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ON NON-FORMAL SIMPLY CONNECTED MANIFOLDS

MARISA FERNÁNDEZ AND VICENTE MUÑOZ

Abstract. We construct examples of non-formal simply connected and compact oriented

manifolds of any dimension bigger or equal to 7.

1. Introduction

An oriented compact manifold of dimension at most 2 is formal. On the other hand,

if the dimension is 3 or more, there are examples which are non-formal, e.g., nilmanifolds

which are not tori [4].

If we turn our attention to simply connected manifolds, we know that a simply connected

oriented compact manifold of dimension at most 6 is formal [6, 5, 3]. The natural question

already raised in [3] is whether there are examples of non-formal simply connected oriented

compact manifolds of dimension d ≥ 7.

Clearly, the question is reduced to the cases d = 7 and d = 8. For if we have a non-

formal simply connected manifold M of dimension d, then M × S2n is a non-formal simply

connected manifold of dimension d + 2n, for any n ≥ 1.

From now on let d = 7 or d = 8. By the results of [3], if a d–dimensional connected and

compact oriented manifold M is 3–formal then it is formal. Therefore, the non-formality

of M has to be detected in the 3–stage of its minimal model. Moreover if H1(M) = 0 then

M is automatically 2–formal, so the non-formality is due to the kernel of the cup product

map ∪ : H2(M) ⊗ H2(M) → H4(M). The easiest way to detect the non-formality is thus

to have a non-trivial Massey product of cohomology classes of degree 2.

The method of construction of d–dimensional simply connected manifolds that we will use

is the following: take a non-formal compact nilmanifold X of dimension d with a non-trivial

Massey product of cohomology classes of degree 1. Multiply these cohomology classes by
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some cohomology classes so that we get a non-trivial Massey product of cohomology classes

of degree 2. Then perform a suitable surgery of X to kill the fundamental group such that

the non-trivial Massey product survives. This will give the sought example.

In [1] Babenko and Taimanov have already given examples of non-formal simply con-

nected manifolds of any even dimension bigger or equal to 10. The relevant property of

their examples is that they are symplectic manifolds. They ask whether there exist exam-

ples of non-formal simply connected symplectic manifolds of dimension 8. Unfortunately,

our examples do not have a symplectic structure, at least in an obvious way.

2. The 8-dimensional example

Let H be the Heisenberg group, that is, the connected nilpotent Lie group of dimension

3 consisting of matrices of the form

a =





1 x z

0 1 y

0 0 1



 ,

where x, y, z ∈ R. Then a global system of coordinates x, y, z for H is given by x(a) = x,

y(a) = y, z(a) = z, and a standard calculation shows that a basis for the left invariant

1–forms on H consists of {dx, dy, dz−xdy}. Let Γ be the discrete subgroup of H consisting

of matrices whose entries are integer numbers. So the quotient space N = Γ\H is a compact

3–dimensional nilmanifold. Hence the forms dx, dy, dz − xdy descend to 1–forms α, β, γ

on N and

dα = dβ = 0, dγ = −α ∧ β.

The non-formality of N is detected by a non-zero triple Massey product

〈[α], [β], [α]〉 = [2α ∧ γ].

Now let us consider X = N × T
5, where T

5 = R
5/Z

5. The coordinates of R
5 will be

denoted x1, x2, x3, x4, x5. So {dxi|1 ≤ i ≤ 5} defines a basis {δi|1 ≤ i ≤ 5} for the 1–forms

on T
5. By multiplying the classes α and β by some of the δi, we get a non-zero triple Massey

product of cohomology classes of degree 2 for X,

〈[α ∧ δ1], [β ∧ δ2], [α ∧ δ3]〉 = [2 γ ∧ α ∧ δ1 ∧ δ2 ∧ δ3]. (1)

Our aim now is to kill the fundamental group of X by performing a suitable surgery

construction. Let C1 the image of {(x, 0, 0)|x ∈ R} ⊂ H in N = Γ\N and let C2 be the

image of {(0, y, ξ)|y ∈ R} in N , where ξ is a generic real number. Then C1, C2 ⊂ N are

disjoint embedded circles such that p(C1) = S
1 × {0}, p(C2) = {0} × S

1. The projection

p(x, y, z) = (x, y) describes N as a fiber bundle p : N → T
2 with fiber S

1. Actually, N is

the total space of the unit circle bundle of the line bundle of degree 1 over the 2–torus. The
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fundamental group of N is therefore

