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Abstract. The use of very expensive facilities in Modern Astronomy has demonstrated the importance of automatic modes
in the operation of large telescopes. As a consequence, several mathematical tools have been applied and developed to solve
the (NP − hard) scheduling optimization problem: from simple heuristics to the more complex genetic algorithms or neural
networks. In this work, the basic scheduling problem is translated into mathematical language and two main methods are used
to solve it: neighborhood search methods and genetic algorithms; both of them are analysed. It is shown that the algorithms
are sensitive to the scientific policy by means of the definition of the objective function (F) and also by the assignment of
scientific priorities to the projects. The definition of F is not trivial and requires a detailed discussion among the Astronomical
Community.
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1. Introduction

The use of very expensive facilities in Modern Astronomy has
demostrated the importance of automatic modes in the oper-
ation of large telescopes. As a consequence, several mathe-
matical tools have been applied and developed to solve the
(NP − hard)1 scheduling problem: from simple heuristics
to the more complex genetic algorithms or neural networks.
Interesting applications of new mathematical tools and artificial
intelligence to astronomical issues may be found, for instance,
on the JPL web page2 or in some conference proceedings as
e.g. Dasgupta & Michalewicz (1997).

Needless to say, when a Committee for Assignment of Time
(CAT) decides that a given project must be carried out, this
is indeed carried out, unless the observing conditions are so
critical that, for instance, an unexpected change in the weather

Send offprint requests to: A. I. Gómez de Castro,
e-mail: aig@mat.ucm.es

1 The scheduling problem has an inherent computational complex-
ity: the number of solutions grows exponentially with the number of
targets and there is no algorithm that can avoid the explicit or im-
plicit enumeration of all the solutions. The computational complexity
is a rigorous mathematical discipline that shows how most of the op-
timization problems can be grouped into classes such that all of the
problems in the same class are of similar complexity; the NP − hard
problems are the most important class.

2 URL: www-aig.jpl.nasa.gov

conditions makes it unfeasible. However, this is not the gen-
eral case. Most of the observations enter into a general pool
of good projects that are scheduled in order to satisfy the as-
tronomical constraints (e.g. the observability of the target) and
the instrumental constraints (e.g. the availability of a given in-
strument or the calibration sequences). The total exposure time
available is well-known in space projects thus, optimization im-
plies solving a complex scheduling problem with hard and soft
constraints; its classical example is the programme based on
the use of neural networks that was developed for the Hubble
Space Telescope (Johnston & Adorf 1994). The programme is
by now widely used in the community and modified versions
have been applied to other telescopes, including ground based
telescopes, such as the VLT (Giannone et al. 2000). Recent de-
velopments in the application of automated modes to telescope
scheduling and operation (from small robotic telescopes to tele-
scopes larger than the Earth, such as the VSOP-VLBI Mission)
are summarized in the proceedings of some recent conferences
(see e.g. Ford 1998; Manset et al. 2000) to mention but a few
recent ones.

Unfortunately, the amount of time available for observa-
tions is not known a priori for ground-based telescopes, es-
pecially in the infrared. Therefore, CATs usually assign more
observing time than is actually available. In the traditional ob-
serving scheduling, this is translated into having a good or bad
observing run and, maybe, having to resubmit the scientific
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project for the next year. In this sense, the advent of automatic
scheduling implies a substantial improvement since whenever
the CAT has established that a project is good enough, au-
tomatic scheduling will try to carry it out until the very last
feasible date of the semester. Therefore, automatic scheduling
allows taking full advantage of the variations of the weather
conditions. Moreover, automatic scheduling also allows defin-
ing calibration sequences in a uniform manner and automatic
scheduling supports the creation of Uniform Data Archives for
ground telescopes. These type of Archives are available already
for several space missions (IRAS, IUE, ROSAT, HST, ISO...)
and they have proven to be a very useful tool for scientific re-
search; in fact, there is a growing community of astronomers
carrying out research based on Archive Data.

However, automatic scheduling requires the definition of
mathematical functions describing the optimal performance of
the facility. In principle, this definition looks rather simple: sci-
entific excellence (carrying out the maximum of scientific pro-
grams of the highest scientific quality) with the minimum cost
or in the most effective manner (minimizing instrument and
calibration overheads, taking profit of the changing weather
conditions). However, the mathematical definition of this func-
tion determines the result (the final scheduling of the obser-
vations). An additional issue that must be taken into account
is the classification of the scientific quality of the proposals
by the CAT; the translation of this classification into mathe-
matical language may also be relevant. Finally, the solution of
(NP − hard) scheduling problem depends on the algorithm
used since it is an heuristic proposed to find rapid solutions
close to the true optimal solution. In this work, these issues
are analysed placing special emphasis on the use of genetic al-
gorithms. Other metaheuristics can be applyed to solve these
scheduling problems as neural networks (see e.g. Martı́nez
et al. 2002).

In May 1998, a study panel was funded on “An Integrated
approach to Telescope Operations and Scheduling” under
the auspices of the European Commission, through the
Training and Mobility of Researchers Programme of the
Forth Framework Programme for Research and Technology
Development. The panel examined several aspects related to
the operation of large astronomical facilities in Europe. An
important point was the analysis of the best procedures for
telescope scheduling, in order to optimise the science output
from the telescope/observatory3. A final recommendation of
the Panel was to make the astronomical community aware of
some implications of the automatic scheduling. This article is
also intended to satisfy this recommendation.

