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Abstract. We review our recent study of the pion mass dependence of theρ andσ resonances,
generated from one-loopSU(2) Chiral Perturbation Theory (ChPT) with the Inverse Amplitude
Method (IAM). In order to properly account for the Adler zeroregion, we also review the recently
obtained modified version of the IAM; which is based on analyticity, elastic unitarity and ChPT at
low energies, thus yielding the correct pion mass dependence of the resonance pole positions up to
next–to–leading order in ChPT. As main results we find that the ρππ coupling constant is almost
mπ independent and thatMρ shows a smoothmπ dependence while that of theσ shows a strong
non-analyticity. These findings are important for studies of the meson spectrum on the lattice.
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INTRODUCTION

Light hadron spectroscopy lies beyond the realm of perturbative QCD. Although lat-
tice QCD provides, in principle, a rigorous way to extract non–perturbative quanti-
ties, present calculations use relatively high quark masses, at least for studies of scalar
mesons, i. e., [1, 2]. Thus, appropriate extrapolation formulas are called for. Chiral Per-
turbation Theory (ChPT) [3] provides such extrapolations,since it is built as an expan-
sion in momenta and masses, genericallyO(p/4π fπ)2, of a Lagrangian involving the
Goldstone Bosons of the QCD chiral symmetry breaking (pions), compatible with all
QCD symmetries. ChPT is renormalized order by order by absorbing loop divergences
in the parameters of higher order counterterms (low energy constants - LECs), which
are the coefficients of the energy and mass expansion, sothey have no quark mass de-
pendence. Their values depend on the QCD dynamics, and have to be determined from
experiment. In SU(2)-ChPTππ scattering only four LECs appear, denotedl i .

The ChPT expansion provides asystematic and model independentdescription of
how the observables depend on QCD parameters, like the quarkmasses, and this can be
implemented systematically up to the desired order in the ChPT expansion.

We review here our recent derivation of a modified version of the IAM [4]; based on
dispersion theory, unitarity and ChPT to next–to–leading order (NLO), which we use to
predict the quark mass dependence of theσ andρ mesons [5].

We focus only on theσ and theρ , so it is enough to work with the lightest quarksu,d
in the isospin limit with a mass ˆm= (mu + md)/2. Sincemπ is given bym2

π ∼ m̂+ ...
[3], studying them̂ dependence is equivalent to study themπ dependence.
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UNITARIZATION AND DISPERSION THEORY

Theσ andρ resonances appear as poles in the second Riemann sheet of the(I ,J)= (0,0)
and(1,1) partial waves of isospinI and angular momentumJ respectively. For these
partial waves, elastic unitarity implies, for physical values ofs:

Im t(s) = σ(s)|t(s)|2 ⇒ Im
(

t(s)−1) = −σ(s), with σ(s) = 2p/
√

s, (1)

wheres is the Mandelstamm variable andp is the center of mass momentum. Conse-
quently, the imaginary part of the inverse amplitude is known exactly. ChPT amplitudes,
being an expansiont = t2+ t4+ · · · with tk = O(pk), satisfy Eq. (1) just perturbatively:

Im t4(s) = σ(s)|t2(s)|2, ⇒ Im t4(s)/t2(s)
2 = σ(s), (2)

and cannot generate poles. Therefore the resonance region lies beyond the reach of
standard ChPT. However, it can be reached by combining ChPT with dispersion theory
either for the amplitude [6] or the inverse amplitude through the IAM [7, 8, 9].

The elastic IAM [4] uses the ChPT series and elastic unitarity to evaluate a dispersion
relation for the inverse amplitude. The analytic structureof 1/t consists on a right cut
from threshold to∞, a left cut from−∞ to s= 0, and possible poles coming from zeros
of t. For scalar waves,t vanishes at the so called Adler zero,sA, that lies on the real
axis below threshold, thus within the ChPT region of applicability. Its position can be
obtained from the ChPT series, i.e.,sA = s2 +s4 + · · ·, wheret2 vanishes ats2, t2 + t4 at
s2+s4, etc.