π1(N) ∼= Γ = 〈λ1, λ2, λ3|[λ1, λ2] = λ3, λ3 central〉, (2)

where λ3 corresponds to the fiber, λ1 and λ2 correspond to the homotopy classes λ1 = [C1]

and λ2 = [C2]. The fundamental group of X = N × T
5 is

π1(X) = π1(N) ⊕ Z
5. (3)

Consider the following submanifolds embedded in X:

T1 = C1 × S
1 × {0} × S

1 × {0} × S
1,

T2 = C2 × {0} × S
1 × {0} × S

1 × S
1,

which are 4-dimensional tori with trivial normal bundle. Consider now another 8-manifold

Y with an embedded 4-dimensional torus T with trivial normal bundle. Then we may

perform the fiber connected sum of X and Y identifying T1 and T , denoted X#T1=T Y ,

in the following way: take (open) tubular neighborhoods ν1 ⊂ X and ν ⊂ Y of T1 and

T respectively; then ∂ν1
∼= T

4 × S
3 and ∂ν ∼= T

4 × S
3; take an orientation reversing

diffeomorphism φ : ∂ν1

≃

→ ∂ν; the fiber connected sum is defined to be the (oriented)

manifold obtained by gluing X−ν1 and Y −ν along their boundaries by the diffeomorphism

φ. In general, the resulting manifold depends on the identification φ, but this will not be

relevant for our purposes.

Lemma 1. Suppose Y is simply connected. Then the fundamental group of X#T1=TY is

the quotient of π1(X) by the image of π1(T1).

Proof. Since the codimension of T1 is bigger or equal than 3, we have that π1(X − ν1) =

π1(X − T1) is isomorphic to π1(X). The Seifert-Van Kampen theorem establishes that

π1(X#T1=T Y ) is the amalgamated sum of π1(X − ν1) = π1(X) and π1(Y − ν) = π1(Y ) = 1

over the image of π1(∂ν1) = π1(T1 × S
3) = π1(T1), as required. �

We shall take for Y the sphere S
8. We embed a 4-dimensional torus T

4 in R
8. This

torus has a trivial normal bundle since its tangent bundle is trivial (being parallelizable)

and the tangent bundle of R
8 is also trivial. After compatifying R

8 by one point we get a

4-dimensional torus T ⊂ S
8 with trivial normal bundle.

In the same way, we may consider another copy of the 4-dimensional torus T ⊂ S
8 and

perform the fiber connected sum of X and S
8 identifying T2 and T . We may do both fiber

connected sums along T1 and T2 simultaneously, since T1 and T2 are disjoint. Call

M = X#T1=T S
8#T2=T S

8

the resulting manifold. By Lemma 1, π1(M) is the quotient of π1(X) by the images of

π1(T1) and π1(T2). This kills the Z
5 summand in (3) and it also kills λ1 and λ2 in (2).

Therefore π1(M) = 1, i.e., M is simply connected.
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3. Non-formality of the constructed manifold

Our goal is now to prove that M is non-formal. We shall do this by proving the non-

vanishing of a suitable triple Massey product. More specifically, let us prove that the Massey

product (1) survives to M . For this, let us describe geometrically the cohomology classes

[α ∧ δ1], [β ∧ δ2] and [α ∧ δ3]. Consider the following three codimension 2 submanifolds of

X:

B1 = p−1(S1 × {a1}) × {b1} × S
1 × S

1 × S
1 × S

1,

B2 = p−1({a2} × S
1) × S

1 × {b2} × S
1 × S

1 × S
1,

B3 = p−1(S1 × {a3}) × S
1 × S

1 × {b3} × S
1 × S

1,

where the ai and bi are generic points of S
1. It is easy to check that Bi ∩ Tj = ∅ for

all i and j. So Bi may be also considered as submanifolds of M . Let ηi be the 2–forms

representing the Poincaré dual to Bi in X. By [2], ηi are taken supported in a small tubular

neighborhood of Bi. Therefore the support of Bi lies inside X − T1 − T2, so we also have

naturally ηi ∈ Ω2(M). Note that in X we have clearly that [η1] = [α∧e1], [η2] = [β∧e2] and

[η3] = [α∧ e3], where ei are differential 1–forms on S
1 cohomologous to δi and supported in

a neighborhood of bi ∈ S
1. Thus [η1] = [α ∧ δ1], [η2] = [β ∧ δ2] and [η3] = [α ∧ δ3].