The work is structured as follows. The scheduling prob-
lem is translated into mathematical language in Sect. 2. Two
main methods are used to solve it: neighborhood search meth-
ods and genetic algorithms. In Sect. 3, these methods are ap-
plied to some test samples and the main results (computer
performance, degree of optimization) are analysed. In Sect. 4,
the role of some possible scientific policies in the final sched-
uled observations is analysed. The main results are summarized
in Sect. 5. A detailed description of the algorithms and their

3 URL: http://www.iac.es/otri/panel/tpanel.htm

performance, as well as some technical aspects are described
in Appendices A to C at the end of the article.

2. The mathematical formulation of the basic
scheduling problem

The general scheduling problem consists of determining the
most efficient procedure for the observation of a set of astro-
nomical targets with a given telescope. Each target is qualified
with five main parameters: the astronomical coordinates (e.g.
right ascension and declination), the exposure time, the instru-
mental set-up and the scientific quality of the project. In addi-
tion, there is a temporal constraint (observability) that can be
defined either by the observatory (e.g. visibility of the target)
or by the observer (simultaneous observations with other ob-
servatories, monitorings etc.). Finally, it must be taken into ac-
count that the peer refereeing of scientific proposals involves
the qualification of projects (instead of targets) so, an addi-
tional constraint must be added to ensure that all the targets of a
given project are treated equally, independent of their temporal
constraints.

Scheduling can be broken down into long term and short
term components or “granularities”:

– The long-term component deals with the scheduling of the
observations over a time span of roughly a year. Observing
constraints (e.g. sun, moon, observer-specified or site-
specific constraints...) must be handled; as a consequence,
the scheduling problem becomes a sophisticated search of
the best feasible solution in the most (cost and time) effi-
cient manner. As the site-specific constraints are very im-
portant for the long-term component, the optimal solution
of the scheduling problem depends strongly on the astro-
nomical facility and, for this reason, it is difficult to de-
fine a common, abstract space where different algorithms
and techniques are tested and compared. In fact, there
are active research programs engaged in defining a com-
mon modeling language for planning and scheduling (see
e.g. URL: www.planning.systems.org/index.html).
An additional property of long term scheduling is that it
is not carried out in real time and therefore the use of very
time-efficient algorithms it is not as critical as in short-term
scheduling4.

– The short-term component deals with the scheduling of the
observations over 1–3 days. Some of the observing nights
scheduled by the long-term component may be lost because
of bad weather conditions, failures in the telescope or in-
strument, or because of the observation of targets of op-
portunity. This overflow of unexpected activities requires
reworking the scheduled queues but now with an over-
subscription factor that needs to be absorbed as soon as
possible because of the observability constraints (or the

4 As an example, we have developed a program for managing the
scheduling of the 10-m GTC telescope in La Palma (Spain) that, is
based on a greedy strategy so that the optimal observing dates for each
target are calculated and the observations are scheduled accordingly;
genetic algorithms are used to refine the scheduling for regions of the
sky that may be oversubscribed.



A. I. Gómez de Castro and J. Yáñez: Optimization of telescope scheduling 359

availability of a given instrument)5. In this context, the
problem can be simplified to the scheduling of a list of
observations with several possible instrumental configura-
tions and without observing constraints. Therefore, the
short-term component is basically independent of the
astronomical facility and provides a good observatory-
independent arena to create a mathematical model and per-
form experiments.

The main objective of this work is to analyze the sensitivity
of the scheduling process with respect to the scientific policy,
e.g. the definition of the objective function and the assignment
of scientific priorities. As a natural consequence, short-term
scheduling is the most appropriate for these tests.

To fulfil the objectives of this work, we have defined a ba-
sic scheduling problem to run our tests; following Drummond
et al. (1994), we shall consider N astronomical targets to be
scheduled. Each target j ∈ {1, 2, . . . ,N} is characterized by:

1. A priority q( j) ∈ Q = {1, 2, . . . , q}, which is assigned by
the CAT following an anticipated scientific return. This pa-
rameter reflects the scientific relevance of the observation;
the more important, the smaller q( j) is assigned. The set Q
is linearly ordered and can be supposed without any loss of
generality that the maximum allowed value is q = 4.

2. The right ascension α( j) and declination δ( j) of the target j
3. The time required to carry out the observation, τ( j), which

includes the time required for the instrumental set-up and
calibration, as well as the exposure time.

Given a horizon time T (or total available time), several
scheduling problems can be stated depending on the assump-
tions of the model and depending also on the criteria of the
telescope manager.

Let f (q) be a weighting factor associated with each priority
level q ∈ Q verifying,

f (r) ≥ f (s) ∀r, s ∈ Q with r ≤ s.

A basic scheduling problem is stated when the objective is to
maximize the total weight of the targets scheduled along the
horizon time T . The objective function to maximize is

F =
Ns∑

i=1

f (q(S (i)))

where S (i) is the ith target scheduled and Ns is the total number
of targets scheduled, with Ns ≤ N.

