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Viscosity of meson matter

Antonio Dobado* and Felipe J. Llanes-Estrada†
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~Received 29 September 2003; published 29 June 2004!

We report a calculation of the shear viscosity in a relativistic multicomponent meson gas as a function of
temperature and chemical potentials. We approximately solve the Uehling-Uhlenbeck transport equation of
kinetic theory, appropriate for a boson gas, with relativistic kinematics. Since at low temperatures the gas can
be taken as mostly composed of pions, with a fraction of kaons and etas, we explore the region where binary
elastic collisions with at least one pion are the dominant scattering processes. Our input meson scattering phase
shifts are fits to the experimental data obtained from chiral perturbation theory and the inverse amplitude
method. Our results take the correct nonrelativistic limit~viscosity proportional to the square root of the
temperature!, show a viscosity of the order of the cube of the pion mass up to temperatures somewhat below
that mass, and then a large increase due to kaons and etas. Our approximation may break down at even higher
temperatures, where the viscosity follows a temperature power law with an exponent near 3.
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I. INTRODUCTION

The conceptual framework of this paper is a hadronic m
dium at zero baryon number and dilute enough that it can
considered as a meson gas, not too different from a per
fluid. We have good reason to believe this is a satisfact
approximation to the state of matter in the debris following
relativistic heavy ion collision~RHIC! in the laboratory, and
it may also be relevant in future astrophysical consideratio
where the relatively simple extension of this work to inclu
nucleons is definitely of importance. The observable part
multiplicities, correlations, angular distributions, etc., me
sured in RHICs, are customarily fitted to a few paramet
within hydrodynamical models for an exploding gas@1#.
These typically include a set of initial conditions@phase tran-
sition temperature after a putative quark and gluon plas
~QGP! reaches the confined stage, initial energy density
state equation, etc.#. The hydrodynamical evolution is sup
posed to control the evolution of the gas through a chem
freeze-out temperature, after which the particle composi
is fixed and chemical potentials become necessary, down
thermal freeze-out temperature, where the hadrons sudd
abandon their equilibrium state within the fluid and trav
unscattered to the detector. This sudden transition from
fect local equilibrium to straight particle streaming is know
as the Cooper-Frye prescription. Whether a ‘‘geometric’’~re-
lated to the finite size of the expanding almond-shaped
gion! or a ‘‘dynamical’’ ~related to the local expansion rat!
freeze-out, the scattering between individual particles g
erns the mean free path that would make sensible a hy
dynamical approach.

Mesons at low transverse momentum seem to behave
drodynamically in the sense that the observed momen
distributions can be fitted with hydrodynamic models up t
decoupling temperature@2#. Still the fits are worse for high
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pT , and observables within HBT~Hanbury-Brown-Twiss!
interferometry and the elliptic flow coefficient seem to st
requiring viscous corrections, at least within the QGP@3#. A
brief, pedagogical account of some of these issues can
found in @4#.

We expect a better approximation to be made by con
ering corrections to the equations of a perfect fluid, allowi
for a smoother transition to a free particle stream instead
sharp cutoff at a given temperature. The ideal hydrodyna
cal description requires the time scales of microscopic p
cesses to be much faster than the corresponding macros
fluid scale. This is not necessarily true for a dilute pion gas
moderate temperatures. For example, in@5#, the pion mean
free path is found to be as long as 4–5 fm before a ther
freeze-out at temperatures of order 90–110 MeV~conserva-
tively low!, with the chemical freeze-out temperatures in t
range 90–140 MeV.

Thus if a gradient in the concentration of a conserv
quantity is present in the medium, it can be smoothed ou
pions flying randomly without colliding too often. This in
duces a need for transport coefficients in the hydrodynam
equations, in particular for viscosity when the conserv
quantity is momentum. The larger the interaction, the sho
the mean free path, and therefore the smaller the visco
~for a dilute gas!. As a consequence it is interesting to al
document the sensitivity to the choice of parametrization
the pion interaction given in terms of diverse scatteri
phase shift sets.

