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Degree of polarization in quantum optics
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Quantum optics entails polarization properties that cannot be fully described by the classical Stokes param-
eters. In this work, we characterize the polarization of classical as well as quantum fields by means of a
probability distribution on the Poincare´ sphere. This serves to define the degree of polarization of a field state
as the distance between the corresponding polarization distribution and the uniform distribution representing
unpolarized light. We apply this definition to relevant quantum field states such as SU~2! coherent, squeezed,
number, and phase states.

DOI: 10.1103/PhysRevA.66.013806 PACS number~s!: 42.50.Dv, 03.65.Ca, 42.25.Ja
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I. INTRODUCTION

The Stokes parameters provide a convenient descrip
of the polarization of light in classical optics. In particula
they allow us to classify the states of light according to
degree of polarization@1#. This formalism can be extended t
the quantum domain, where the Stokes parameters bec
the mean values of the Stokes operators.

The Stokes parameters are proportional to the seco
order correlations of the field amplitudes. While this may
enough for most classical problems, for quantum fiel
higher-order correlations are crucial. Because of this,
Stokes parameters do not distinguish between very diffe
quantum states having remarkably dissimilar polarizat
properties@2–6#. For example, this is the case of polarizati
squeezing, which is actually defined by the fluctuations
the Stokes operators around their mean values@7–10#. More-
over, the classical degree of polarization can be zero for fi
states that cannot be regarded as unpolarized@2–5#.

In this work, we study a full characterization of polariz
tion by means of a probability distribution defined on t
surface of the Poincare´ sphere. As a matter of fact, the exi
tence of such a probabilistic description of polarization
unavoidable in quantum optics from the very beginning. T
is because the Stokes operators do not commute and thu
state can have a definite value of all them simultaneou
~except the two-mode vacuum!. No state has a definite po
larization ellipse for the same reasons that quantum parti
do not follow definite classical trajectories. A suitable cor
spondence between light states and polarization distribut
is discussed in Sec. II.

Among other applications, this formalism allows us
introduce a suitable definition of the degree of polarizat
that avoids the difficulties that the classical definition e
counters. The degree of polarization can be defined as
distance between the polarization distribution and the u
form distribution corresponding to unpolarized light. In th
way, the degree of polarization depends on all moments
the Stokes operators, and not only on the first one. This d
nition is presented and their properties examined in Sec.
In Sec. IV, we apply this formalism to some interesting qua

*Electronic address: alluis@fis.ucm.es
1050-2947/2002/66~1!/013806~8!/$20.00 66 0138
n

me

d-
e
,
e
nt
n

f

ld

s
no

ly

es
-
ns

n
-
he
i-

of
fi-
I.
-

tum states of light such as SU~2! coherent, squeezed, num
ber, and phase states.

II. PROBABILITY DISTRIBUTION FOR POLARIZATION

In this section, we develop the main definitions requir
for later sections. We assume a monochromatic plane w
propagating in thez direction whose electric field lies in th
xy plane. In these conditions, we are dealing with a tw
mode field that can be fully described by two complex a
plitude operators. They are denoted bya1 , a2 when using
the basis of circular polarizations while they are denoted
ax , ay when using the basis of linear polarization along t
x andy axes, respectively, so that

a65
1

A2
~ax6 iay!. ~1!

The Stokes operators are defined as the quantum cou
parts of the classical variables as

S05a1
† a11a2

† a2 , Sx5a1
† a21a2

† a1 ,

Sy5 i ~a2
† a12a1

† a2!, Sz5a1
† a12a2

† a2 , ~2!

and their mean values are the Stokes parameters^S0&,^S&.
They satisfy the commutation relations of an angular m
mentum,

@Sx ,Sy#52iSz , @S,S0#50. ~3!

Among other consequences, this implies that no field s
~leaving aside the two-mode vacuum! can have definite non
fluctuating values of all the Stokes operators simultaneou
This is expressed by the uncertainty relation@11#

~DS!25~DSx!
21~DSy!21~DSz!

