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Degree of polarization in quantum optics
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Quantum optics entails polarization properties that cannot be fully described by the classical Stokes param-
eters. In this work, we characterize the polarization of classical as well as quantum fields by means of a
probability distribution on the Poincasphere. This serves to define the degree of polarization of a field state
as the distance between the corresponding polarization distribution and the uniform distribution representing
unpolarized light. We apply this definition to relevant quantum field states such @ &iherent, squeezed,
number, and phase states.
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[. INTRODUCTION tum states of light such as $2) coherent, squeezed, num-
ber, and phase states.

The Stokes parameters provide a convenient description
of the polarization of light in classical optics. In particular, Il. PROBABILITY DISTRIBUTION FOR POLARIZATION
they allow us to classify the states of light according to a
degree of polarizatiofl]. This formalism can be extended to
the quantum domain, where the Stokes parameters beco
the mean values of the Stokes operators.

The Stokes parameters are proportional to the secon

In this section, we develop the main definitions required
rﬁ%r later sections. We assume a monochromatic plane wave
propagating in the direction whose electric field lies in the
Y plane. In these conditions, we are dealing with a two-
order correlations of the field amplitudes. While this may bem.Ode field that can be fully described by two complgx am-
enough for most classical problems, for quantum fieldspIItUde pperatprs. They are dpnoted @y, a_ when using
higher-order correlations are crucial. Because of this, th(I)he basis of cwgular polanz_atlon:_; while they are denoted by
Stokes parameters do not distinguish between very differerftx> &y when using th? basis of linear polarization along the
guantum states having remarkably dissimilar polarizatiorf( andy axes, respectively, so that

propertied2—6]. For example, this is the case of polarization

squeezing, which is actually defined by the fluctuations of a+=i(a +ia,). 1)

the Stokes operators around their mean vaide<.0. More- -2 Y

over, the classical degree of polarization can be zero for field

states that cannot be regarded as unpolafi2ed)]. The Stokes operators are defined as the quantum counter-

In this work, we study a full characterization of polariza- parts of the classical variables as
tion by means of a probability distribution defined on the

a, , ot T _t T

surface of the Poincargphere. As a matter of fact, the exis- S=a.ataa., S=aja-taay,

tence of such a probabilistic description of polarization is - " " ¢
unavoidable in quantum optics from the very beginning. This S=i(ata,-aja ), S=a,a,—aa., (2

is because the Stokes operators do not commute and thus nod hei | h K
state can have a definite value of all them simultaneousi§iNd their mean values are the Stokes parame®ys(S).

(except the two-mode vaculmNo state has a definite po- hey satisfy the commutation relations of an angular mo-
larization ellipse for the same reasons that quantum particld@€ntum,
do not follow definite classical trajectories. A suitable corre- -

. e S Sy ]1=2iS,, [S,S]=0. 3
spondence between light states and polarization distributions [SeS] 2 [SSo] ©

is discussed in Sec. IIl. _ _ Among other consequences, this implies that no field state
Among other applications, this formalism allows us to (leaving aside the two-mode vacubizan have definite non-

introduce a suitable definition of the degree of polarizationgciyating values of all the Stokes operators simultaneously.
that avoids the difficulties that the classical definition en-Ths is expressed by the uncertainty relatjad]

counters. The degree of polarization can be defined as the

distance between the polarization distribution and the uni- (AS)2=(ASX)2+(ASy)2+(ASZ)2>2<SO>, (4)

form distribution corresponding to unpolarized light. In this

way, the degree of polarization depends on all moments ofvhere AA)%=(A%)—(A)2. We stress that this applies to a

the Stokes operators, and not only on the first one. This deftwo-mode field. For multimode fields, things can be slightly

nition is presented and their properties examined in Sec. llldifferent[5]. In sharp contrast to classical optics, the electric

In Sec. IV, we apply this formalism to some interesting quan-vector of a monochromatic field never describes a definite
ellipse[12]. As a matter of fact, the probability distribution
for the electric field can be very far from having an elliptical