To approach a microscopic calculation of the transp
coefficients one can start from rigorous quantum field the
@6# with all the generality of Green’s functions coupled
each other through Schwinger-Dyson equations. In the pr
lem at hand collisions are mostly elastic, not requiring
coupling between states with different numbers of particl
and as the mean free paths are relatively large, we can
ploy Boltzmann’s molecular chaos hypothesis, or decorre
tion between successive collisions. It is more reasonabl
this case to employ the statistical formulation in terms
distribution functionsf, defined below in Sec. II. These als
©2004 The American Physical Society04-1
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satisfy coupled equations with the multiparticle distributi
functions~BBKGY hierarchy of equations, after Bogoliubo
Born, Kirkwood, Green, and Yuan! that the Boltzmann hy-
pothesis truncates. Quantum and relativistic effects nee
be taken into account for a meson gas. We thus set ourse
the task of solving the Uehling-Uhlenbeck equation@7# with
relativistic kinematics. The nonrelativistic formulation h
been published in@8#. The relativistic pion gas has bee
treated before by@9# at the quantum level and by@13# at the
classical~Boltzmann! level as far as the viscosity is con
cerned. We made a brief preliminary comment about t
system in@10#. We here report the full calculation and in
clude the obvious extension to a gas composed of pions
particles with strange quarks~kaons and etas!. For this pur-
pose we include pions, kaons, and etas, which populate
low temperature meson gas. The other possible states
rho, sigma, and kappa mesons, appear through resonanc
meson scattering in our calculation. Consistent with a sor
virial expansion@11#, we ignore collisions between kaon
and etas, and include only those between them and the p
This is valid at moderate temperatures because their de
is small ~they form a very dilute gas up to temperatures
order 150 MeV or more@11#!.

II. NOTATION AND KINEMATICS

We gather here our conventions and notation for the
of the paper, many borrowed from@12#. Since we will be
considering meson matter at low temperatures, compo
mainly of pions, kaons, and eta mesons, latin indices fr
the beginning of the alphabeta,b, . . . denote the particle
type and will take the valuesa5p,K,h in the formulas be-
low. Notice that tensor quantities such ast i j also carry latin
indices in the range 1,2,3 for Cartesian coordinate lab
which will be denoted with the lettersi , j ,k, . . . . For these
tensors, a tildeṼi j means their traceless part, as is comm
use in textbooks. Greek indices are reserved for Minkow
space and run over the values 0,1,2,3. The metricgab will be
taken as diag(1222) (h is reserved for the viscosity!.

In the isospin limit that we employ, the degeneracy
each species of particle in the gas is

gp53, gK54, gh51. ~1!

We will work in the approximation~related, for example, to
the virial expansion in@11#! in which the particle density
dNa /dV for each species satisfies

np@nK ,nh . ~2!

Therefore we consider binary collisions between pion pa
or between a pion and either a kaon or an eta meson.
amounts to neglecting terms of ordernK

2 ,nh
2 . For the elastic

collisions we consider,pp→pp, pK→pK, ph→ph, the
particle numbersNp ,NK ,Nh are separately conserved. Th
is a good approximation in the hadron gas following a re
tivistic collision after chemical freeze-out. This conservati
forces the introduction of chemical potentials collectively d
noted ma and fugacitiesza5eb(ma2ma). We introduce no
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baryon chemical potential as we work at zero baryon nu
ber. The corresponding elastic cross sections for meson s
tering will be denoted by

dsab5ds~ab→ab!

with the following momentum assignments for the initial a
final states:

~3!

Further,rab is the two-body phase space

rab5
1

s
As21ma

41mb
422ma

2mb
222sma

222smb
2

in terms of the Mandelstam variables5(p1p1)2. The vari-
able t5(p2p8)2 is related to the scattering angle in th
center of momentum frame:

cosuc.m.511
2t

srab
2

~4!

which is used below in formula~49! and following. The total
momentum isPW 5pW 1pW 1 and the total energyE. Since we
will choose a frame where the fluid is locally at rest~see
below!, the collision needs to be taken in an arbitrary fram
with respect to which all collision angles and momenta w
henceforth be referred. This also leads to an additional d
culty due to a double valuedness in Eq.~57! below that is not
present in the center of mass frame usually employed
meson-meson scattering. The distribution functions in ph
space will be denoted byf a , f b , f a8 , f b8 , and they are short-
hand for

f a5 f a~xW ,pW ;t !.

The normalization constants for these functions (\51) are

ja5
~2p!3

ga
.