2>2^S0&, ~4!

where (DA)25^A2&2^A&2. We stress that this applies to
two-mode field. For multimode fields, things can be sligh
different @5#. In sharp contrast to classical optics, the elect
vector of a monochromatic field never describes a defin
ellipse @12#. As a matter of fact, the probability distributio
for the electric field can be very far from having an elliptic
form, as we will show in Sec. IV.
©2002 The American Physical Society06-1
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All this means that the polarization must be unavoida
described in terms of a probability distribution of polariz
tion states, i.e., a probability distribution on the surface
the Poincare´ sphere. Since there is no sharp corresponde
between quantum states and polarization states, there ca
be a straightforward definition of such a distribution. T
identification of the Stokes operators as an angular mom
tum allows us to benefit from the solutions proposed for
representation of spin systems by quasidistributions on
sphere. Different correspondences have been proposed@13–
15# including discrete versions@16–19#. Maybe the best be
haved for our purposes is the SU~2! Q function defined as
@15#

Q~u,f!5 (
n50

`
n11

4p
^n,u,furun,u,f&, ~5!

where r is the density matrix for the two-mode field
un,u,f& are the SU~2! coherent states,

un,u,f&5 (
m50

n S n

mD 1/2S sin
u

2D n2mS cos
u

2D m

e2 imfum&1un

2m&2 , ~6!

and um&1un2m&2 denote photon number states in the c
responding mode. In these expressions,u andf are the polar
and the azimuthal angles, respectively, of the Poinc´
sphere. The SU~2! coherent states are eigenstates of the t
number operatorS0un,u,f&5nun,u,f&. Therefore, then
sum in Eq.~5! removes the total intensity of the field so th
Q(u,f) contains only the polarization properties.

It is worth noting that the SU~2! coherent states are th
only states reaching the equality in the uncertainty relat
~4! @11#. Therefore, theQ function is the projection on the
states having the most definite polarization state allowed
the quantum theory. We will see in the next section that ot
approaches confirm the minimum polarization fluctuations
the SU~2! coherent states.

The SU~2! Q function defined in Eq.~5! has a direct re-
lationship with the more standardQ function Q(a,b)
5^a,burua,b& defined in terms of the quadrature cohere
statesua,b&5ua&1ub&2 with

ua&15e2uau2/2(
n50

`
an

An!
un&1 , ~7!

and similarly for ub&2 @20#. The product of quadrature co
herent states can be expressed as a Poissonian superpo
of SU~2! coherent states@21#,

ua,b&5e2r 2/2(
n50

`
r neind

An!
un,u,f&, ~8!

where the state parameters are connected by the relatio

a5r sin
u

2
eide2 if, b5r cos

u

2
eid, ~9!
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so that

Q~u,f!5
1

4E2p
ddE

0

`

drr 3Q~a,b!. ~10!

The Q function serves also to find the polarization sta
that are closest to a given field state. This can be achieve
finding theu, f values for whichQ is maximum. In general,
the solution is not unique, especially if^S&50.

As we have mentioned above, the SU~2! Q function is not
the unique correspondence between spin states and func
on the sphere. However, we think that this is the best cho
for our purposes. Other options~such as the diagonal repre
sentation in the coherent state basis or the Wigner funct!
can be very singular and far from classical intuition, they c
take negative values, and they can be void of practical m
surement. Plots of the SU~2! Wigner function for some quan
tum states can be found in Ref.@22#.