Lemma 2. The triple Massey product 〈[η1], [η2], [η3]〉 is well-defined on M and equals to

[2 γ ∧ α ∧ e1 ∧ e2 ∧ e3].

Proof. Clearly

(α ∧ e1) ∧ (β ∧ e2) = dγ ∧ e1 ∧ e2,

where the 3–form γ∧e1∧e2 is supported in a neighborhood of N×{b1}×{b2}×S
1×S

1×S
1,

which is disjoint from T1 and T2. Hence γ ∧ e1 ∧ e2 is well-defined as a form in M . Also

(β ∧ e2) ∧ (α ∧ e3) = −dγ ∧ e2 ∧ e3,

where −γ ∧ e2 ∧ e3 is also well-defined in M . So the triple Massey product

〈[η1], [η2], [η3]〉 = [2 γ ∧ α ∧ e1 ∧ e2 ∧ e3]

is well-defined in M . �

Finally let us see that this Massey product 〈[η1], [η2], [η3]〉 = [2 γ ∧ α ∧ e1 ∧ e2 ∧ e3] is

non-zero in
H5(M)

[α ∧ e1] ∪ H3(M) + H3(M) ∪ [α ∧ e3]
.

To see this, consider B4 = p−1({a4} × S
1) × S

1 × S
1 × S

1 × {b4} × {b5}, for generic points

a4, b4, b5 of S
1. Then the Poincaré dual of B4 is defined by a 3–form β′ ∧ e4 ∧ e5 supported

near B4, where β′ is Poincaré dual to p−1({a4}×S
1) and [β′] = [β], [e4] = [δ4] and [e5] = [δ5].



ON NON-FORMAL SIMPLY CONNECTED MANIFOLDS 5

Again this 3–form can be considered as a form in M . Now for any [ϕ], [ϕ′] ∈ H3(M) we

have

([2 γ ∧ α ∧ e1 ∧ e2 ∧ e3] + [α ∧ e1 ∧ ϕ] + [β ∧ e3 ∧ ϕ′]) · [β′ ∧ e4 ∧ e5] = −2,

since the first product gives 2; to compute the second product, we notice that the 5–form

α ∧ β′ ∧ e1 ∧ e4 ∧ e5 is exact in M because α ∧ β′ ∧ e1 ∧ e4 ∧ e5 = −dγ′ ∧ e1 ∧ e4 ∧ e5 in X,

with γ′ = γ + f α for some function f on N , and γ′ ∧ e1 ∧ e4 ∧ e5 is well-defined on M ; and

for the third product, α∧β′ ∧ e3 ∧ e4 ∧ e5 is also exact in M . Therefore we have proved the

following

Theorem 3. M is a compact oriented simply connected non-formal 8–manifold.

4. The 7-dimensional example

A compact oriented simply connected non-formal manifold M ′ of dimension 7 is obtained

in an analogous fashion to the construction of the 8–dimensional manifold M . We start

with X ′ = N × T
4 and consider the 3-dimensional tori

T ′

1 = C1 × S
1 × {0} × S

1 × {0},

T ′

2 = C2 × {0} × S
1 × {0} × S

1.

Define

M ′ = X ′#T ′

1
=T ′S

7#T ′

2
=T ′S

7

where T ′ is an embedded 3–torus in S
7 with trivial normal bundle. Then M ′ is a non-

formal simply connected manifold. To prove the non-formality, consider the codimension 2

submanifolds

B′

1 = p−1(S1 × {a1}) × {b1} × S
1 × S

1 × S
1

B′

2 = p−1({a2} × S
1) × S

1 × {b2} × S
1 × S

1

B′

3 = p−1(S1 × {a3}) × S
1 × S

1 × {b3} × S
1

and the 2–forms η′i Poincaré dual to Bi. Then 〈[η′
1
], [η′

2
], [η′

3
]〉 = [2 γ ∧α∧ e1 ∧ e2 ∧ e3]. This

triple Massey product is non-zero in

H5(M ′)

[α ∧ e1] ∪ H3(M ′) + H3(M ′) ∪ [α ∧ e3]
,

by using the same argument as before with B′

4
= p−1({a4} × S

1) × S
1 × S

1 × S
1 × {b4}.

Note that it is in this last step where the similar argument for the 6–dimensional case

breaks down, since if we drop the last factor all throughout the argument, then the sub-

manifold B′′

4 = p−1({a4}× S
1)× S

1 × S
1 × S

1 would not be disjoint from the two tori where

the surgery is taken place.
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