*Electronic address: alluis@fis.ucm.es form, as we will show in Sec. IV.
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All this means that the polarization must be unavoidablyso that
described in terms of a probability distribution of polariza-
tion states, i.e., a probability distribution on the surface of
the Poincaresphere. Since there is no sharp correspondence
between quantum states and polarization states, there cannot
be a straightforward definition of such a distribution. The  The Q function serves also to find the polarization states
identification of the Stokes operators as an angular momenhat are closest to a given field state. This can be achieved by
tum allows us to benefit from the solutions proposed for theinding the s, ¢ values for whichQ is maximum. In general,
representation of spin systems by quasidistributions on thghe solution is not unique, especially(i8) = 0.
sphere. Different correspondences have been progdSed As we have mentioned above, the (QUQ function is not
15] including discrete versiond6—19. Maybe the best be-  the unique correspondence between spin states and functions
haved for our purposes is the &) Q function defined as  on the sphere. However, we think that this is the best choice
[15] for our purposes. Other optiorisuch as the diagonal repre-
sentation in the coherent state basis or the Wigner function
can be very singular and far from classical intuition, they can
take negative values, and they can be void of practical mea-
surement. Plots of the SP) Wigner function for some quan-
tum states can be found in R¢R2].
In addition to the Poincarsphere, it is also customary to
picture the polarization state in terms of the trajectory de-

_’]_ 0
Q(0,¢)=ZJ2ﬂd5fo drrQ(a,p). (10)

Son+1
Q0. 6)= 2, ——(n.0,¢lp|n, 0.4), ®)
n=0 T

where p is the density matrix for the two-mode field,
[n,6,¢) are the SW2) coherent states,

n

n\ 2 A g\m —ime scribed by the electric field. In quantum terms, there are no
|n'0'¢>:mE:o m Sin; cos;| € Im)4[n trajectories and we must deal with probability distributions.

The electric field in thexy plane is represented by the adi-

-m)y_, (6)  mensional quadrature operators
and|m).|n—m)_ denote photon number states in the cor-
responding mode. In these expressiaghand ¢ are the polar
and the azimuthal angles, respectively, of the Poincarevhich are the real parts of the corresponding complex am-
sphere. The S(2) coherent states are eigenstates of the totaplitude operators. The probability distributio®(x,y) is
number operatorSy|n, 8,¢)=n|n,d,¢). Therefore, then  given by
sum in Eq.(5) removes the total intensity of the field so that
Q(60,¢) contains only the polarization properties.

It is worth noting that the S(2) coherent states are the
only states reaching the equality in the uncertainty relatiovherex,y and |x,y) are the eigenvalues and eigenvectors,
(4) [11]. Therefore, theQ function is the projection on the respectively, of, y. In general, this probability distribution
states having the most definite polarization state allowed byaries with time. However, in this work we will consider
the quantum theory. We will see in the next section that otheonly stationary states of the free evoluti@re., eigenstates
approaches confirm the minimum polarization fluctuations of the total number operatd®;) so thatP(x,y) will not
the SU2) coherent states. depend on time.

The SU2) Q function defined in Eq(5) has a direct re-
lationship with the more standard@ function Q(«,B)
=(a,B|p|a,B) defined in terms of the quadrature coherent

stateg a,8)=|a) . |B)_ with

x=%i(a-+al), y=3(a,+a), (1)

P(x,y)=(x.ylp|x,y), (12

Ill. DEGREE OF POLARIZATION

The classical definition of the degree of polarization is

|a), =e ’Zgo %lnﬁ , 7) Pclass:@- (13

We have already discussed that this definition is not fully
ﬁgﬂsfactory sincd .55 1S defined solely in terms of the first
moment of the Stokes operators and this cannot reflect po-
larization properties defined in terms of higher-order mo-
[Ngind ments. In particular, there are states wik,ss— 0 that can-
not be regarded as being unpolarized. Moreover, the
Jn! definition (13) does not reflect the lack of perfect polariza-
tion of every quantum state. For example, thg&Wdoherent
where the state parameters are connected by the relationsstates reach perfect classical polarizat®g,.e—=1 and this
includes the two-mode vacuu@3]. A definition close to Eq.

and similarly for|8) _ [20]. The product of quadrature co-
herent states can be expressed as a Poissonian superposi
of SU(2) coherent statef21],

| By=e"23, In,6, ), (®)

9

6 . ) 6 .
a=rsin§e'5e"¢, ,8=rco%e'5,

(13) that does not present this last problem has been used in
Ref.[19].
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Next we introduce a definition of the degree of polariza-[17,25-28. In particular, Eq(15) can be regarded as a par-
tion that avoids these difficulties. The degree of polarizatiorticular case of a general class of measures of localization
of a given field state can be naturally defined as the distande6,28§,
between itsQ function and theQ function for unpolarized

light. The unpolarized light is defined as the field states with _ 1ot u
a uniform distribution, M, = dQQ ' (18)
1 that includes the Wehrl and Shannon entrop23,
Qunpo( 0,¢)= En (14
limin Mr=deanQ, (19
that fully agrees with more involved approachas r—0