In addition to the Poincare´ sphere, it is also customary t
picture the polarization state in terms of the trajectory d
scribed by the electric field. In quantum terms, there are
trajectories and we must deal with probability distribution
The electric field in thexy plane is represented by the ad
mensional quadrature operators

x̂5 1
2 ~ax1ax

†!, ŷ5 1
2 ~ay1ay

†!, ~11!

which are the real parts of the corresponding complex a
plitude operators. The probability distributionP(x,y) is
given by

P~x,y!5^x,yurux,y&, ~12!

wherex,y and ux,y& are the eigenvalues and eigenvecto
respectively, ofx̂, ŷ. In general, this probability distribution
varies with time. However, in this work we will conside
only stationary states of the free evolution~i.e., eigenstates
of the total number operatorS0) so thatP(x,y) will not
depend on time.

III. DEGREE OF POLARIZATION

The classical definition of the degree of polarization is

Pclass5
A^S&2

^S0&
. ~13!

We have already discussed that this definition is not fu
satisfactory sincePclass is defined solely in terms of the firs
moment of the Stokes operators and this cannot reflect
larization properties defined in terms of higher-order m
ments. In particular, there are states withPclass50 that can-
not be regarded as being unpolarized. Moreover,
definition ~13! does not reflect the lack of perfect polariz
tion of every quantum state. For example, the SU~2! coherent
states reach perfect classical polarizationPclass51 and this
includes the two-mode vacuum@23#. A definition close to Eq.
~13! that does not present this last problem has been use
Ref. @19#.
6-2
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DEGREE OF POLARIZATION IN QUANTUM OPTICS PHYSICAL REVIEW A66, 013806 ~2002!
Next we introduce a definition of the degree of polariz
tion that avoids these difficulties. The degree of polarizat
of a given field state can be naturally defined as the dista
between itsQ function and theQ function for unpolarized
light. The unpolarized light is defined as the field states w
a uniform distribution,

Qunpol~u,f!5
1

4p
, ~14!

that fully agrees with more involved approaches@2#.
We define the distance

D54pE dVFQ~u,f!2
1

4p G2

54pE dV@Q~u,f!#221, ~15!

wheredV5sinududf is the differential of solid angle. It can
be seen thatD ranges from 0 tò . We normalize it defining
the degree of polarization as

P5
D

11D
512

1

4p
S, ~16!

where

S5
1

E dV@Q~u,f!#2

, ~17!

so that 1>P>0.
Next we analyze the main properties of this definitio

First we note that the only states withP50 are the unpolar-
ized states withQ51/(4p). In contrast to the classical defi
nition, we will see in the next section that there are fie
states with^S&50 and PÞ0. This occurs becauseP is a
function of all moments of the Stokes operators and not o
of the first one.

The definitions~15! and ~16! are invariant under SU~2!
transformations applied to the field state. This means that
degree of polarization depends on the form of theQ function,
but not on its position or orientation on the Poincare´ sphere.
In practical terms, the SU~2! transformations are linear an
energy-conserving transformations of the complex amplit
operators. They are produced by passive optical devices
as the free propagation, beam splitters, phase plates, and
rors @24#.

The functionS in Eq. ~17! can be interpreted as the e
fective area where theQ function is different from zero. In
other words,S is a measure of the number of polarizatio
states contained in a given field state. For example, ifQ
51/s on a surface of areas and Q50 outside it, thenS
5s.

This and similar definitions have already been used
measures of localization and uncertainty in different conte
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@17,25–28#. In particular, Eq.~15! can be regarded as a pa
ticular case of a general class of measures of localiza
@26,28#,

Mr5S E dV Q11r D 1/r

, ~18!

that includes the Wehrl and Shannon entropies@29#,

lim
r→0

ln Mr5E dV Q ln Q, ~19!

whereQ represents here a general probability distribution.
our case, we haveD54pM121 andS51/M1. This identi-
fication endows our definitions with desirable properties su
as the ones listed in Ref.@26#.

It is interesting to ask for the states with maximumP. In
the next section, we show that there are different states
satisfyP→1 when their intensity is arbitrarily increased. O
the other hand, the states with maximum degree of polar
tion when the intensity is kept fixed are the SU~2! coherent
states. This is because it has been recently shown that t
are the most localized quantum states for spin systems@28#
~Lieb’s conjecture@30,31#!. This is consistent with the defi
nition of the polarization distribution by projection on th
SU~2! coherent states.