This basic scheduling problem can be stated as a permu-
tation problem in the sense that the optimal solution can be
characterized as a permutation (S (1), . . . , S (Ns)) of the targets.
Such a permutation identifies the order in which the targets
must be consecutively performed, i.e. target S (i+ 1) follows to
target S (i). Consequently, the decision variable will only con-
sider the order in which the targets are observed.

5 Also the design of the telescope may be optimized, including
back-up instruments that are not very demanding of the weather con-
ditions. Returning to the example of the 10-m GTC, the prime in-
strument may be an infrared spectrograph and an optical spectrograph
may be used as a back-up instrument. As a result, it should be feasible
to re-schedule the observations even in real-time.

This problem is classified as an NP − hard problem, see
Garey & Johnson (1979). The computation time grows expo-
nentially with the parameter N and only approximate algo-
rithms or heuristics can be used to solve moderate and large
size problems.

In this way, the decision variable will be the number of
scheduled targets Ns and their order, which will be character-
ized by the vector

S = (S (1), S (2), . . . , S (Ns))

with S (i) ∈ {1, . . . ,N} ∀i ∈ {1, . . . ,Ns}.
Any vector S will be a valid solution if it fulfills the time re-
quirements along the horizon time T .

Let [t1
i , t

2
i ] be the time interval assigned to target S (i) ∈

{1, . . . ,N} belonging to the valid solution. So that the arrange-
ment S characterizes a valid solution, the following conditions
must be fulfilled:

1. t2
i ≥ t1

i + τ(i) + tini(i)
∀i ∈ {1, . . . ,Ns} where tini(i) includes the telescope and in-
strument commands time required by the scheduled target
S (i) taking into account the previous target S (i − 1).

2. t1
1 ≥ 0

3. t1
i ≥ t2

i−1 ∀i ∈ {2, . . . ,Ns}
4. t2

Ns ≤ T.

Given a horizon time, T , and an arrangement of the N targets

σ = (σ(1), σ(2), . . . , σ(N))

a valid solution for the basic scheduling problem, characterized
by the Ns scheduled observations

S = (S (1), S (2), . . . , S (Ns))

with objective function F, is constructed with a greedy proce-
dure. Notice that N is the total number of targets and N s will
be the number of targets that can be scheduled in the horizon
time T .

As a permutation problem, every arrangement of observa-
tions σ contains a feasible scheduling S; the optimization prob-
lem looks for the optimum solution among them. Taking into
account that the solution of the optimization problem is associ-
ated with an optimum arrangement σ∗, the permutation prob-
lem is focused to the search for this vector σ∗. Other authors
do not constrain the problem to feasible solutions, allowing
temporal or other constraint violations, and eliminating them
afterwards so that the schedule is feasible; see, for example,
Johnston & Miller (1993).

3. Computational experiences

Two general heuristic procedures will be used: neighborhood
search methods (see Appendix A) and genetic algorithms (see
Appendix B). We have studied their generic performance,
basically, computer performance and degree of optimization
achieved. We have simplified the astronomical scheduling
problem to the scheduling of the observations of N targets
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Fig. 1. Scaling of the computer performance with the number of ob-
servations, N for the Lin-Kernighan and the genetic algorithms. The
C.P.U. time and the objective function F are shown in the left and
right panels respectively. The results are shown for two oversubscrip-
tion factors: 1.5 (dashed) and 3 (solid).

with four possible instrumental configurations and without ob-
serving constraints (Sun, Moon, telescope dead zones, Earth
shadow, etc.). The maneuvering time has been parameterized
by a constant angular velocity. The overheads caused by the
change of the instrumental configuration are assumed to be
short, in between 2 and 6 min depending on the instrument.
Notice that if the instrumental overheads were comparable to
or substantially longer than the typical exposure time, a queue-
scheduling by instruments will be required to optimize the us-
age of the telescope time but then, again, we should solve the
scheduling problem for each queue. The test have been run on
a Pentium III 450 MHz.

As a first step, we checked the dependence of the computer
performance on the number of targets, N, ramdomly distributed
in π2/2 rad2 in the sky. As shown in Fig. 1, as N increases, the
performance of genetic algorithms scales much better than the
performance of the Lin-Kernighan algorithm, a neighborhood
search method (see Appendix A).

However, the distribution of the astronomical targets in the
sky is not random at all (e.g. the stellar targets are concentrated
in the galactic plane). To take this fact into account, we have
run some experiments with a target list that has been extracted
from the original Infrared Space Observatory (ISO) targets list.
Coordinates, instruments and exposure times have been pre-
served; targets with exposure times longer than 4500 s have
been deleted from the list.

Two data files have been selected:

1. An exponential distribution test list. 140 observations have
been selected at random from the original ISO list. The his-
togram of the distribution of the observations by exposure
times is exponential-like (see Fig. 2).

Fig. 2. Histograms displaying the distribution function with the expo-
sure time of the input scheduling list for the tests: exponential (dashed)
and flat (solid) input list.

2. A flat distribution test list has been obtained after some
manipulation of the original ISO file (see Fig. 2); only
60 targets are included.

To complete the information in the lists, priorities q have
been assigned to each target. Two different policies have been
followed:

1. A grey policy that assigns q = 1, 2, 3, 4 to each quarter of
the targets in the list so, the probability of finding a target
in the list with q = 1 is the same than the probability of
finding a target with q = 4.

