ON NON-FORMAL SIMPLY CONNECTED MANIFOLDS

MARISA FERNÁNDEZ AND VICENTE MUÑOZ

Abstract

We construct examples of non-formal simply connected and compact oriented manifolds of any dimension bigger or equal to 7 .

1. Introduction

An oriented compact manifold of dimension at most 2 is formal. On the other hand, if the dimension is 3 or more, there are examples which are non-formal, e.g., nilmanifolds which are not tori [4].

If we turn our attention to simply connected manifolds, we know that a simply connected oriented compact manifold of dimension at most 6 is formal $[6,5,3]$. The natural question already raised in [3] is whether there are examples of non-formal simply connected oriented compact manifolds of dimension $d \geq 7$.

Clearly, the question is reduced to the cases $d=7$ and $d=8$. For if we have a nonformal simply connected manifold M of dimension d, then $M \times S^{2 n}$ is a non-formal simply connected manifold of dimension $d+2 n$, for any $n \geq 1$.

From now on let $d=7$ or $d=8$. By the results of [3], if a d-dimensional connected and compact oriented manifold M is 3 -formal then it is formal. Therefore, the non-formality of M has to be detected in the 3 -stage of its minimal model. Moreover if $H^{1}(M)=0$ then M is automatically 2 -formal, so the non-formality is due to the kernel of the cup product map $\cup: H^{2}(M) \otimes H^{2}(M) \rightarrow H^{4}(M)$. The easiest way to detect the non-formality is thus to have a non-trivial Massey product of cohomology classes of degree 2 .

The method of construction of d-dimensional simply connected manifolds that we will use is the following: take a non-formal compact nilmanifold X of dimension d with a non-trivial Massey product of cohomology classes of degree 1. Multiply these cohomology classes by

[^0]some cohomology classes so that we get a non-trivial Massey product of cohomology classes of degree 2 . Then perform a suitable surgery of X to kill the fundamental group such that the non-trivial Massey product survives. This will give the sought example.

In [1] Babenko and Taimanov have already given examples of non-formal simply connected manifolds of any even dimension bigger or equal to 10 . The relevant property of their examples is that they are symplectic manifolds. They ask whether there exist examples of non-formal simply connected symplectic manifolds of dimension 8. Unfortunately, our examples do not have a symplectic structure, at least in an obvious way.

2. The 8-dimensional example

Let H be the Heisenberg group, that is, the connected nilpotent Lie group of dimension 3 consisting of matrices of the form

$$
a=\left(\begin{array}{ccc}
1 & x & z \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right)
$$

where $x, y, z \in \mathbb{R}$. Then a global system of coordinates x, y, z for H is given by $x(a)=x$, $y(a)=y, z(a)=z$, and a standard calculation shows that a basis for the left invariant 1-forms on H consists of $\{d x, d y, d z-x d y\}$. Let Γ be the discrete subgroup of H consisting of matrices whose entries are integer numbers. So the quotient space $N=\Gamma \backslash H$ is a compact 3 -dimensional nilmanifold. Hence the forms $d x, d y, d z-x d y$ descend to 1 -forms α, β, γ on N and

$$
d \alpha=d \beta=0, \quad d \gamma=-\alpha \wedge \beta .
$$

The non-formality of N is detected by a non-zero triple Massey product

$$
\langle[\alpha],[\beta],[\alpha]\rangle=[2 \alpha \wedge \gamma] .
$$

Now let us consider $X=N \times \mathbb{T}^{5}$, where $\mathbb{T}^{5}=\mathbb{R}^{5} / \mathbb{Z}^{5}$. The coordinates of \mathbb{R}^{5} will be denoted $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$. So $\left\{d x_{i} \mid 1 \leq i \leq 5\right\}$ defines a basis $\left\{\delta_{i} \mid 1 \leq i \leq 5\right\}$ for the 1 -forms on \mathbb{T}^{5}. By multiplying the classes α and β by some of the δ_{i}, we get a non-zero triple Massey product of cohomology classes of degree 2 for X,

$$
\begin{equation*}
\left\langle\left[\alpha \wedge \delta_{1}\right],\left[\beta \wedge \delta_{2}\right],\left[\alpha \wedge \delta_{3}\right]\right\rangle=\left[2 \gamma \wedge \alpha \wedge \delta_{1} \wedge \delta_{2} \wedge \delta_{3}\right] . \tag{1}
\end{equation*}
$$