We should mention that the Wigner function has alrea
been used as a measure of the area occupied by qua
states@25#. However, it must be noticed that for the SU~2!
Wigner functionW(u,f) @13# we have that*dV@W(u,f)#2

takes exactly the same value for all pure states so that
provides a measure of purity of quantum states rather tha
measure of polarization.

We conclude this section discussing the feasibility of t
experimental determination ofP. Among the diverse theoret
ical proposals that may serve to estimateP, we restrict our-
selves to methods already implemented in practice. In
sense, perhaps the most direct relation ofP with measurable
quantities is given by Eq.~10! relating the SU~2! Q function
to the quadratureQ function Q. We can mention two strate
gies for the experimental determination ofQ.

The probability distributionQ can be measured by using
double homodyne detector for each field mode@32#. This is a
conceptually simple scheme that provides a direct meas
ment ofQ(a,b) at each point (a,b) without involving fur-
ther data analysis. The practical feasibility of double hom
dyne detection has been demonstrated in Refs.@33,34#. On
the other hand,Q(a,b) can also be determined by usin
tomographic reconstruction methods based on single ho
dyne detection@35#. This has been carried out experimenta
for single mode fields in Refs.@36,37#. It is worth noting that
both schemes are equally valid for classical as well as
quantum fields since they rely on the measurement of
complex amplitudes of the field modes. The classical a
quantum regimes only differ in the properties of the outp
statistics.

From a practical perspective, the determination ofQ and
P will be affected by experimental errors such as statisti
fluctuations, inefficient detection, finite sampling, and th
6-3
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ALFREDO LUIS PHYSICAL REVIEW A66, 013806 ~2002!
mal noise. Since a detailed examination of these error
beyond the scope of this work, we just provide some co
ments in support of the viability of the measurement ofP.

Homodyne detection~single and double! is a well-
established technique. The precision of current experime
arrangements allows the accurate determination of rathe
volved quantities such as quantum phase distributions
number-phase uncertainty relations as demonstrated in R
@34,37#. In our case, the relation between the desired quan
P and the statistics of the measurement is no more com
than in the examples just quoted. Therefore, it should
possible to estimateP accurately using current technology

The effect of experimental uncertainties in homodyne
tection and their compensation have been well studied@38#.
From these analyses it appears that tomographic met
based on single homodyne detection are superior to the d
double homodyne measurement ofQ. This is becauseQ is
an intrinsically smooth function that requires large data sa
pling in order to obtain relevant information about the inp
state. This hinders the correction and compensation of
perimental errors.

Finally, we can note that we are not interested in all
information carried byQ, but only in the integration in Eq
~15!. This implies that the statistical fluctuations may can
out partially when performing the effective averaging pr
cess involved in the definition ofP.

IV. APPLICATIONS

In this section, we apply the ideas of the preceding s
tions to some relevant field states. Throughout we take
vantage of the SU~2! invariance to choose the simplest e
pressions. It is worth pointing out that all the probabili
distributions examined below are time-independent un
free evolution because the corresponding states are e
states of the total number operatorS0. This also means tha
all fluctuations and fuzziness in the following examples
due solely to polarization fluctuations and cannot be ascri
to intensity fluctuations.

A. SU„2… coherent states

The Q function for the SU~2! coherent stateun,u50,
f&5un&1u0&2 is

Q~u,f!5
n11

4p S cos
u

2D 2n

. ~20!

The degree of polarization and the effective area of the P
carésphere occupied by these states are@28,31#

P5S n

n11D 2

, S54p
2n11

~n11!2
, ~21!

while Pclass51 for all n. The particular casen50 is the
two-mode vacuum withP50 andS54p, as could be ex-
pected. On the other hand, whenn→` we haveP→1 and
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S→0. In the limit of high intensity, the SU~2! coherent
states tend to be fully polarized and theirQ function tends to
be ad function.