2. A standard policy that assigns q = 1, 2, 3 and 4 to the 10%,
60%, 20% and 10% of the targets so, most of the targets
have q = 2.

In both cases the values of q have been assigned randomly to
the targets in the lists. In summary, four input samples have
been generated to test the properties of the heuristics described
above: exponential or flat distributions with grey or standard
policies.

The programing of the neighborhood search methods (see
Appendix A) is direct and the computation is stopped after
convergence (when further iterations do not improve the ob-
jective function F). However, the programming of the genetic
algorithms required a finer tuning. The genetic algorithm (see
Appendix B) works well with the following parameters:

n = 50; itM = 10; pc = 0.6; pm = 0.1;

the computations stop when the maximum number of iterations
is achieved.

The main numerical results are summarized in Appendix C
for oversubscription factors 1.5 and 3 (see also Fig. 3). These
factors have been set up so the horizon time T is 2/3 and 1/3
of the total exposure time

∑N
i=1 τ(i) (see Sect. 2). In fact,

the real oversubscription factors are ∼2 and ∼4 due to the
time consumed by maneuvering the telescope and setting up
the instruments.
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Fig. 3. Summary of the computational experiences (see also
Tables C.1 and C.2). The results for three neighborhood search meth-
ods (simple, 2-opt and Lin-Kernighan) as well as for the genetic algo-
rithms (with cross-over operator C1) are plotted with thin, dot-dashed,
dashed and thick lines respectively. EG, ES, FG and FS stand for data
files with exponential (E) or flat (F) distributions and grey (G) or stan-
dard (S) policies.

3.1. Scientific optimization

The value of the objective function F and the number of targets
of the initial set observed depends on the following factors:

1. Policy: A “grey” policy, with the same fraction of observa-
tions in every category, produces better results than the so-
called “standard” policy. Also the percentile of first class
projects (q = 1) scheduled is larger.

2. Algorithm: The best results (higher values of F) are
achieved with the Lin-Kernighan algorithm whenever the
list of targets is pre-ordered by right ascension. Notice that
however, this is done at the cost of more CPU time.
Also two crossover operators have been tried in genetic al-
gorithms; algorithm C1 seems to produce slightly better re-
sults (see the technical appendix for more details).

3. Oversubscription factor: High oversubscriptions force the
selection of the best qualified projects.

In summary, the best results (the largest values of F and N s) are
generally achieved with a simple neighborhood search method
such as the Lin-Kernighan heuristic whenever the sample is
pre-ordered by right ascension. This is because the neighbor-
hood search methods are efficient to search for the local max-
imum of F closest to the initial solution; this, in turn, de-
pends strongly on the initialization procedure being very good
if the initialization is able to take advantage of an a priori good
knowledge of the problem. The genetic algorithms are clearly
superior if there is not a good knowledge of the main con-
straints in the scheduling of the observations. Notice that al-
though they do not take advantage of an a priori knowledge
of the system (the two cross-over operators that we have tried
for this purpose do not seem to have been very successful),

Table 1. Scientific policies.

f (q) q = 1 q = 2 q = 3 q = 4
High pass-band (H) 1 0.4 0.3 0.1
Step (S) 1 0.9 0.2 0.1
Low pass-band (L) 1 0.8 0.7 0.1

they are able to find very good solutions close to the maximum
and much more rapidly than the neighborhood search methods.

Finally, we want to remark that none of these heuristics
guarantee that all the best projects are carried out, in fact, a sig-
nificant fraction of observations with q > 1 are accommodated
in the final scheduled observations in order to maximize F.

4. The role of the scientific policy

We have run some further tests to get further insight into the
sensitivity of the algorithms to the scientific policy. Only the
best-behaved algorithms: Lin-Kernighan (with an initial sam-
ple ordered by right ascension) and genetic algorithms have
been applied to the tests. We have selected only those test sam-
ples with grey policies and we have defined three different sets
of weighting factors (see Table 1).

The three sets mimic three basic policies: step, low pass-
band and high pass-band that may (or may not) reinforce the
selection of high quality projects.

Only simulations with an horizon time T corresponding to
an oversubscription factor of 1.5 have been carried out. The
results are summarized in Table 2 where the total number of
scheduled projects with q = 1, q = 2, q = 3 and q = 4 is
given. The percent of projects with q = 1 . . .4 that is finally
scheduled, is illustrated in Fig 3. The main conclusions that
can be drawn are:

1. It is difficult to reinforce high quality observations by tun-
ing up the scientific policy.

2. The final results depend strongly on the characteristics of
the sample, especially on the availability of good observa-
tions (q = 1) with short exposure times.

3. The Lin-Kernighan algorithm responds in the most desir-
able manner to the scientific policies for this sample.

5. Summary and conclusions

We can summarize the results of this research in the following
points:

1. The neighborhood search algorithms and the genetic algo-
rithms deal with the optimization problem in different man-
ners and this shows in the results. For large size problems,
genetic algorithms are by far the best. However, for small
size problems, neighborhood search algorithms are efficient
to search for the local maximum of F closest to the ini-
tial solution; this property depends strongly on the good-
ness of the initialization procedure, e.g. the ability to take
adavantage of an a priori good knowledge of the problem.
The genetic algorithms are clearly superior if there is not a
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Table 2. The role of the scientific policies (oversubscription factor 1.5).