We define the distance e
whereQ represents here a general probability distribution. In

112 our case, we havB=47M;—1 andX =1/M. This identi-
D:477J dQ[Q( 0,0) —4—} fication endows our definitions with desirable properties such
77 as the ones listed in Reffi26].
It is interesting to ask for the states with maximémin
=477f dO[Q(6,¢)]°—1, (15 the next section, we show that there are different states that
satisfyP— 1 when their intensity is arbitrarily increased. On
the other hand, the states with maximum degree of polariza-
tion when the intensity is kept fixed are the @Ucoherent
states. This is because it has been recently shown that these
are the most localized quantum states for spin sys{@@ls
(Lieb’s conjecturg 30,31). This is consistent with the defi-
p— D —1— iE (16) nition of the polarization distribution by projection on the
1+D A7 SU(2) coherent states.
We should mention that the Wigner function has already
where been used as a measure of the area occupied by quantum
states[25]. However, it must be noticed that for the &Y
1 Wigner functionW( 6, ¢) [13] we have thaf dQ[W(0, $)]?
S=——, (17)  takes exactly the same value for all pure states so that this
j dQ[Q(8, ) T2 provides a measure _of purity of quantum states rather than a
measure of polarization.
We conclude this section discussing the feasibility of the
so that =P=0. experimental determination &. Among the diverse theoret-
Next we analyze the main properties of this definition.ical proposals that may serve to estim&tewe restrict our-
First we note that the only states with=0 are the unpolar- selves to methods already implemented in practice. In this
ized states witfQ=1/(4). In contrast to the classical defi- sense, perhaps the most direct relatiorPafith measurable
nition, we will see in the next section that there are fieldquantities is given by Eq10) relating the SW2) Q function
states with(S)=0 and P#0. This occurs because is a  to the quadratur€ function Q. We can mention two strate-
function of all moments of the Stokes operators and not onlyies for the experimental determination @f
of the first one. The probability distributior@ can be measured by using a
The definitions(15) and (16) are invariant under S@) double homodyne detector for each field mg82]. This is a
transformations applied to the field state. This means that theonceptually simple scheme that provides a direct measure-
degree of polarization depends on the form of@hfeinction,  ment of O(«,8) at each point &, 8) without involving fur-
but not on its position or orientation on the Poincaphere. ther data analysis. The practical feasibility of double homo-
In practical terms, the S@) transformations are linear and dyne detection has been demonstrated in H&3,34. On
energy-conserving transformations of the complex amplitudehe other handQ(«,8) can also be determined by using
operators. They are produced by passive optical devices suebmographic reconstruction methods based on single homo-
as the free propagation, beam splitters, phase plates, and mityne detectioi35]. This has been carried out experimentally
rors [24]. for single mode fields in Ref$36,37. It is worth noting that
The function, in Eq. (17) can be interpreted as the ef- both schemes are equally valid for classical as well as for
fective area where th@ function is different from zero. In  quantum fields since they rely on the measurement of the
other words,2 is a measure of the number of polarization complex amplitudes of the field modes. The classical and
states contained in a given field state. For exampl& if quantum regimes only differ in the properties of the output
=1/o on a surface of area and Q=0 outside it, ther>, statistics.
=0. From a practical perspective, the determinatiorQoénd
This and similar definitions have already been used a® will be affected by experimental errors such as statistical
measures of localization and uncertainty in different contextsluctuations, inefficient detection, finite sampling, and ther-

whered() =sin #dad¢ is the differential of solid angle. It can
be seen thab ranges from 0 tee. We normalize it defining
the degree of polarization as
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mal noise. Since a detailed examination of these errors is 0.
beyond the scope of this work, we just provide some com- Y o
ments in support of the viability of the measuremenfof
Homodyne detection(single and doubleis a well-
established technique. The precision of current experimental
arrangements allows the accurate determination of rather in- 0.2
volved quantities such as quantum phase distributions and
number-phase uncertainty relations as demonstrated in Refs. Y A
[34,37). In our case, the relation between the desired quantity 0.1
P and the statistics of the measurement is no more complex
than in the examples just quoted. Therefore, it should be —
possible to estimatP accurately using current technology. 0
The effect of experimental uncertainties in homodyne de- -0.1
tection and their compensation have been well stuf&i
From these analyses it appears that tomographic methods
based on single homodyne detection are superior to the direct X 0.1
double homodyne measurement@f This is becaus& is

intrinsicall th function that . | dat FIG. 1. Spherical plot of th& function for a SW2) coherent
an intninsically Smooth function that requires farge data SaMgqq yithn=2 and #=0. Note that the origin is at the bottom of

pling in o_rder_ to obtain relevant_ information about t_he inputy,o figure. It can be seen that it does not depends@nd that it is
state. This hinders the correction and compensation of eXgcated around the north pole of the Poiricaphere.

perimental errors.