In Fig. 1, we have representedQ(u,f) for the particular
caseu2&1u0&2 . It can be seen that it is localized around t
north pole of the Poincare´ sphere that corresponds to circul
polarization~note that the origin is at the bottom of the fig
ure!. Nevertheless, the fluctuations around this point
large enough to decrease the degree of polarization tP
5 4

9 . In Fig. 2, we have plotted the probability distributio
for the field quadraturesP(x,y) in the stateu2&1u0&2 ,

P~x,y!5
4

p
~x21y2!2e22(x21y2), ~22!

where it can be seen that it resembles a circular traject
Similar plots can be found in Ref.@12#.

FIG. 1. Spherical plot of theQ function for a SU~2! coherent
state withn52 andu50. Note that the origin is at the bottom o
the figure. It can be seen that it does not depend onf and that it is
located around the north pole of the Poincare´ sphere.

FIG. 2. Probability distribution for the field quadraturesx, y for
a SU~2! coherent state withn52 and u50. The inset shows a
density plot. It can be seen that this is close to a circularly polari
state.
6-4
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B. SU„2… squeezed states

Several definitions of polarization or spin squeezing c
be found in the literature@19,39#. Here we focus on the on
relevant in the context of precision phase-shift measurem
and atomic spectroscopy. The so-called spectrosc
squeezing occurs when, for fixedn, the uncertaintyDS' of a
component of the Stokes operators normal to^S& satisfies
that @7–9#

DS'

u^S&u
,

1

An
. ~23!

The equality is reached by the SU~2! coherent states. Th
states that satisfy the inequality are the solutions of the
genvalue equation

S lS11
1

l
S2D uj&5muj&, ~24!

whereS65Sx6 iSy andl, m are constants. The solution o
this equation can be found in Ref.@7#, where it is shown that
maximum squeezing occurs whenl→1 andm→0. For sim-
plicity, here we consider the casen52 andm50. In such a
case the solution of the eigenvalue equation in the pho
number basis is

uj&5sinju2&1u0&22cosju0&1u2&2 , ~25!

where tanj5l2. The degree of polarization is

P512
10

3

1

51cos~4j!
. ~26!

For these states,^Sx&5^Sy&50. If we takeS'5Sx , the con-
dition ~23! becomes

DSx

u^Sz&u
5

1

A2usinj1cosju
,

1

A2
, ~27!

which is satisfied whenp/2.j.0. When j50,p/2, the
states~25! are SU~2! coherent states with the maximum d
gree of polarization (P5 4

9 ). On the other hand, maximum
squeezing occurs forj5p/4, leading to a minimum degre
of polarizationP5 1

6 .
The state with maximum squeezing is

uj&5
1

A2
~ u2&1u0&22u0&1u2&2)5u1&xu1&y , ~28!

where u1&xu1&y are photon number states in modesax , ay .
This is the eigenstate ofSx with eigenvalue zero. Its quantum
polarization properties have been studied in Refs.@3,4#. The
SU~2! Q function for the state~28!,

Q~u,f!5
3

8p
~cos2u cos2f1sin2f!, ~29!

is represented in Fig. 3, where it can be appreciated tha
01380
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fluctuations ofSx are reduced in comparison with the cohe
ent state in Fig. 1. The probability distribution for the fie
quadratures,

P~x,y!5
32

p
x2y2e22(x21y2), ~30!

is represented in Fig. 4, where it can be seen that it does
resemble an ellipse. It is worth noting that for the state~28!,
the Stokes parameters vanish,^S&50, so it would be unpo-
larized according to the classical definition.

FIG. 3. Spherical plot of theQ function for a SU~2! squeezed
state withn52, l51, andm50. Compared to the coherent stat
it can be seen that the fluctuations ofSx are clearly reduced.