Input samplea Algorithmb Policyc F Ns Ns(1) Ns(2) Ns(3) Ns(4)

Exponential L-K (Ordered) H 51.6 80 35 31 14 0

S 68.6 77 35 35 6 0

L 66.6 75 35 35 4 0

Genetic – C1 H 46.7 67 35 27 2 3

S 60.0 67 35 27 2 3

L 64.1 75 35 23 15 2

Genetic – C2 H 47.2 72 35 27 2 8

S 61.7 68 35 29 2 2

L 60.1 73 34 30 2 7

Flat L-K (Ordered) H 20.4 32 15 7 8 2

S 24.2 26 15 10 1 0

L 24.6 31 14 5 9 3

Genetic – C1 H 19.0 28 14 8 6 0

S 21.9 26 14 8 3 1

L 24.8 30 12 8 9 1

Genetic – C2 H 20.3 33 14 8 10 1

S 23.0 27 15 8 4 0

L 23.4 30 6 12 11 1

a Input sample indicates the distribution function of the exposure times in the input list (exponential or flat)
b Algorithm indicates the heuristic used: the Lin-Kernigan algorithm (with targets pre-ordered by right ascension) or genetic algorithms with
cross-over operators C1 or C2 (see Appendix B).
c Identifies the scientific policy: high pass-band (H), step (S) and low pass-band (L).

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0 1 2 3 4 5
0

20

40

60

80

100

120

q

0

20

40

60

80

100

120

0

20

40

60

80

100

120

0 1 2 3 4 5
0

20

40

60

80

100

120

q

LIN-KER

GEN-C1

GEN-C2

EXPON. SAMPLE FLAT SAMPLE

Fig. 4. Effect of the scientific policies in the finally scheduled obser-
vations. The three policies used for the simulation are high passband,
step and low passband and the corresponding results are marked with
thick, thin and dotted lines respectively.

good knowledge of the main constraints in the scheduling
of the observations. Moreover, genetic algorithms are rapid
enough to allow a fast re-organization of the scheduling

queues that can be as rapid as the variations of the weather
conditions (few seconds).

2. To take advantage of the automatic scheduling, it is impor-
tant to have a small degree of oversubscription in the final
allocated time and a large number of observations requiring
short exposure times for instance, the SNAPSHOT propos-
als for the Hubble Space Telescope.

3. The algorithms are sensitive to the scientific policy by
means of the definition of the function F and also by the
assignment of priorities to the projects. The definition of F
is not trivial and requires a detailed discussion among the
Astronomical Community. Notice that much more complex
functions taking into account the number of targets per ob-
serving programme or the number of observing modes or
the volume of information contained in the data (e.g. spec-
tral range or the spatial size) can be thought of. Also the
way in which the CATs qualify the observing proposals is
relevant. Currently, CATs qualify the proposals in very dif-
ferent manners depending on the European Facility.

4. The only way to ensure that first class projects are carried
out is by introducing directly constraints in the scheduling
programme since the heuristics do not guarantee that they
are scheduled instead of more convenient projects.

As a final remark, we think that it would be very interesting to
make a comparative analysis between traditional observations
and automatic scheduling for the Large European Telescopes.
This study would allow one to test the scheduling algorithms
in a “real” framework and show clearly the advantages of au-
tomatic scheduling. This will also allow us to make a more
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realistic study where the role of some observing constraints
such as air mass and temporal links between observations could
be taken into account.

Acknowledgements. We thank Daniel Ponz for his critical reading
of the text. We also would like to thank the referees of this article:
Drs. M. Giuliano and G. Miller for their suggestions.

Appendix A: Neighborhood search methods
(NSMs)

The procedure to search for an optimal solution with these
methods is as follows. The first arrangement of observation σ 0

is constructed with an initialization procedure. This vectorσ 0 is
modified in successive iterations to improve the objective func-
tion. Depending on the improvement heuristic, several algo-
rithms can be designed. All of them are obtained by changing
two or more elements of the previous permutation.

Depending on the initialization procedure and on the defi-
nition of the set of neighbors, different algorithms are defined.

A.1. Initialization procedures

A.1.1. Random arrangement

For the basic scheduling problem, a simple initialization will
be the identity arrangement

σ0( j) = j ∀ j ∈ {1, . . . ,N}
In this arrangement, there is not any particular pre-ordination
of the N projects. This procedure is very simple and general
for any optimization problem, but it does not take advantage of
some well known constraints in astronomical problems.

A.1.2. Ordered arrangement

Any optimized scheduling will try to minimize the maneuver-
ing time and the overheads caused by the instrumental set-up
and the calibration sequences. Henceforth, the sorting of the
data by instruments and modes and also by astronomical coor-
dinates assists the optimization procedure in NSMs. It is well
known that neighborhood search algorithms explore the space
of solutions σ near the initial solution σ0 and has a strong ten-
dency to generate “optimal solutions” which are only the local
minimum (Rayward-Smith et al. 1996): these heuristics have
difficulties in exploring farther out the local minimum of the
surface F in the space of feasible solutions that grows expo-
nentially with N. Therefore, only if the initial solution σ0 is
close to the absolute minimum will the optimization be really
optimal.