Our aim now is to kill the fundamental group of X by performing a suitable surgery construction. Let C_{1} the image of $\{(x, 0,0) \mid x \in \mathbb{R}\} \subset H$ in $N=\Gamma \backslash N$ and let C_{2} be the image of $\{(0, y, \xi) \mid y \in \mathbb{R}\}$ in N, where ξ is a generic real number. Then $C_{1}, C_{2} \subset N$ are disjoint embedded circles such that $p\left(C_{1}\right)=\mathbb{S}^{1} \times\{0\}, p\left(C_{2}\right)=\{0\} \times \mathbb{S}^{1}$. The projection $p(x, y, z)=(x, y)$ describes N as a fiber bundle $p: N \rightarrow \mathbb{T}^{2}$ with fiber \mathbb{S}^{1}. Actually, N is the total space of the unit circle bundle of the line bundle of degree 1 over the 2 -torus. The
fundamental group of N is therefore

$$
\begin{equation*}
\left.\pi_{1}(N) \cong \Gamma=\left\langle\lambda_{1}, \lambda_{2}, \lambda_{3}\right|\left[\lambda_{1}, \lambda_{2}\right]=\lambda_{3}, \lambda_{3} \text { central }\right\rangle \tag{2}
\end{equation*}
$$

where λ_{3} corresponds to the fiber, λ_{1} and λ_{2} correspond to the homotopy classes $\lambda_{1}=\left[C_{1}\right]$ and $\lambda_{2}=\left[C_{2}\right]$. The fundamental group of $X=N \times \mathbb{T}^{5}$ is

$$
\begin{equation*}
\pi_{1}(X)=\pi_{1}(N) \oplus \mathbb{Z}^{5} \tag{3}
\end{equation*}
$$

Consider the following submanifolds embedded in X :

$$
\begin{aligned}
& T_{1}=C_{1} \times \mathbb{S}^{1} \times\{0\} \times \mathbb{S}^{1} \times\{0\} \times \mathbb{S}^{1} \\
& T_{2}=C_{2} \times\{0\} \times \mathbb{S}^{1} \times\{0\} \times \mathbb{S}^{1} \times \mathbb{S}^{1}
\end{aligned}
$$

which are 4-dimensional tori with trivial normal bundle. Consider now another 8-manifold Y with an embedded 4-dimensional torus T with trivial normal bundle. Then we may perform the fiber connected sum of X and Y identifying T_{1} and T, denoted $X \#_{T_{1}=T} Y$, in the following way: take (open) tubular neighborhoods $\nu_{1} \subset X$ and $\nu \subset Y$ of T_{1} and T respectively; then $\partial \nu_{1} \cong \mathbb{T}^{4} \times \mathbb{S}^{3}$ and $\partial \nu \cong \mathbb{T}^{4} \times \mathbb{S}^{3}$; take an orientation reversing diffeomorphism $\phi: \partial \nu_{1} \xrightarrow{\simeq} \partial \nu$; the fiber connected sum is defined to be the (oriented) manifold obtained by gluing $X-\nu_{1}$ and $Y-\nu$ along their boundaries by the diffeomorphism ϕ. In general, the resulting manifold depends on the identification ϕ, but this will not be relevant for our purposes.

Lemma 1. Suppose Y is simply connected. Then the fundamental group of $X \#_{T_{1}=T} Y$ is the quotient of $\pi_{1}(X)$ by the image of $\pi_{1}\left(T_{1}\right)$.

Proof. Since the codimension of T_{1} is bigger or equal than 3, we have that $\pi_{1}\left(X-\nu_{1}\right)=$ $\pi_{1}\left(X-T_{1}\right)$ is isomorphic to $\pi_{1}(X)$. The Seifert-Van Kampen theorem establishes that $\pi_{1}\left(X \#_{T_{1}=T} Y\right)$ is the amalgamated sum of $\pi_{1}\left(X-\nu_{1}\right)=\pi_{1}(X)$ and $\pi_{1}(Y-\nu)=\pi_{1}(Y)=1$ over the image of $\pi_{1}\left(\partial \nu_{1}\right)=\pi_{1}\left(T_{1} \times \mathbb{S}^{3}\right)=\pi_{1}\left(T_{1}\right)$, as required.