We write then a once subtracted dispersion relation for the inverse amplitude, where
we have chosen the subtraction point to be the Adler zero:

1
t(s)

=
s−sA

π

∫

RC
ds′

Im1/t(s′)
(s′−sA)(s′−s)

+LC(1/t)+PC(1/t), (3)

where “LC” stands for a similar integral over the left cut and“PC” stands for the
contribution of the pole at the Adler zero. Sincet2 is real on the real axis andt4 has
the same analytic structure ast,we can similarly write

t4(s)
t2(s)2 =

s−s2

π

∫

RC
ds′

Im t4(s′)/t2(s′)2

(s′−s2)(s′−s)
+LC(t4/t2

2)+PC(t4/t2
2), (4)

where we have now subtracted ats2, which is the LO approximation to the Adler
zero, andPC stands for the contribution of the pole ats2. We can now use unitarity,
Eqs. (1) and (2), to find that the imaginary parts on the right cut of both dispersion
relations areexactly opposite to each other. Since the LC integral is weighted at low
energies, we can use ChPT to approximateLC(1/t)≃−LC(t4/t2

2). The pole contribution
PC(1/t) can also be evaluated with ChPT since it involves derivatives of t evaluated at
the Adler zero, where ChPT is perfectly justified. Finally, we approximate with ChPT
(s− sA)(s′ − sA) ≃ (s− s2)/(s′ − s2). Altogether, we find a modified IAM (mIAM)
formula:

tmIAM =
t2
2

t2− t4+AmIAM , AmIAM = t4(s2)−
(s2−sA)(s−s2) [t ′2(s2)−t ′4(s2)]

s−sA
. (5)
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FIGURE 1. Left: Movement of theσ (dashed lines) andρ (dotted lines) poles for increasingmπ
(direction indicated by the arrows) on the second sheet. Thefilled (open) boxes denote the pole positions
for the σ (ρ) at pion massesmπ = 1, 2, and 3× mphys

π , respectively. Formπ = 3mphys
π three poles

accumulate in the plot very near theππ threshold. Note that all poles are always far from the Adler
zero (circles).Right: The grey band shows themπ dependence ofρ pole mass from the IAM versus
recent lattice results from [1]. The dashed line is the IAM result forNc = 10.

The standard IAM is recovered forAmIAM = 0, which holds exactly for all partial waves
except the scalar ones. In the original IAM derivation [7, 8]AmIAM was neglected, since
it formally yields a NNLO contribution and is numerically very small, except near the
Adler zero, where it diverges. However, ifAmIAM is neglected, the IAM Adler zero
occurs ats2, correct only to LO, it is a double zero instead of a simple one, and a spurious
pole of the amplitude appears close to the Adler zero. All of these caveats are removed
with the mIAM, Eq. (5). The differences in the physical and resonance region between
the IAM and the mIAM are less than 1%. However, as we will see, for largemπ the
σ pole splits in two virtual poles below threshold, one of themmoving towards zero
and approaching the Adler zero region, where the IAM fails. Thus, we will use for our
calculations the mIAM, although it is only relevant for the mentioned secondσ pole,
and only when it is very close to the Adler zero.

RESULTS

By changingmπ in the amplitudes we see how the poles generated with the IAM
evolve. We will use the LECs values 103l r

3 = 0.8±3.8 and 103l r
4 = 6.2±5.7 from [3]

and fit the mIAM to data up to the resonance region to find 103l r
1 = −3.7± 0.2 and

103l r
2 = 5.0±0.4. These LECs are evaluated atµ = 770 MeV.

The values ofmπ considered should fall within the ChPT range of applicability and
allow for some elasticππ regime belowKK̄ threshold. Both criteria are satisfied if
mπ ≤ 500 MeV, sinceSU(3) ChPT still works with such kaon masses, and because
for mπ ≃ 500 MeV, the kaon mass becomes≃ 600, leaving 200 MeV of elastic region.