To test the relevance of this sorting, the initial arrangement
has been pre-ordered by right ascension with the following
method:

1. Start with an arbitrary observation σ0(1).
2. Given the current partial arrangement σ0(1), σ0(2), . . . ,
σ0(k), the next observation σ0(k + 1) will be that whose
right ascension asc(σ0(k + 1)) is the closest to asc(σ0(k))
and that it is not already included in the arrangement.

3. Halt when the current arrangement contains all the
observations.

A.2. Improvement procedures

Given an arrangement, σ, a new permutation σ ′ is derived:

σ′ = (σ(1), . . . , σ( j1 − 1), σ( j1), σ( j1 + 1), . . . , (A.1)

σ( j2 − 1), σ( j2), σ( j2 + 1), . . . , σ(N))

If the objective function, F, is improved after this permuta-
tion, then σ is updated by σ′. Different algorithms have been
defined for the permutation. In this article we describe but a
few, namely, the simple improvement procedure, the 2-opt ex-
change improvement and the Lin-Kernighan algorithm. These
three algorithms have been used to solve a particular permuta-
tion problem: The Traveling Salesman Problem (TSP), see Ball
et al. (1995).

A.2.1. Simple improvement

The new permutationσ′ is derived changing the elementsσ( j1)
and σ( j2):

σ′ = (σ(1), . . . , σ( j1 − 1), σ( j2), σ( j1 + 1), . . . , (A.2)

σ( j2 − 1), σ( j1), σ( j2 + 1), . . . , σ(N)).

In this heuristic, the process continues until any couple j 1, j2 ∈
{1, . . . ,N} does not improve the actual permutation.

A.2.2. 2-opt exchange improvement

In the previous heuristic, two elements of the permutation
are interchanged, the other elements are in the same position.
In this heuristic, however, given two elements, the second is
placed after the first one, and all intermediate elements are de-
layed one position.

σ′ = (σ(1), . . . , σ( j1 − 1), σ( j1), σ( j2), σ( j1 + 1), . . . , (A.3)

σ( j2 − 1), σ( j2 + 1), . . . , σ(N)).

A.2.3. Lin-Kernighan algorithm

In this heuristic, some major changes are introduced in the per-
mutation σ′.

σ′ = (σ(1), . . . , σ( j1 − 1), σ( j2), σ( j2 − 1), . . . , (A.4)

σ( j1 + 1), σ( j1), σ( j2 + 1), . . . , σ(N)).

Appendix B: Genetic algorithms (GAs)

Some well-known meta-heuristics, such as simulated anneal-
ing, tabu search, genetic algorithms or neural networks have
been proposed to circumvent the local-optimum problem of the
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NSMs described above; see also Reeves (1993) for further de-
tails. In this paper the Genetic Algorithm (GA) approach will
be used to deal with the basic scheduling problem as stated in
Sect. 2.

The name genetic algorithm originates from the analogy
between the representation of a complex structure by means of
a vector of components and the genetic structure of a chromo-
some and its genes.

In selective breeding of plants or animals, offspring are
sought which have certain desirable characteristics that are de-
termined at the genetic level by the way the parent’s chromo-
somes combine. In a similar way, in seeking better solutions to
complex problems, we often combine pieces of existing solu-
tions. It is expected that following natural rules, a set of solu-
tions can be combined so that better ones are obtained.

The major difference with respect to other meta-heuristics
is that with GAs a set of solutions, the population, is handled
through the optimization process in such a way that along suc-
cessive generations (iterations) the population fitness will be
improved.

GAs were originally developed by Holland (1975) and they
proved to be very efficient for solving several combinatorial op-
timization problems. The natural rules of GAs (see Chelouah
& Siarry 2000) are selection of the best individuals of a pop-
ulation, crossover between two selected individuals to pro-
duce two new ones, the sons, which will replace their parents
and mutation, which arbitrarily changes some characteristics of
some individuals. Associated with these rules, three mathemat-
ical operators are defined:

Selection operator determines the individuals to be chosen
for mating.

Crossover operator determines the manner in which the sons
are generated from the parents.

Mutation operator alteres some the characteristics of some
(very few) individuals from the population.

B.1. Coding the basic scheduling problem

Taking into account that the basic scheduling problem is stated
as a permutation problem, the representation of any individual
of the population will be its vector of arranged targets σ.

Let n be the population size. This parameter is chosen based
on the trade-off between a small value, with brief computa-
tional time, and a big value, with a broad coverage of the so-
lution space. Empirical results from many authors suggest that
population sizes as small as 30 are adequate, see Reeves (1993).

Another parameter of the GAs is the maximum number of
iterations itM . This parameter can be adjusted from empirical
results.

At any iteration it ∈ {0, 1, . . . , itM}, the population is identi-
fied by (σit

1 , σ
it
2 , . . . , σ

it
n).

At the beginning, when it = 0, n random arrangements σ 0
k ,

with k ∈ {1, . . . , n}, are generated. It is the first population of
n individuals.