We shall take for Y the sphere \mathbb{S}^{8}. We embed a 4-dimensional torus \mathbb{T}^{4} in \mathbb{R}^{8}. This torus has a trivial normal bundle since its tangent bundle is trivial (being parallelizable) and the tangent bundle of \mathbb{R}^{8} is also trivial. After compatifying \mathbb{R}^{8} by one point we get a 4-dimensional torus $T \subset \mathbb{S}^{8}$ with trivial normal bundle.

In the same way, we may consider another copy of the 4 -dimensional torus $T \subset \mathbb{S}^{8}$ and perform the fiber connected sum of X and \mathbb{S}^{8} identifying T_{2} and T. We may do both fiber connected sums along T_{1} and T_{2} simultaneously, since T_{1} and T_{2} are disjoint. Call

$$
M=X \#_{T_{1}=T \mathbb{S}^{8} \#_{T_{2}=T} \mathbb{S}^{8}}
$$

the resulting manifold. By Lemma $1, \pi_{1}(M)$ is the quotient of $\pi_{1}(X)$ by the images of $\pi_{1}\left(T_{1}\right)$ and $\pi_{1}\left(T_{2}\right)$. This kills the \mathbb{Z}^{5} summand in (3) and it also kills λ_{1} and λ_{2} in (2). Therefore $\pi_{1}(M)=1$, i.e., M is simply connected.

3. Non-formality of the constructed manifold

Our goal is now to prove that M is non-formal. We shall do this by proving the nonvanishing of a suitable triple Massey product. More specifically, let us prove that the Massey product (1) survives to M. For this, let us describe geometrically the cohomology classes [$\left.\alpha \wedge \delta_{1}\right],\left[\beta \wedge \delta_{2}\right]$ and $\left[\alpha \wedge \delta_{3}\right]$. Consider the following three codimension 2 submanifolds of X :

$$
\begin{aligned}
& B_{1}=p^{-1}\left(\mathbb{S}^{1} \times\left\{a_{1}\right\}\right) \times\left\{b_{1}\right\} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \\
& B_{2}=p^{-1}\left(\left\{a_{2}\right\} \times \mathbb{S}^{1}\right) \times \mathbb{S}^{1} \times\left\{b_{2}\right\} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \\
& B_{3}=p^{-1}\left(\mathbb{S}^{1} \times\left\{a_{3}\right\}\right) \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times\left\{b_{3}\right\} \times \mathbb{S}^{1} \times \mathbb{S}^{1}
\end{aligned}
$$

where the a_{i} and b_{i} are generic points of \mathbb{S}^{1}. It is easy to check that $B_{i} \cap T_{j}=\emptyset$ for all i and j. So B_{i} may be also considered as submanifolds of M. Let η_{i} be the 2 -forms representing the Poincaré dual to B_{i} in X. By [2], η_{i} are taken supported in a small tubular neighborhood of B_{i}. Therefore the support of B_{i} lies inside $X-T_{1}-T_{2}$, so we also have naturally $\eta_{i} \in \Omega^{2}(M)$. Note that in X we have clearly that $\left[\eta_{1}\right]=\left[\alpha \wedge e_{1}\right],\left[\eta_{2}\right]=\left[\beta \wedge e_{2}\right]$ and $\left[\eta_{3}\right]=\left[\alpha \wedge e_{3}\right]$, where e_{i} are differential 1-forms on \mathbb{S}^{1} cohomologous to δ_{i} and supported in a neighborhood of $b_{i} \in \mathbb{S}^{1}$. Thus $\left[\eta_{1}\right]=\left[\alpha \wedge \delta_{1}\right],\left[\eta_{2}\right]=\left[\beta \wedge \delta_{2}\right]$ and $\left[\eta_{3}\right]=\left[\alpha \wedge \delta_{3}\right]$.

Lemma 2. The triple Massey product $\left\langle\left[\eta_{1}\right],\left[\eta_{2}\right],\left[\eta_{3}\right]\right\rangle$ is well-defined on M and equals to $\left[2 \gamma \wedge \alpha \wedge e_{1} \wedge e_{2} \wedge e_{3}\right]$.