III. THEORETICAL BACKGROUND

A. Hydrodynamics

We start by writing all magnitudes for only one partic
species. The generalization to the three types of meson
sidered is obviously additive in this subsection and will
understood. The energy-stress tensor for an ideal fluid w
local velocity fieldUa(x) is
4-2
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Tab52Pgab1vUaUb ~5!

with the enthalpy per unit of proper volume~comoving vol-
ume at velocityU with respect to the fixed Lagrangian re
erence frame! being the sum of pressure and energy den
~also per proper volume!:

v5P1r.

Also conserved in the fluid’s evolution is the vector fie
associated with the particle density flow:

na5nUa , ~6!

where again the particle density is taken per unit of pro
volume. The velocity fieldU as seen from the fixed referenc
frame can be interpreted in terms of the three-velocityVW by

introducing theg factor g5(A12VW •VW )21 as

U5g~1,VW !.

All quantities will by default be referred to the comoving
Eulerian fluid frame, whereVW 50W . The ideal fluid continuity
equation is

] t~ng!1¹W ~ngVW !50. ~7!

If we now assume the fluid to be slightly out of equilib
rium microscopically, that is, a small departure from t
ideal fluid, the conserved quantities need to be modified
allow for the various transport phenomena: in a gas parti
can move from one element of the fluid to another at a
croscopic level, carrying their charge, particle number,
ergy, momentum, etc., and maximizing entropy; they smo
out the gradients of these quantities in the fluid. The mac
scopic description of these phenomena is achieved by ad
transport terms to the conserved currents and tensors. In
ticular, for the stress-energy tensor we add at:

Tab52Pgab1vUaUb1tab ~8!

with

tabUb50

since these transport phenomena act across fluid elem
and out of the world-line of one of them. This implies that
the Eulerian framet i05t0i5t0050.

To first order in the velocity gradients~that is, for small
spatial variations of the velocity field! t is given by

t i j 522hṼi j 1volume term,

Ṽi j 5
1

2
~] iVj1] jVi !2

1

3
]kV

kd i j ,

(
i

Ṽi i 50. ~9!
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The volume viscosityj is usually much smaller than th
shear viscosityh, this being the reason why we concentra
on the latter. This was shown for a pure pion gas by Dave
in @9#. We expect this result to hold in the multicompone
extension of the theory and accept it henceforth. For co
pleteness we give the expression fort in a general frame of
reference:

tab52hsF]bUa1]aUb2UbUg]gUa

2UaUg]gUb1
2

3
]gUg~gab2UaUb!G .

At the hydrodynamic level of a fluid’s description,h is an
empirical parameter. Its value needs to be measured~fitted!
for the different experimental conditions of the consider
fluid.

B. Thermodynamics

We collect in this subsection the relevant thermodyna
cal properties leading to the equation of state of an id
multicomponent Bose gas. Since we are interested in
leading viscosity effects, we take the thermodynamical qu
tities to be unaffected by the interactions. These could
corrected if interest were found in it, using the method of t
virial expansion and the physical phase shifts described
@13#. Various symbols are used in the following formulas: t
chemical potentialma for each species, particle massma ,
temperatureT and inverse temperatureb, fugacity za , and
pressureP.

First we give the number density for particle of speciesa:

na5
ga

2p2E
0

`

dpp2
1

e2b(ma2E)21
1

ga

V

1

e2b(ma2ma)21
.

~10!

The partial pressure for speciesa reads

Pa5
2gaT

2p2 E
0

`

dpp2 log@12eb(ma2E)#2
gaT

V
log@12ebma#

~11!

and the total pressure is simply given by the sum of
partial pressures:

P5(
a

Pa . ~12!

We will immediately drop the Bose-Einstein condensate te
since it is relevant only at essentially zero temperature,
keep only the integral over the state continuum in both
pressions. Figure 1 shows the number density normalize
make the species-independent quantityn/(gm3) as a func-
tion of the fugacity.

The internal energy density per species is then
4-3
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ea5
ga

2p2E0

`

dpp2
E

e2b(ma2E)21
. ~13!

In the absence of a chemical potential it scales asT4. Cor-
rections due to interactions~which we consider second orde!
are to be found, e.g., in@11#. We will operate with the con-
venient shorthanded adimensional variablesx,y,z:

xa5
p2

ma
2

,

E5maA11x,

ya5bma5
ma

T
,

za5eb(ma2ma). ~14!