Each individual σit
k of the population at iteration it induces

(with a greedy procedure) a valid solution σ it
k with Nit

sk sched-
uled targets; its associated value is:

Fit
k =

Nit
sk∑

i=1

f
(
q
(
S it

k (i)
))
.

The overall population at iteration it is also valued with,

T Fit =

n∑

k=1

Fit
k .

As it is proved by the fundamental schema theorem, see Reeves
(1993), if it increases the expected total value, E(T F it) also in-
creases. Moreover, the optimal solution proposed by the algo-
rithm will be the best-valued individual at any iteration σ ∗ and
this solution is updated through the evolution of the population.

B.2. The GA operators

At iteration it ∈ {0, 1, . . . , itM−1}, the following operators must
be applied:

1. Selection
The quality of the populations is improved each generation
it by selecting only those individualsσ it

k , with k ∈ {1, . . . , n}
better adapted, i.e. with a higher value of F it

k , the objective
function.
A Monte Carlo method is used, the probability pk of being
selected for a given individual σ it

k is defined to be propor-
tional to its relative value with respect to the total value of
its generation:

pk =
Fit

k
T Fit ∀k ∈ {1, . . . , n}.

With this probability distribution (p1, . . . , pn), n random
numbers (i1, . . . , in), are generated from the set {1, . . . , n}.
Repetitions are allowed. In this way, n individuals of the
current population it are selected:

σit+1
k = σit

ik ∀k ∈ {1, . . . , n}.
After applying this operator, the overall population of n in-
dividuals is refreshed with (probably) the best repeated in-
dividuals and (also probably) without the worst individuals:
(
σit+1

1 , σ
it+1
2 , . . . , σ

it+1
n

)
.

2. Crossover
Given this refreshed population, the n individuals are clas-
sified by n

2 couples.
Given a randomly selected couple from the population (σ k,
σl), the two individuals will be crossed and replaced by
their offspring with a probability pc and with probability
(1 − pc) (σk, σl) will remain unchanged until the next iter-
ation. The crossover operator works in the following way:
(a) Compute the numbers Nsk and Nsl of scheduled groups

of σk and σl respectively. Let Ns = min{Nsk,Nsl}.
(b) Let u be an integer uniform random number in the set
{1, 2, . . . ,Ns}.
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Table C.1. Main results of the tests of the algorithms (oversubscription factor 1.5).

Input samplea Algorithmb CPU time F Ns %Ns(1) %Ns(2) %Ns(3) %Ns(4)
Exponential-Grey NSM(Simple)-Random 2.69 12.8 19 47 21 21 11

NSM(Simple)-Ordered 9.50 57.8 75 47 48 5 0
NSM(2-opt)-Random 6.32 18.6 27 48 22 22 8
NSM(2-opt)-Ordered 6.37 57.2 73 48 49 3 0
NSM(L-K)-Random 10.93 20.1 29 52 17 21 10
NSM(L-K)-Ordered 12.24 59.9 82 43 44 13 0
Genetic – C1 1.43 53.1 77 45 35 3 17
Genetic – C2 1.48 52.7 68 51 41 3 5

Exponential-Standard NSM(Simple)-Random 13.18 27.5 37 38 59 3 0
NSM(Simple)-Ordered 4.72 32.5 44 36 61 3 0
NSM(2-opt)-Random 10.98 30.4 46 35 43 15 7
NSM(2-opt)-Ordered 5.11 34.9 48 33 65 2 0
NSM(L-K)-Random 5.22 18.5 28 25 64 7 4
NSM(L-K)-Ordered 9.17 39.8 57 25 75 0 0
Genetic – C1 1.48 36.3 66 5 73 22 0
Genetic – C2 1.43 36.9 73 19 36 27 18

Flat-Grey NSM(Simple)-Random 0.88 12.2 17 47 29 24 0
NSM(Simple)-Ordered 0.72 21.0 25 60 40 0 0
NSM(2-opt)-Random 0.77 15.9 19 63 32 5 0
NSM(2-opt)-Ordered 1.04 21.3 28 53 29 18 0
NSM(L-K)-Random 0.60 12.5 19 42 32 10 16
NSM(L-K)-Ordered 1.71 22.4 33 43 27 30 0
Genetic – C1 0.55 21.3 31 45 26 26 3
Genetic – C2 0.87 20.4 25 60 32 8 0

Flat-Standard NSM(Simple)-Random 0.77 14.4 20 30 70 0 0
NSM(Simple)-Ordered 0.72 19.3 28 25 71 4 0
NSM(2-opt)-Random 1.38 15.3 25 20 60 16 4
NSM(2-opt)-Ordered 0.88 18.7 27 26 70 4 0
NSM(L-K)-Random 1.65 16.8 25 24 68 8 0
NSM(L-K)-Ordered 0.66 19.6 28 25 75 0 0
Genetic – C1 0.66 19.1 31 16 68 16 0
Genetic – C2 0.66 19.4 31 16 71 13 0

a Input sample indicates the distribution function of the exposure times in the input list (exponential or flat) and the way in which the quality q
has been assigned (either grey or standard policies).
b Algorithm indicates the type of heuristic used: NSMs (Simple, 2-opt, Lin-Kernigan) or genetic algorithms. It also indicates whether the initial
sample has been pre-ordered by right ascension or not for the NSMs algorithms and which of the two crossover operators have been used for
the genetic algorithms.