Finally, we can note that we are not interested in all theE_>0_
information carried byQ, but only in the integration in Eq.
(15). This implies that the statistical fluctuations may cancel
out partially when performing the effective averaging pro-
cess involved in the definition d?.

-0.1

0

In the limit of high intensity, the S(2) coherent
states tend to be fully polarized and th&@ifunction tends to
be a & function.

In Fig. 1, we have represent& 0, ¢) for the particular
case|2).|0)_ . It can be seen that it is localized around the
north pole of the Poincargphere that corresponds to circular

IV. APPLICATIONS polarization(note that the origin is at the bottom of the fig-
ure). Nevertheless, the fluctuations around this point are

In this section, we apply the ideas of the preceding sectarge enough to decrease the degree of polarizatioR to
tions to some relevant field states. Throughout we take ad= £ |n Fig. 2, we have plotted the probability distribution
vantage of the S(2) invariance to choose the simplest ex- for the field quadrature®(x,y) in the state2),|0)_,
pressions. It is worth pointing out that all the probability
distributions examined below are time-independent under 4 -
free evolution because the corresponding states are eigen- P(X,y)= —(x?+y?)%e 2"y, (22
states of the total number operatgy. This also means that ™
all fluctuations and fuzziness in the following examples are

due solely to polarization fluctuations and cannot be ascribe$/Nere it can be seen that it resembles a circular trajectory.
to intensity fluctuations. Similar plots can be found in Ref12].

A. SU(2) coherent states

The Q function for the SW2) coherent statén,#=0,
y=In),[0)_ is

n+1 6\2"
Q(0,¢)= H(co%) . (20

The degree of polarization and the effective area of the Poin-
caresphere occupied by these states [2& 31]

2 2n+1
g
(n+1)?

n

n+1

(21)

FIG. 2. Probability distribution for the field quadraturesy for
while Pgass=1 for all n. The particular cas@=0 is the 3 SU2) coherent state witm=2 and #=0. The inset shows a
two-mode vacuum wittP=0 andX =4, as could be ex- density plot. It can be seen that this is close to a circularly polarized
pected. On the other hand, whanr-~ we haveP—1 and state.
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B. SU(2) squeezed states 0.1

Several definitions of polarization or spin squeezing can Y
be found in the literaturg€l9,39. Here we focus on the one 0
relevant in the context of precision phase-shift measurements
and atomic spectroscopy. The so-called spectroscopic -0.1
squeezing occurs when, for fixadthe uncertaintAS, of a :
component of the Stokes operators normak 8 satisfies 0.1
that[7-9] '

I

—l . (23
S yn
The equality is reached by the 8) coherent states. The

states that satisfy the inequality are the solutions of the ei-
genvalue equation

AL

-0.1
|€)=m[¢), (24 -0.03 5
0.03

S, +=s
AS,+ S

whereS. =S, +iS, and\, m are constants. The solution of X
this equation can be found in R¢¥], where it is shown that

plicity, here we consider the case=2 andm=0. In such a state withn=2, A=1, andm=0. Compared to the coherent state,
case the solution of the eigenvalue equation in the photoriI can be seen that the fluctuations§)f are clearly reduced.

number basis is
|£)=sing|2),|0)_—cos¢|0).]2)
where tart=\2. The degree of polarization is

10 1

P13 5rcosad)

fluctuations ofS, are reduced in comparison with the coher-
(25  ent state in Fig. 1. The probability distribution for the field
quadratures,

32
20 Plxy) = —xy?e 264, 30

For these state$S,)=(S,)=0. If we takeS, =S,, the con-

dition (23) becomes

AS, 1 1
(SHl V2|siné+cose] V2

is represented in Fig. 4, where it can be seen that it does not
resemble an ellipse. It is worth noting that for the si@®),

(27)  the Stokes parameters vanigl) =0, so it would be unpo-
larized according to the classical definition.

which is satisfied whenm/2>¢>0. When £é=0,7/2, the

states(25) are SU2) coherent states with the maximum de-
gree of polarization P=3). On the other hand, maximum
squeezing occurs fof= 7/4, leading to a minimum degree
of polarizationP=¢.