Defining two simple functions through quadrature,

l n~y,z!5E
0

` xn dx

A11x~z21ey(A11x21)21!
, ~15!

tn~y,z!5E
0

` xn dx

~z21ey(A11x21)21!
, ~16!

that satisfy a recursion relation

tn21~y,z!5
yz

2n

] l n~y,z!

]z
, ~17!

FIG. 1. Number density for a given species as a function
fugacity ~see text! for various values of the quotienty5mp /T.
11600
the expressions for the partial pressure and number den
become very compact:

Pa5
gama

4

12p2
l 3/2~ya ,za!, ~18!

na5
gama

3

4p2
t1/2~ya ,za!. ~19!

Therefore the equation of state for a one-component gas

Pa5
ma

3

l 3/2~ya ,za!

t1/2~ya ,za!
na , ~20!

and summing over all species we obtain the final equation
state for a multicomponent ideal gas in thermodynamic eq
librium:

P5(
a

mana~ya ,za!
l 3/2~ya ,za!

3t1/2~ya ,za!
, ~21!

in which the independent variables can be taken to beT,za or
T,na by use of Eq.~10!. Equation~21! is a generalization of
the classical~nonrelativistic!, ideal mixed gas state equatio

P5T(
a

na .

C. Kinetic theory

The distribution functions f i satisfy an Uehling-
Uhlenbeck equation. This is a Boltzmann-type equation t
includes quantum Bose-Einstein statistics in the final st
Since we consider three particle species, we have a se
coupled equations:

d fp

dt
5C@ f p , f p#1C@ f p , f K#1C@ f p , f h#,

d fK

dt
5C@ f K , f p#, ~22!

d fh

dt
5C@ f h , f p#,

neglectingKK,Kh,hh as well as inelastic interactions, wit
the collision term

C@ f a , f b#5E dsab dpW 1 v rel@ f a8 f 1b8 ~11jaf a!~11jbf 1b!

2 f af 1b~11jaf a8!~11jbf 1b8 !#. ~23!

Here v rel is the relative velocity between the colliding pa
ticles, and in terms of the Lorentz-invariant square of t
scattering amplitude and phase space, we have

dsab5
1

4E~p!E1v rel
uTu2 dL~s;pW 8,pW 18! ~24!

f

4-4
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with

dL5
1

4p2

p8dE8

E18
dV~p8!d„E~p!1E12E82E18….

~25!

For pion-pion collisions, since the particles in the final st
are indistinguishable to the strong interactions in the isos
limit, a factor of 1

2 should multiply the integral overdspp .
The collision term is annihilated by the Bose-Einstein d

tribution function corresponding to a gas in thermal equil
rium

f 0a5
ja

21

z21eb[E(p)2ma]21
. ~26!

Small departures from equilibrium are conventionally d
noted by

f a5 f 0a1d f 0a5 f 0aS 11
x0a

T D . ~27!

The particle and energy densities can be obtained by i
grating over momenta:

n~xW !5E dpW f 0 , r5E dpW f 0E~p!. ~28!

The contribution to the stress-energy tensor can be sh
to be, summing over particle species,

t i j 5(
a
E dpW

E
pipjd f a . ~29!

For the purpose of evaluating the shear viscosity, which
pears at the hydrodynamic level as a tensor of first orde
the velocity gradient, the perturbation is taken to be of
form

xa5ga
i j Ṽi j

with Ṽ defined in Eq.~9! above; and as a consequence of
contraction with a traceless tensor, only the traceless pa
g is relevant, so we can also take

gi j
a 5S pipj2

1

3
d i j p

2Dga~p! ~30!

with g(p) a scalar function, conveniently expanded in
polynomial base

ga~x!5(
s50

`

Bs
(a)Ps~x;y,z!, ~31!

the polynomialsP being defined in Appendix B.
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IV. SOLUTION OF THE TRANSPORT EQUATION

We next show how the transport equations~22! can be
simply solved near equilibrium. We describe the method
only one particle species and leave the generalization to t
or more to the reader.

A. Advective term

To simplify the left hand side in Eq.~22! we write it as

d f

dt
5

] f

]t
1

pW

E~p!
•¹W f ~32!

