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Abstract. We review our recent study of the pion mass dependence qb thied o resonances,
generated from one-looBU(2) Chiral Perturbation Theory (ChPT) with the Inverse Amplitu
Method (IAM). In order to properly account for the Adler zesgion, we also review the recently
obtained modified version of the IAM; which is based on aneiyt elastic unitarity and ChPT at
low energies, thus yielding the correct pion mass deperedefihe resonance pole positions up to
next—to—leading order in ChPT. As main results we find thafathirt coupling constant is almost
my independent and tha&ll, shows a smootim;; dependence while that of the shows a strong
non-analyticity. These findings are important for studiethe meson spectrum on the lattice.
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INTRODUCTION

Light hadron spectroscopy lies beyond the realm of pertiwb&@CD. Although lat-
tice QCD provides, in principle, a rigorous way to extrachnperturbative quanti-
ties, present calculations use relatively high quark nsssdeast for studies of scalar
mesons, i. e.| [1, 2]. Thus, appropriate extrapolation fdam are called for. Chiral Per-
turbation Theory (ChPT) [3] provides such extrapolatiaisce it is built as an expan-
sion in momenta and masses, generic@ly/4rf;)?, of a Lagrangian involving the
Goldstone Bosons of the QCD chiral symmetry breaking (pioc@mpatible with all
QCD symmetries. ChPT is renormalized order by order by dasgioop divergences
in the parameters of higher order counterterms (low eneogpgtants - LECs), which
are the coefficients of the energy and mass expansiaiesychave no quark mass de-
pendenceTheir values depend on the QCD dynamics, and have to bentietsd from
experiment. In SU(2)-ChPTtrt scattering only four LECs appear, denoted

The ChPT expansion providessgstematic and model independelascription of
how the observables depend on QCD parameters, like the quaskes, and this can be
implemented systematically up to the desired order in thRTCéXpansion.

We review here our recent derivation of a modified versiorheflAM [4]; based on
dispersion theory, unitarity and ChPT to next—to—leadirtgo(NLO), which we use to
predict the quark mass dependence ofdrendp mesons/[5].

We focus only on the and thep, so it is enough to work with the lightest quarnksl
in the isospin limit with a mase = (my, + my)/2. Sincemy is given bymz ~ m+ ...
[3], studying themdependence is equivalent to study thedependence.
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UNITARIZATION AND DISPERSION THEORY

Theo andp resonances appear as poles in the second Riemann sheegiodjhe (0, 0)
and(1,1) partial waves of isospih and angular momentuih respectively. For these
partial waves, elastic unitarity implies, for physicalwes ofs:

Imt(s) = a(9)t(s)>= Im (t(s) ™) = —a(s), with og(s) =2p/vs, (1)

wheres is the Mandelstamm variable andis the center of mass momentum. Conse-
quently, the imaginary part of the inverse amplitude is kn@wactly. ChPT amplitudes,
being an expansidn=t +t4 -+ - - - with t, = O(p), satisfy Eq.[(lL) just perturbatively:

Imta(s) = o2 = IMmtu(s)/ta(s)2 = 0(s), 2)

and cannot generate poles. Therefore the resonance regsobdyond the reach of
standard ChPT. However, it can be reached by combining ChiTdrgpersion theory
either for the amplitude [6] or the inverse amplitude thriotige I1AM [7,/8,/9].

The elastic IAM [4] uses the ChPT series and elastic unjtésievaluate a dispersion
relation for the inverse amplitude. The analytic structoifrd /t consists on a right cut
from threshold too, a left cut from—co to s= 0, and possible poles coming from zeros
of t. For scalar waveg, vanishes at the so called Adler zema, that lies on the real
axis below threshold, thus within the ChPT region of apliity. Its position can be
obtained from the ChPT series, i.8a,= S+ S + - - -, Wheret, vanishes as, to +t4 at
S+, etc.

We write then a once subtracted dispersion relation forrkerse amplitude, where
we have chosen the subtraction point to be the Adler zero:

1 s—sA/ Im21/t(s)
— ="/ df +LC(1/t) +PC(1/t), 3
(5~ 7 kTEonE-9 (1/1) (1/1) 3)
where “LC” stands for a similar integral over the left cut atRIC” stands for the
contribution of the pole at the Adler zero. Sinieis real on the real axis and has
the same analytic structure ga/e can similarly write

W) S-% [ ImtyE)/t(s)?
L(92 - 7 S5y C

where we have now subtracted gt which is the LO approximation to the Adler
zero, andPC stands for the contribution of the pole gt We can now use unitarity,
Egs. (1) and[(2), to find that the imaginary parts on the rightaf both dispersion
relations areexactly opposite to each otheBince the LC integral is weighted at low
energies, we can use ChPT to approxintaél/t) ~ —LC(t4/t3). The pole contribution
PC(1/t) can also be evaluated with ChPT since it involves derivatofeé evaluated at
the Adler zero, where ChPT is perfectly justified. Finally approximate with ChPT
(s—sa)(S —sa) ~ (s— )/(S — ). Altogether, we find a modified IAM (MIAM)
formula:

m 5 m S—3a)(5—9) [t5(S2)—t4(S2
¢ IAM:tz—t4fAm'AM’ ATIAM _ ¢, (o) (S2—sn)(s sz[sj( )—t(=)] (5)

(ta/t3) + PC(ta/15), (4)
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FIGURE 1. Left: Movement of theo (dashed lines) ang (dotted lines) poles for increasing;
(direction indicated by the arrows) on the second sheetfillée (open) boxes denote the pole positions

for the o (p) at pion massesn; = 1, 2, and 3x m'"S respectively. Fom, = 3m™S three poles
accumulate in the plot very near thet threshold. Note that all poles are always far from the Adler
zero (circles) Right: The grey band shows the;; dependence gb pole mass from the IAM versus
recent lattice results from/[1]. The dashed line is the IAguUlefor N; = 10.