The state with maximum squeezing is

WINN
AT
SO

\
\ ‘\\\;;;:,,0 '
1 UL
= 5(12):10)-[0):]2) ) =[1)d),. (29 0.2\ .&\\@a&\,’, N 2
NS NGRS
0 OSSN
where|1),|1), are photon number states in modgs a, . -2 ,".:,0‘.‘,.',;,”,'.:&,\ v
This is the eigenstate &, with eigenvalue zero. Its quantum B "'i.','"".i:.‘:
polarization properties have been studied in Rggg4]. The ) ’i:’.}.
SU(2) Q function for the staté28), X > -2
3 S '
_ > ; FIG. 4. Probability distribution for the field quadraturesy for
Q6. ¢) 877<CO§0C052¢+SIn2¢)’ (29 a SU2) squeezed state with=2, A\=1, andm=0. The inset

shows a density plot. This distribution does not resemble any clas-

is represented in Fig. 3, where it can be appreciated that thecal polarization ellipse.
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FIG. 5. Spherical plot of the&) function for a number state
|1),|1)_ . It can be seen that it does not dependdoand that it is
located around the equator.

C. Number states

The Q function for the number staten) . [n—m) _ is

o

and the degree of polarization [i28,31]

_n+1

T

Q(,

02(n—m) 2m
sinz) (co%) , (3D

anlln)

We can briefly examine the limit of large total photon
number. If for simplicity we taken=2m, the Stirling ap-
proximation whem>1 leads to

m
P=1- \ﬁ
n

2n+1
(n+1)2

(32

(33

Therefore, the number states also tend to be fully polarized
(P—1) when their intensity is increased. We note that for

the stategm).|m)_ we have(S)=0, so classically they
would be unpolarized for evemn, even in the limitm>1.
Forn=2 andm=1, we have

1

|l/f>:|1>+|1>—:\/§(|2>x|o>y+|0>x|2>y)- (34)

Its Q function

3
Q(8,¢)= gwne)z (35

is represented in Fig. 5, where it can be seen that it is a
rotated version of Fig. 3 corresponding to the squeezed state

(28). Accordingly, the degree of polarization is agds- %.
The Q function is located around the equat+ 7/2 so this

state can be regarded as an equally weighted superposition of

all linearly polarized states. The probability distribution for
the field quadratures plotted in Fig. 6,

2
POy)=—[20¢+y?) - 1127265, (3

resembles circular polarizatid6].

PHYSICAL REVIEW A66, 013806 (2002

g2
S$XRIALI ST
o Ve Y,
AL
LA
"' ".

FIG. 6. Probability distribution for the field quadratunesy for
the number stat¢l), 1) . The inset shows a density plot. This
distribution resembles circular polarization.

D. Phase states

The variable complementary to number is the phase. In
the context of polarization, the relevant phase variable is the
phase difference, which corresponds to the azimuthal angle
¢ on the Poincarephere. There are several approaches to
the quantum description of the phase difference in quantum
optics[9]. Most of them conclude that the phase-difference
states are

n

ng)=——= 3 e ™jm).|n- @)
n,<p)—\/mm:0e m)|n—mj_.
The Q function forn=2 and¢=0,
_ 2 L gino| +sig cod
Q(H,gb)—ﬂ cos¢+ﬁsm0 +sinf¢ cos b,
(38)

is plotted in Fig. 7, where it can be seen that it is centered

ARy,

Ty

FIG. 7. Spherical plot of th& function for the phase state
=2, ¢=0). Note that the origin is situated at the left of the figure.

It can be appreciated that it is centered arogn€O.
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around¢ =0 (note that the origin is at the left of the figure
The degree of polarlzatlon iB= 3%, which is close to the

maximum forn=2 (P=13). The probability distribution for
the field quadratures,

2
P(x.Y)= 3 —[2(1+V2)x?

+2(1-\2)y2-17% 200, (39

is plotted in Fig. 8.

V. CONCLUSIONS

Quantum optics entails polarization states that cannot be
suitably described by the classical formalism based on th
Stokes parameters. In this work, we have analyzed the polal-
ization of quantum states in terms of a suitably defined prob-
ability distribution on the Poincarsphere. This allows us to pend on the area of the Poincaghere occupied by the field
define the degree of polarization as the distance to the unstate, i.e., the number of classical polarization states that it
form distribution representing unpolarized light. With this contains. We have shown that these definitions are well be-
natural definition, the degree of polarization turns out to dehaved even when the classical formalism fails.

FIG. 8. Probability distribution for the field quadraturesy for
e phase stat;=2, ¢=0). The inset shows a density plot.
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