@vW 5pW /E(p)# with an approximately constant perturbation

] t f .] t f 0 .

In the proper Eulerian frame we knowVW 50W but this does
not apply to its derivatives] iVW which are in general not null
This forces us to Lorentz transform to an arbitrary, nea
frame in this derivation:

f 05
j21

@e2m/Te[E(p)2pW •VW ]/TA12V2
21#

with E(p)5Ap21m2 andm<m. Thus, in Eq.~32!,

] f

]t
5

f 0

T

1

12e2b[E(p)2m] S pW •
]VW

]t
1

]m

]P U
T

]P

]t

1F ]m

]T U
P

2
m2E~p!

T G ]T

]t D . ~33!

This can be reduced@12# by using the standard thermody
namical relations, valid near equilibrium to first order in th
perturbation, such as the Maxwell identities, to the form

] f

]t
5

f 0

T

1

12e2b[E(p)2m] S pW •
]VW

]t
1

1

n

]P

]t

1b@E~p!2v/n#
]T

]t
D , ~34!

and in an analogous way

pW •¹W f 5
f 0

T

1

12e2b[E(p)2m] S pipjVi j 1
1

n
pW •¹W P

1b@E~p!2v/n#pW •¹W TD . ~35!

Next we profit again from the vicinity to equilibrium an
employ the equation of continuity~7! and state equation
~20!, while we ignore all terms proportional to¹W •VW not al-
ready included inṼi j and ¹W T,¹W P, since they influence the
calculation of the volume viscosity or thermal conductivit
4-5
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but not the shear viscosity. Upon comparison with Eq.~9! we
obtain the final expression for the advective term:

d f

dt
5

f 0

TE

1

12e2b[E(p)2m]
pipj Ṽ

i j . ~36!

B. Collision term

The integrand of any of the collision functionalsC@ f a , f b#
contains the product of Bose-Einstein distributions with e
hanced final state phase space:

F5 f a8 f 1b8 ~11jaf a!~11jbf 1b!2 f af 1b~11jaf a8!~11jbf 1b8 !.

~37!

For perturbations near local equilibrium, the distributi
function can be written as in Eq.~27!, and this entails for the
integrand

F5F01dF.

The collision functional evaluated on the Bose-Einstein eq
librium distribution is naturally zero:

C@ f 0a , f 0b#50. ~38!

After some simple algebra we can show that

dF5
f 0a8 f 01b8 f 0af 01b

Tjajb
eb(E2ma2mb)D@x~12e2b(E2m)!#,

~39!

D@X#5Xa81X1b8 2Xa2X1b ,

and it finally follows that

C@ f a , f b#5
jajb

Tzazb
E dsab dpW 1 v rele

bEf 0a8 f 01b8 f 0af 01bD$x@1

2eb~E2m!#%. ~40!

C. Expression for the viscosity

Upon substitution of Eq.~31! in Eq. ~40!, and neglecting
d f compared tof 0 in the advective term~36!, the linearized
transport equation takes the form

S A11
p 1A11

K 1A11
h A12 A13

A21 A22 0

A31 0 A33

D •S B0
p

B0
K

B0
h
D 5S Cp

CK

Ch

D .

~41!

Once the integrals in theA’s ~this is the largest computation!
and C’s have been performed, the matrix system can
solved and theB coefficients in Eq.~31! provide the first
approximation to the functiong(p). The series converge
very fast as shown in@8#, and therefore we keep only thi
order in the present work. This can then be substituted in
viscosity expressions below which can then be easily in
grated on a computer:
11600
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h52
1

10T (
a
E dpW 8

E8
pi8pj8 f 0a8 ga8

i j ~42!

@compare with expression~4.19! in Ref. @14##. The angular
integrals can be trivially performed, reducing the express
to

h52
4p

15T (
a
E dp8

E8
p86f 0a8 ga~p8!, ~43!

which in terms of dimensionless variables@those ofg can be
read off Eq.~27!# gives

h52
2p

15Tja
(

a
ma

6E
0

`

dx
x5/2ga~x!

A11x~za
21eya(A11x21)21!

.

~44!