FIG. 4. Probability distribution for the field quadraturesx, y for
a SU~2! squeezed state withn52, l51, and m50. The inset
shows a density plot. This distribution does not resemble any c
sical polarization ellipse.
6-5
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C. Number states

The Q function for the number stateum&1un2m&2 is

Q~u,f!5
n11

4p S n

mD S sin
u

2D 2(n2m)S cos
u

2D 2m

, ~31!

and the degree of polarization is@28,31#

P512
2n11

~n11!2 S 2n

2mD S n

mD 22

. ~32!

We can briefly examine the limit of large total photo
number. If for simplicity we taken52m, the Stirling ap-
proximation whenn@1 leads to

P.12Ap

n
. ~33!

Therefore, the number states also tend to be fully polari
(P→1) when their intensity is increased. We note that
the statesum&1um&2 we have^S&50, so classically they
would be unpolarized for everym, even in the limitm@1.

For n52 andm51, we have

uc&5u1&1u1&25
1

A2
~ u2&xu0&y1u0&xu2&y). ~34!

Its Q function

Q~u,f!5
3

8p
~sinu!2 ~35!

is represented in Fig. 5, where it can be seen that it
rotated version of Fig. 3 corresponding to the squeezed s
~28!. Accordingly, the degree of polarization is againP5 1

6 .
The Q function is located around the equatoru5p/2 so this
state can be regarded as an equally weighted superpositi
all linearly polarized states. The probability distribution f
the field quadratures plotted in Fig. 6,

P~x,y!5
2

p
@2~x21y2!21#2e22(x21y2), ~36!

resembles circular polarization@6#.

FIG. 5. Spherical plot of theQ function for a number state
u1&1u1&2 . It can be seen that it does not depend onf and that it is
located around the equator.
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D. Phase states

The variable complementary to number is the phase
the context of polarization, the relevant phase variable is
phase difference, which corresponds to the azimuthal an
f on the Poincare´ sphere. There are several approaches
the quantum description of the phase difference in quan
optics @9#. Most of them conclude that the phase-differen
states are

un,w&5
1

An11
(

m50

n

e2 imwum&1un2m&2 . ~37!

The Q function for n52 andw50,

Q~u,f!5
1

4p F S cosf1
1

A2
sinu D 2

1sin2f cos2uG ,

~38!

is plotted in Fig. 7, where it can be seen that it is cente

FIG. 6. Probability distribution for the field quadraturesx, y for
the number stateu1&1u1&2 . The inset shows a density plot. Th
distribution resembles circular polarization.

FIG. 7. Spherical plot of theQ function for the phase stateun
52, w50&. Note that the origin is situated at the left of the figur
It can be appreciated that it is centered aroundf50.
6-6
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DEGREE OF POLARIZATION IN QUANTUM OPTICS PHYSICAL REVIEW A66, 013806 ~2002!
aroundf50 ~note that the origin is at the left of the figure!.
The degree of polarization isP5 11

26 , which is close to the
maximum forn52 (P5 4

9 ). The probability distribution for
the field quadratures,

P~x,y!5
2

3p
@2~11A2!x2

12~12A2!y221#2e22(x21y2), ~39!

is plotted in Fig. 8.

V. CONCLUSIONS

Quantum optics entails polarization states that canno
suitably described by the classical formalism based on
Stokes parameters. In this work, we have analyzed the po
ization of quantum states in terms of a suitably defined pr
ability distribution on the Poincare´ sphere. This allows us to
define the degree of polarization as the distance to the
form distribution representing unpolarized light. With th
natural definition, the degree of polarization turns out to
-
d

dt

ev

e
-

rs

01380
e
e
r-
-

i-

-

pend on the area of the Poincare´ sphere occupied by the fiel
state, i.e., the number of classical polarization states th
contains. We have shown that these definitions are well
haved even when the classical formalism fails.

FIG. 8. Probability distribution for the field quadraturesx, y for
the phase stateun52, w50&. The inset shows a density plot.
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