Proof. Clearly

$$
\left(\alpha \wedge e_{1}\right) \wedge\left(\beta \wedge e_{2}\right)=d \gamma \wedge e_{1} \wedge e_{2}
$$

where the 3-form $\gamma \wedge e_{1} \wedge e_{2}$ is supported in a neighborhood of $N \times\left\{b_{1}\right\} \times\left\{b_{2}\right\} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1}$, which is disjoint from T_{1} and T_{2}. Hence $\gamma \wedge e_{1} \wedge e_{2}$ is well-defined as a form in M. Also

$$
\left(\beta \wedge e_{2}\right) \wedge\left(\alpha \wedge e_{3}\right)=-d \gamma \wedge e_{2} \wedge e_{3}
$$

where $-\gamma \wedge e_{2} \wedge e_{3}$ is also well-defined in M. So the triple Massey product

$$
\left\langle\left[\eta_{1}\right],\left[\eta_{2}\right],\left[\eta_{3}\right]\right\rangle=\left[2 \gamma \wedge \alpha \wedge e_{1} \wedge e_{2} \wedge e_{3}\right]
$$

is well-defined in M.

Finally let us see that this Massey product $\left\langle\left[\eta_{1}\right],\left[\eta_{2}\right],\left[\eta_{3}\right]\right\rangle=\left[2 \gamma \wedge \alpha \wedge e_{1} \wedge e_{2} \wedge e_{3}\right]$ is non-zero in

$$
\frac{H^{5}(M)}{\left[\alpha \wedge e_{1}\right] \cup H^{3}(M)+H^{3}(M) \cup\left[\alpha \wedge e_{3}\right]} .
$$

To see this, consider $B_{4}=p^{-1}\left(\left\{a_{4}\right\} \times \mathbb{S}^{1}\right) \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times\left\{b_{4}\right\} \times\left\{b_{5}\right\}$, for generic points a_{4}, b_{4}, b_{5} of \mathbb{S}^{1}. Then the Poincaré dual of B_{4} is defined by a 3 -form $\beta^{\prime} \wedge e_{4} \wedge e_{5}$ supported near B_{4}, where β^{\prime} is Poincaré dual to $p^{-1}\left(\left\{a_{4}\right\} \times \mathbb{S}^{1}\right)$ and $\left[\beta^{\prime}\right]=[\beta],\left[e_{4}\right]=\left[\delta_{4}\right]$ and $\left[e_{5}\right]=\left[\delta_{5}\right]$.

Again this 3 -form can be considered as a form in M. Now for any $[\varphi],\left[\varphi^{\prime}\right] \in H^{3}(M)$ we have

$$
\left(\left[2 \gamma \wedge \alpha \wedge e_{1} \wedge e_{2} \wedge e_{3}\right]+\left[\alpha \wedge e_{1} \wedge \varphi\right]+\left[\beta \wedge e_{3} \wedge \varphi^{\prime}\right]\right) \cdot\left[\beta^{\prime} \wedge e_{4} \wedge e_{5}\right]=-2
$$

since the first product gives 2 ; to compute the second product, we notice that the 5 -form $\alpha \wedge \beta^{\prime} \wedge e_{1} \wedge e_{4} \wedge e_{5}$ is exact in M because $\alpha \wedge \beta^{\prime} \wedge e_{1} \wedge e_{4} \wedge e_{5}=-d \gamma^{\prime} \wedge e_{1} \wedge e_{4} \wedge e_{5}$ in X, with $\gamma^{\prime}=\gamma+f \alpha$ for some function f on N, and $\gamma^{\prime} \wedge e_{1} \wedge e_{4} \wedge e_{5}$ is well-defined on M; and for the third product, $\alpha \wedge \beta^{\prime} \wedge e_{3} \wedge e_{4} \wedge e_{5}$ is also exact in M. Therefore we have proved the following

Theorem 3. M is a compact oriented simply connected non-formal 8-manifold.

