodic crystal is clearly the best (the nickel sequence presents
also a broad area, but split in many small islets). Furthermore, the orientation of these domains
indicates that the tolerance in the H thickness is always bigger than in the L material (except
for the silver mean, again).

5. Broadband ODR

We go farther along in our program and consider the incident radiation to have a spectral width
Δλ , which extends from λmin = 0.5 μm to λmax = 0.8 μm. In this range, the refractive index of
the cryolite can be considered, to a good approximation, as constant (nL = 1.34), while for the
Zinc Selenide we use the Sellmeier-type dispersion equation [74]

n2
H(λ ) = 4+

1.9λ 2

λ 2 − (0.336)2 , (24)

with λ expressed in microns. This implies a smooth variation between nH(λmin)= 2.732 and
nH(λmax) = 2.511.

The quantity of interest is now the wavelength- and angle-averaged reflectance (20). As one
can find out in the Supplementary Material, for the periodic and the Olympic-metal family,
the optimal values of nLdL/λ are close to 1/4, while for the H layers, this quarter-wavelength
solution holds only for the periodic and the golden and nickel means.

In Fig. 6 we have plotted − ln(1− R̄α) for the same examples as in Fig. 3, as a function of
the number of layers Nα , employing the optimal thicknesses. In this instance, the points can be
appropriately fitted to the function

− ln(1− R̄α) = b0 +b1[1− exp(−b2Nα)] . (25)

The values of b0,b1, and b2, as well as the correlation coefficients, are given in Table 1.
For small Nα (that is, Nα 
 b−1

2 , so the concrete limit value depends on the sequence), this
can be approximated by the straight line − ln(1− R̄α) 	 b0 + b1b2Nα , which is tantamount
to an exponential increasing of R̄α . In this regime, again the photonic crystal is unbeatable.
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Fig. 6. Logarithm (with changed sign) of the 1− R̄α [R̄α is the wavelength- and angle-
averaged reflectance (20)] for the optimal thicknesses and the same generations of different
generalized Fibonacci sequences as in Fig. 3, as a function of the number of layers.
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Fig. 7. Reflectance Rα (θ ,λ ) for the periodic (left panel, 218 layers) and the nickel-
mean (right panel, 217 layers) sequences, as a function of the wavelength λ (in μm)
and the incidence angle θ (in degrees). We have used the optimal thicknesses (in μm)
(dL = 0.1391,dH = 0.0568) for the periodic and (dL = 0.0446,dH = 0.0604) for the nickel
sequences.

However, in the opposite limit of large Nα (Nα � b−1
2 ), we have − ln(1− R̄α) 	 b0 + b1 and

R̄α saturates to a constant value, regardless of the number of layers. Now, the nickel family
is by far the best choice, an unexpected result from all accounts. Indeed, it is the worst in the
narrowband limit: another demonstration of how inescrutable are the ways of interference. In
the transition between these two circumstances (which extends from around 30 to 100 layers),
the silver mean offers the best achievements.

In Fig. 7 we show Rα(θ ,λ ) as a function of the wavelength and the incidence angle for the
same arrangements as in Fig. 4. The filled contour at the bottom plane indicates the range of λ
and θ for which Rα(θ ,λ ) is greater than 0.99. The periodic system exhibits a flat and smooth
plateau of unit reflectance that quickly falls down with deep oscillations. On the contrary, for
the nickel system the plateau is not so clean, due to the presence of wrinkles, but it is more
outspread. This compromise is what makes the nickel sequence superior for broadband ODR.

0 30 60 90
0.7

0.8

0.9

1

0.5 0.6 0.7 0.8
0.6

0.7

0.8

0.9

1

0.55 0.56 0.57 0.58 0.59 0.60
0.94

0.95

0.96

0.97

0.98

0.99

1

Periodic

Nickel

Periodic

Nickel

Fig. 8. Wavelength-averaged reflectance Rα (θ) versus the angle of incidence (left panel)
and angle-averaged reflectance Rα (λ ) versus the wavelength (right panel), for the same
examples as in Fig. 7. Black continuous line for the periodic system and purple broken line
for the nickel sequence. For clarity, we have included an inset of the region where Rα (λ )
is greater for the periodic structure.
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We can also look at this issue from an alternative viewpoint. Let us consider the functions

Rα(θ) =
1

Δλ

∫ λmax

λmin

Rα(θ ,λ )dλ , Rα(λ ) =
2
π

∫ π/2

0
Rα(θ ,λ ) dθ , (26)

which correspond to partial averages over wavelength and angles, respectively, of the re-
flectance Rα(θ ,λ ). These quantities are plotted in Fig. 8 for the same samples as in Fig. 7.
Obviously, the area under these curves is precisely R̄α . The function Rα(θ) is always worse
for the periodic system, mainly because the deep and oscillating valleys noticeable in Fig. 7
make a poor contribution. On the other hand, Rα(λ ) is unity for the periodic system in a nar-
row range (from 0.56 μm to 0.59 μm), but falls quickly. For the nickel sequence, the wings of
this curve are broader, giving then a bigger value of the integral.

This discussion indicates that approximate ODR may be attained either by getting Rα(λ )
somewhat close to unity across the entire range Δλ or getting Rα(λ ) almost unity somewhere
in that range, and significantly different from unity elsewhere (and then the setup acts as an
efficient passband filter). Therefore, despite the fact that R̄α is a practically valid metric, one
needs to complement it with additional information. A good way of doing that is through the
notion of omnidirectional bandwidth, which we adapt from the case of perfect ODR (where
the bandgaps are well defined): if we denote by λ+ and λ− the longer- and shorter-wavelength
edges for which Rα(λ ) drops to 0.707 (this is just a drop of 3 dB relative to the unity), it seems
sensible to define [75]

B =
λ+−λ−

1
2 (λ++λ−)

. (27)

This fractional ODR bandwidth is B = 0.368 for the periodic and B = 0.461 for the nickel mean
in Fig. 8.

Another related point is the selection of the interval Δλ entering the definition of R̄α . It is
apparent from Fig. 8 that, for a different Δλ , one may reasonably expect significant differences,
especially if Δλ matches the bandgap of a particular sample. In fact, the bandgap of a periodic
structure is simply narrower (and consequently, of better quality [76, 77]) than the pseudo-
bandgap of generalized Fibonacci structures, and this causes the broadband ODR performance
studied here. We have checked that with other choices of Δλ the ranking in Fig. 6 changes.
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Fig. 9. Contour plots of R̄α = 0.90 in the broadband case, for the same arrangements as in
Fig. 5.
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Finally, to parallel as much as possible the treatment for narrowband ODR, in Fig. 9 we
sketch the isocontours of R̄α = 0.90 for the same systems as in Fig. 5. To unify the presenta-
tion, we use the normalized thicknesses nL(λ̄ )dL/λ̄ and nH(λ̄ )dH/λ̄ , where λ̄ is the average
wavelength, that coincides with 0.65 μm. Surprisingly enough, the periodic system performs so
poorly that it does not appear. The ODR regions are now more irregular than in the narrowband
limit.

6. Concluding remarks

To summarize, we have exploited the notion of wavelength- and angle-averaged reflectance to
explore in a systematic way the performance of generalized Fibonacci sequences as ODRs. Our
approach is general and can be applied to other materials and other spectral ranges. What we
have discovered is that, quite unexpectedly, these sequences can perform much better than the
photonic crystals, while providing more versatility. We think that this constitutes a unique fact
that might open avenues for quasicrystals.
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