Employing Eq.~31! we can write

h52
2p

15T (
a

(
S50

`

Bs
(a)

ma
6

ja

3E
0

`

dxW5/2~xa ;ya ,za!Ps~za ;xa ,ya! ~45!

and using the orthogonality relation~B2!

h52
2p

15T (
a51

3

B0
(a)

ma
6

ja
A5/2(ya ,za)

0 . ~46!

V. MESON SCATTERING

The strong interactions respect isospin symmetry, a
thus I is a good quantum number to label scattering am
tudes. These we project on the various possible partial wa

TIJ~s!5
1

32pNE21

1

dx PJ~x!TI„s,t~s,x!,u~s,x!… ~47!

~the symmetry factorN52 is necessary for pion-pion sca
tering,N51 otherwise!. After neglecting inelastic channels
the partial wave scattering amplitudes can be parametrize
terms of a single phase shift.

TIJ5
sind IJeid IJ

rab
. ~48!

We content ourselves with keeping only the lowest possibJ
for each isospin channel, as this provides for most of
interaction.

Then, with our kinematical choice of variables~see Sec.
II ! we can express the square of the scattering amplitude
p-p collisions in terms of an average over the three isos
channels as
4-6
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uTppu25
1

9
~ uT0u213uT1u215uT2u2!

5
1

9 S 32p

rpp
D 2F sin2d00~s!127S 11

2t

srpp
2 D 2

3sin2d11~s!15 sin2d20G . ~49!

For pion/kaon collisions we can also average over isospi
obtain:

uTKKu25
1

6
~2uT1/2u214uT3/2u2!

5
1

3 S 16p

rpK
D 2F2 sin2d 3

2
01sin2d 1

2
0

19 sin2d 1
2

1S 11
2t

srpK
2 D 2G , ~50!

and finally forh-p scattering

uThpu25S 16p

rph
D 2

sin2d10. ~51!

Notice that the partial wave normalization gives a factor~16!
for distinguishable and~32! for identical particles in agree
ment with@14#. If only a pion gas is considered, the releva
phase shifts areJ50, I 50,2 andI 51, J51, which domi-
nate the cross section at low energy. We next study the p
and then the meson gas, in various approximations as
lows.

~1! The approximation studied in@15# corresponds to tak
ing a simple resonance saturation parametrization for
isoscalar and isovector phase shifts:

d00~E!5
p

2
1arctanS E2ms

Gs/2 D ,

d11~E!5
p

2
1arctanS E2mr

Gr/2 D , ~52!

with momentum dependents, width Gs52.06p and mass
ms55.8mp , andr width

Gr~p!50.095pS p/mp

11~p/mr!2D 2

and massmr55.53mp , whereas the scalar isotensor pha
shift is simply parametrized as a straight line

d20520.12p/mp . ~53!

~2! To connect with the nonrelativistic calculation, we w
also briefly employ a~totally unrealistic at moderate tem
peratures above, say, a few MeV! pion scattering amplitude
based on the low energy theorem of Weinberg. This is
11600
to

t

n,
l-

e

e

uTu25
23

3

mp
4

f p
4

. ~54!

~3! Next, through our calculation we profit from the IAM
~the inverse amplitude method@16#! fitted to the pion scat-
tering phase shifts. Whether in the pion gas or in the mix
pion, kaon, and eta gas, chiral perturbation theory provi
an expansion of the scattering amplitudes at low energy:

t IJ5t IJ
(2)1t IJ

(4)1•••, ~55!

where the order of a term in the expansion counts the pow
of mp or momentum, or equivalently inverse powers off p .
The single channel inverse amplitude method construc
model amplitude based on this low energy expansion t
incorporating exact~as opposed to perturbative order by o
der! unitarity above the two-particle threshold and below
elastic thresholds, allows one to extend chiral perturbat
theory, providing satisfactory fits to the scattering amplitud
up to around 1 GeV. The one-channel IAM amplitude is

t IJ5
t IJ
(2)

12t IJ
(4)/t IJ

(2)
~56!

and can be understood as the@1,1# Padéapproximant corre-
sponding to the Taylor series~55!. The first order follows
from Weinberg’s low energy theorem. The second order
cludes chiral perturbation theory meson loops and orderp4

counterterms. These have a series of coefficients, usually
notedl i after the work of Gasser and Leutwyler@17#, that can
at the moment be computed theoretically only approximat
@18#. These coefficients are in practice fitted to the pion sc
tering amplitudes or other observables. Since this ratio
approximation to the scattering amplitudes presents pole
general~in particular, thes and r mesons are clearly vis
ible!, it has been applied recently to the behavior of re
nances in a thermal pion bath@19#. Here we employ the fit of
that paper to the scattering amplitudes at zero tempera
that is, we ignore the possible effect of the thermal bath
the parameters entering the fits (l ’s, f p , andmp which are
adjusted to their physical values! as a higher order effect
The l ’s employed in ourSU(2) fits to the pion scattering
amplitudes are given in Table I.