4. The 7-dimensional example

A compact oriented simply connected non-formal manifold M^{\prime} of dimension 7 is obtained in an analogous fashion to the construction of the 8 -dimensional manifold M. We start with $X^{\prime}=N \times \mathbb{T}^{4}$ and consider the 3-dimensional tori

$$
\begin{aligned}
& T_{1}^{\prime}=C_{1} \times \mathbb{S}^{1} \times\{0\} \times \mathbb{S}^{1} \times\{0\} \\
& T_{2}^{\prime}=C_{2} \times\{0\} \times \mathbb{S}^{1} \times\{0\} \times \mathbb{S}^{1}
\end{aligned}
$$

Define

$$
M^{\prime}=X^{\prime} \#_{T_{1}^{\prime}=T^{\prime}} \mathbb{S}^{7} \#_{T_{2}^{\prime}=T^{\prime}} \mathbb{S}^{7}
$$

where T^{\prime} is an embedded 3 -torus in \mathbb{S}^{7} with trivial normal bundle. Then M^{\prime} is a nonformal simply connected manifold. To prove the non-formality, consider the codimension 2 submanifolds

$$
\begin{aligned}
B_{1}^{\prime} & =p^{-1}\left(\mathbb{S}^{1} \times\left\{a_{1}\right\}\right) \times\left\{b_{1}\right\} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \\
B_{2}^{\prime} & =p^{-1}\left(\left\{a_{2}\right\} \times \mathbb{S}^{1}\right) \times \mathbb{S}^{1} \times\left\{b_{2}\right\} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \\
B_{3}^{\prime} & =p^{-1}\left(\mathbb{S}^{1} \times\left\{a_{3}\right\}\right) \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times\left\{b_{3}\right\} \times \mathbb{S}^{1}
\end{aligned}
$$

and the 2 -forms η_{i}^{\prime} Poincaré dual to B_{i}. Then $\left\langle\left[\eta_{1}^{\prime}\right],\left[\eta_{2}^{\prime}\right],\left[\eta_{3}^{\prime}\right]\right\rangle=\left[2 \gamma \wedge \alpha \wedge e_{1} \wedge e_{2} \wedge e_{3}\right]$. This triple Massey product is non-zero in

$$
\frac{H^{5}\left(M^{\prime}\right)}{\left[\alpha \wedge e_{1}\right] \cup H^{3}\left(M^{\prime}\right)+H^{3}\left(M^{\prime}\right) \cup\left[\alpha \wedge e_{3}\right]},
$$

by using the same argument as before with $B_{4}^{\prime}=p^{-1}\left(\left\{a_{4}\right\} \times \mathbb{S}^{1}\right) \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times\left\{b_{4}\right\}$.
Note that it is in this last step where the similar argument for the 6 -dimensional case breaks down, since if we drop the last factor all throughout the argument, then the submanifold $B_{4}^{\prime \prime}=p^{-1}\left(\left\{a_{4}\right\} \times \mathbb{S}^{1}\right) \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1}$ would not be disjoint from the two tori where the surgery is taken place.

References

[1] I.K. Babenko, I.A. Taimanov, On nonformal simply connected symplectic manifolds, Siberian Math. J. 41 (2000), 204-217.
[2] R. Bott, L.W. Tu, Differential forms in algebraic topology, Graduate Texts in Maths, Vol. 82, SpringerVerlag, 1982.
[3] M. Fernández, V. Muñoz, On the formality and hard Lefschetz property for Donaldson symplectic manifolds, Preprint math.SG/0211017.
[4] K. Hasegawa, Minimal models of nilmanifolds, Proc. Amer. Math. Soc. 106 (1989), 65-71.
[5] T.J. Miller, On the formality of $(k-1)$ connected compact manifolds of dimension less than or equal to (4k-2), Illinois. J. Math. 23 (1979), 253-258.
[6] J. Neisendorfer, T.J. Miller, Formal and coformal spaces, Illinois. J. Math. 22 (1978), 565-580.

Departamento de Matemáticas, Universidad del País Vasco, Apartado 644, 48080 Bilbao, Spain

E-mail address: mtpferol@lg.ehu.es

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
E-mail address: vicente.munoz@uam.es

[^0]: Date: January, 2003.
 2000 Mathematics Subject Classification. Primary: 55S30. Secondary: 55P62.
 Key words and phrases. formal manifold, Massey product.
 First author partially supported by CICYT (Spain) Project BFM2001-3778-C03-02 and UPV 00127.310-E-14813/2002.
 Second author supported by CICYT project BFM2000-0024.
 Also partially supported by The European Contract Human Potential Programme, Research Training Network HPRN-CT-2000-00101.