The standard IAM is recovered fé&"'AM = 0, which holds exactly for all partial waves
except the scalar ones. In the original IAM derivation [7A8]AM was neglected, since
it formally yields a NNLO contribution and is numerically yesmall, except near the
Adler zero, where it diverges. However, A"AM is neglected, the IAM Adler zero
occurs atp, correct only to LO, itis a double zero instead of a simple ane a spurious
pole of the amplitude appears close to the Adler zero. Alheke caveats are removed
with the mIAM, Eq. [3). The differences in the physical andaeance region between
the IAM and the mIAM are less than 1%. However, as we will see ldrgem;; the
o pole splits in two virtual poles below threshold, one of theraving towards zero
and approaching the Adler zero region, where the 1AM failsug, we will use for our
calculations the mlIAM, although it is only relevant for theemioned second pole,
and only when it is very close to the Adler zero.

RESULTS

By changingm;; in the amplitudes we see how the poles generated with the 1AM
evolve. We will use the LECs values 1D = 0.8+ 3.8 and 161, = 6.2+ 5.7 from [3]

and fit the mIAM to data up to the resonance region to findl1& —3.7+ 0.2 and
10°5, = 5.0+ 0.4. These LECs are evaluatediat= 770 MeV.

The values oin; considered should fall within the ChPT range of applicap#éind
allow for some elastigrrr regime belowKK threshold. Both criteria are satisfied if
my; < 500 MeV, sinceSU(3) ChPT still works with such kaon masses, and because
for m; ~ 500 MeV, the kaon mass become$00, leaving 200 MeV of elastic region.

Fig.[ (left) shows the evolution of the and p pole positions asn;; is increased.

In order to see the pole movements relative to the two pioestiwld, which is also
increasing, all quantities are given in unitsrof, so the threshold is fixed afs = 2.



Both poles moves closer to threshold and they approach &hexis. Thep poles reach
the real axis as the same time that they cross threshold. Qhero jumps into the first
sheet and stays below threshold in the real axis as a boute]j gfaile its conjugate
partner remains on the second sheet practically at the aeng position as the one in
the first. In contrast, the poles go below threshold with a finite imaginary part before
they meet in the real axis, still on the second sheet, beapnintual states. Asn; is
increased further, one of the poles moves toward thresmal{Lenps through the branch
point to the first sheet and stays in the real axis below tluldskery close to it asn;
keeps growing. The other pole moves down in energies further from threshold and
remains on the second sheet. This analytic structure, withvery asymmetric poles in
different sheets for a scalar wave, could be a signal of a pr@mbh molecular component
[10,/11]. Similar pole movements have been also found wigjuiark models. [12].

Note that ChPT has ben used to evaluate the subtractionacaastt the Adler zero
and the low energy part of LGlways far from the resonance poJes/en when they
move below threshold, as shwon in Fig. 1 (left), being theai&&hPT perfectly justified.

In Fig.[2 (left) we show then; dependence o1, and M, (defined from the pole
position, /Spole = M — il /2), normalized to their physical values. The bands cover the
LECs uncertainties. We see that both masses grow mthbut M, grows faster than
M,. Below m; ~ 330 MeV we only show one line because the two conjugafmles
have the same mass. Above 330 MeV, these two poles lie on #hexe with two
different masses. The heavier pole goes towards threshdldrmundm;; ~ 465 moves
into the first sheet. Note also that timg dependence ¥l is much softer than suggested
in [13], shown as the dotted line, which in addition does matvg the two virtual poles.

In the right panel of Fig.12 we show thme,; dependence df, andl'; normalized to
their physical values, where we see that both widths beconadlexr. We compare this
decrease with the expected reduction from phase space esstireances approach the
it threshold. We find that, follows very well this expected behavior, which implies
that thep it coupling is almosin, independent. In contraBt; shows a different behav-
ior from the phase space reduction expectation. This stiggegsongm;; dependence of
the o coupling to two pions, necessarily present for moleculatest[11, 14].

Fig. [ (right) is a comparison of our results fbt, with some lattice results [1],
which deserves several words of caution. ®dy is the “pole mass”, which is deep
in the complex plane, and, due to the momentum discretizatiduced by the finite
lattice volume, the minimum energy with which pions are progt is larger than the
resultingM,, so the lattice rho has no width. We can mimic in our formal&marrower
p by increasing the number of colofs; [15]. We also show the result for the rho mass
for N; = 10. We see that making the artificially narrower yields a better agreement
with lattice data. With these caveats in mind our resultsiargualitative agreement
with those of the lattice. Following [16] one may writd, = MB 4 ¢, +0(m3), where
the ¢ parameters are expected to be of order oneMpd- 0.65— 0.80 GeV, which
is confirmed by a fit to lattice data [16]. We can fit our resultsl apredictMg =

0.735+0.0017 MeV anct; = 0.90+0.17 GeV 1. Although the pion mass dependence
of our calculation is steeper than that of the lattice, tHeesmobtained are still consistent
with the expectations mentioned above. Let us remind thatrthdependence in our
approach is correct only up to NLO in ChPT.
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FIGURE 2. mgdependence of resonance masses (left) and widths (riginjtsof the physical values.
In both panels the dark (light) band shows the results forath{p). The width of the bands reflects the
uncertainties induced from the uncertainties in the LEQ@® dotted line shows the mass dependence

estimated in Ref.[13]. The dashed (continuous) line shéves; dependence of the (p) width from
the change of phase space only, assuming a constant cooptimgresonance tarr.
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