Fig. 1 (left) shows the evolution of theσ andρ pole positions asmπ is increased.
In order to see the pole movements relative to the two pion threshold, which is also
increasing, all quantities are given in units ofmπ , so the threshold is fixed at

√
s= 2.



Both poles moves closer to threshold and they approach the real axis. Theρ poles reach
the real axis as the same time that they cross threshold. One of them jumps into the first
sheet and stays below threshold in the real axis as a bound state, while its conjugate
partner remains on the second sheet practically at the very same position as the one in
the first. In contrast, theσ poles go below threshold with a finite imaginary part before
they meet in the real axis, still on the second sheet, becoming virtual states. Asmπ is
increased further, one of the poles moves toward threshold and jumps through the branch
point to the first sheet and stays in the real axis below threshold, very close to it asmπ
keeps growing. The otherσ pole moves down in energies further from threshold and
remains on the second sheet. This analytic structure, with two very asymmetric poles in
different sheets for a scalar wave, could be a signal of a prominent molecular component
[10, 11]. Similar pole movements have been also found withinquark models [12].

Note that ChPT has ben used to evaluate the subtraction constants at the Adler zero
and the low energy part of LC,always far from the resonance poles, even when they
move below threshold, as shwon in Fig. 1 (left), being the useof ChPT perfectly justified.

In Fig. 2 (left) we show themπ dependence ofMρ andMσ (defined from the pole
position

√
spole = M− iΓ/2), normalized to their physical values. The bands cover the

LECs uncertainties. We see that both masses grow withmπ , but Mσ grows faster than
Mρ . Below mπ ≃ 330 MeV we only show one line because the two conjugateσ poles
have the same mass. Above 330 MeV, these two poles lie on the real axis with two
different masses. The heavier pole goes towards threshold and aroundmπ ≃ 465 moves
into the first sheet. Note also that themπ dependence ofMσ is much softer than suggested
in [13], shown as the dotted line, which in addition does not show the two virtual poles.

In the right panel of Fig. 2 we show themπ dependence ofΓρ andΓσ normalized to
their physical values, where we see that both widths become smaller. We compare this
decrease with the expected reduction from phase space as theresonances approach the
ππ threshold. We find thatΓρ follows very well this expected behavior, which implies
that theρππ coupling is almostmπ independent. In contrastΓσ shows a different behav-
ior from the phase space reduction expectation. This suggest a strongmπ dependence of
theσ coupling to two pions, necessarily present for molecular states [11, 14].

Fig. 1 (right) is a comparison of our results forMρ with some lattice results [1],
which deserves several words of caution. OurMρ is the “pole mass”, which is deep
in the complex plane, and, due to the momentum discretization induced by the finite
lattice volume, the minimum energy with which pions are produced is larger than the
resultingMρ , so the lattice rho has no width. We can mimic in our formalisma narrower
ρ by increasing the number of colors,Nc [15]. We also show the result for the rho mass
for Nc = 10. We see that making theρ artificially narrower yields a better agreement
with lattice data. With these caveats in mind our results arein qualitative agreement
with those of the lattice. Following [16] one may writeMρ = M0

ρ +c1 +O(m3
π), where

the ci parameters are expected to be of order one andMρ ∼ 0.65− 0.80 GeV, which
is confirmed by a fit to lattice data [16]. We can fit our results and predictM0

ρ =

0.735±0.0017 MeV andc1 = 0.90±0.17GeV−1. Although the pion mass dependence
of our calculation is steeper than that of the lattice, the values obtained are still consistent
with the expectations mentioned above. Let us remind that the mπ dependence in our
approach is correct only up to NLO in ChPT.
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FIGURE 2. mπ dependence of resonance masses (left) and widths (right) inunits of the physical values.
In both panels the dark (light) band shows the results for theσ (ρ). The width of the bands reflects the
uncertainties induced from the uncertainties in the LECs. The dotted line shows theσ mass dependence
estimated in Ref. [13]. The dashed (continuous) line shows themπ dependence of theσ (ρ) width from
the change of phase space only, assuming a constant couplingof the resonance toππ .
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