(c) The first u elements of first (second) offspring are
(σk(1), . . . , σk(u)) ((σl(1), . . . , σl(u))).

(d) The last N − u elements of first (second) offspring are
(σl(u+1), . . . , σl(N)) ((σk(u+1), . . . , σk(N))) avoiding
repetitions and maintaining the relative order ofσ k (σl).

For instance, let N = 9 be the number of projects approved
by the CAT and let σk and σl be two parents arrangements:

σk = (123 456789) Nsk = 5

σl = (739 146285) Nsl = 6.

If u = 3, then the two offspring are:

σ′k = (123 4685 79)

σ′l = (739 4568 12).

3. Mutation
With probability pm, each of the individuals of this new
population is selected so that two elements σ(k) and σ(k ′)
of it are permuted. The elements k and k ′ are integer uni-
form random numbers in the set {1, 2, . . . ,N}.

In summary, and with these three operators, the family of
genetic algorithms is characterized by the parameters vector
(n, itM, pc, pm).

For the scheduling problem analyzed in this article, the ge-
netic algorithm works well with the following parameters:

n = 50; itM = 10; pc = 0.6; pm = 0.1;

the computations stop when the maximum number of iterations
is achieved. Two crossover operator have been used:

1. Operator C1: it selects one point X randomly in the
{1, . . . ,N} observations. The first X − 1 observations of the
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Table C.2. Main results of the tests of the algorithms (oversubscription factor 3).

Input samplea Algorithma CPU time F Ns %Ns(1) %Ns(2) %Ns(3) %Ns(4)

Exponential-Grey NSM(Simple)-Random 10.05 17.5 19 84 11 5 0

NSM(Simple)-Ordered 6.04 38.8 42 81 19 0 0

NSM(2-opt)-Random 7.03 19.6 22 82 9 5 4

NSM(2-opt)-Ordered 4.12 38.2 41 83 17 0 0

NSM(L-K)-Random 12.36 18.9 25 56 24 16 4

NSM(L-K)-Ordered 4.61 39.8 43 81 19 0 0

Genetic – C1 1.15 39.4 47 60 40 0 0

Genetic – C2 1.37 37.8 41 80 20 0 0

Exponential-Standard NSM(Simple)-Random 9.45 12.8 19 26 63 11 0

NSM(Simple)-Ordered 4.18 21.7 26 61 35 4 0

NSM(2-opt)-Random 7.19 15.0 26 31 31 23 15

NSM(2-opt)-Ordered 7.03 21.7 30 53 17 30 0

NSM(L-K)-Random 6.42 12.9 20 35 40 15 10

NSM(L-K)-Ordered 5.60 23.2 30 43 57 0 0

Genetic – C1 1.21 19.4 38 18 40 2 18

Genetic – C2 1.32 21.7 43 35 7 28 30

Flat-Grey NSM(Simple)-Random 1.10 10.6 11 91 9 0 0

NSM(Simple)-Ordered 0.49 13.6 14 93 7 0 0

NSM(2-opt)-Random 0.71 7.1 11 37 36 18 9

NSM(2-opt)-Ordered 0.22 13.0 13 100 0 0 0

NSM(L-K)-Random 0.60 8.0 10 70 10 10 10

NSM(L-K)-Ordered 0.22 13.0 13 100 0 0 0

Genetic – C1 0.50 12.8 15 74 13 13 0

Genetic – C2 0.49 12.5 14 79 14 7 0

Flat-Standard NSM(Simple)-Random 0.83 10.2 13 46 54 0 0

NSM(Simple)-Ordered 0.22 10.6 13 54 46 0 0

NSM(2-opt)-Random 0.44 6.4 13 8 62 7 23

NSM(2-opt)-Ordered 0.44 10.3 13 54 38 8 0

NSM(L-K)-Random 0.87 8.6 15 13 60 27 0

NSM(L-K)-Ordered 0.93 11.7 20 30 25 45 0

Genetic – C1 0.49 11.8 15 47 53 0 0

Genetic – C2 0.49 10.4 14 36 64 0 0

a As in Table C.1.

first offspring are those of the first parent and the other ob-
servations are of the second parent. For this operator, the
point X has been chosen from the first Ns observations to
enforce strict changes in the offspring arrangements.

2. Operator C2: it selects two points X and Y randomly with
X < Y in the {1, . . . ,N} observations, taking the first X − 1
observations and the last N − Y + 1 observations of the first
parent and the other ones of the second parent. This pro-
cess must be corrected to avoid repeated observations and,
anyway, the relative order of the first or second parent is
preserved.

Appendix C: Numerical results of the simulations

The main results are summarized in Table C.1 for an oversub-
scription factor of 1.5 and Table C.2 for an oversubscription
factor of 3. The test sample is identified in the first column,

the algorithm and initialization in the second column, the CPU
time in the third and the objective function F in the forth. The
total number of observations carried out and the percentiles of
the observations with q = 1, 2, 3 and 4 are given in the fol-
lowing columns. Notice that real oversubscription factors are
∼2 and ∼4 due to the time consumed by maneuvering the tele-
scope and setting up the instruments.
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