~4! Finally, the full calculation including kaons and eta
requires a parametrization of the elasticSU(3) phase shifts.
This is again provided by chiral perturbation theory, no
with the strange quark incorporated@20# and extended to
higher energies via a unitarization method, now the coup

TABLE I. Values of theSU(2) chiral perturbation theory pa
rameters employed in the IAM fit to the pion scattering amplitud
~input to this calculation of the viscosity!.

l̄ 1
20.27

l̄ 2
5.56

l̄ 3
3.4

l̄ 4
4.3
4-7
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channel IAM. We use the phase shifts obtained in@21# with
the L chiral perturbation theory parameters shown in Ta
II.

The use of the IAM is of course not necessary to obtai
good description of the transport coefficients, but it is a v
convenient parametrization of the experimental data, pro
ing outstanding fits to the complete set of meson scatte
channels described in@21#.

We finally quote the meson masses employed in
paper: mp5139.57 MeV, mK5493.677 MeV,mh5547.30
MeV.

TABLE II. Values of theSU(3) chiral perturbation theory pa
rameters employed in the IAM fit to the meson scattering am
tudes~input to this calculation of the viscosity!.

L̄1
0.59 L̄5

1.8

L̄2
1.18 L̄6

0.006

L̄3
22.93 L̄7

20.12

L̄4
0.2 L̄8

0.78
ib
ta
ls
e
te

re
he

th
F
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VI. NUMERICAL EVALUATION

A number of integrals need to be numerically evaluated
complete the calculation. Those of the type~B2! needed to
compute the coefficientsC in Eq. ~41! as well as the viscos
ity in Eq. ~46! are simple one-dimensional integrals. Th
Bose-Einstein factors ensure very good convergence at
momentum. They are evaluated in a one-dimensional g
with 2000 points by an open-interval trapezoidal rule in e
sentially no computer time. More complicated are the in
grals stemming from the collision term of the Uehlin
Uhlenbeck equation needed for theAab coefficients in Eq.
~41!. Since we have already chosen the system of refere
where all magnitudes are expressed in the comoving fl
frame, we have no freedom to study the collision in the c
ter of mass, so we employ arbitrary momenta in these in

grals. The nominal variables arepW , pW 1, andV(pW 8), while pW 18

is fixed by momentum conservation andupW 8u by energy con-
servation. The latter has a somewhat messy expressio

terms of the angleb betweenpW 8 andPW :

i-
p85

S 12
P22mi

21mj
2

E2 D P cosb6AS 12
P22mi

21mj
2

E2 D 2

P2 cos2 b24S 12
P2 cos2 b

E2 D S mi
22

~E22P21mi
22mj

2!2

4E2 D
2@12~p2cos2b!/E2#

,

cosb5
1

P
$p1 sinu~pW 1!sinu~pW 8!cosf~pW 8!1cosu~pW 8!@p1p1 cosu~pW 1!#%. ~57!
ply
tum
in
ck

c
rd-
por-

om

is
Two solutions of this quadratic energy equation are poss
and need to be summed over in the integrand for cer
kinematical configurations. Of the eight remaining integra
three are trivial. Invariance of the collision under thre
dimensional rotations allows us to perform the angular in
grals associated with, say,pW , and refer all angles to thep
axis. Then there is still an axial symmetry of the other th
particles around this axis which allows us to perform t
azimuthal integral overf(p1). The remaining five variables
are thenupW u, upW 1u, u(p1), andV(pW 8). The resulting integral
is performed numerically with the Vegas@22# random-point
algorithm. Again the Bose-Einstein factors concentrate
integrand in a compact set and convergence is very fast.
precision around 1/1000 andx2.1, it is enough to start with
2000 points and double that number five or six times, wh
evaluating the integral ten times for each fixed number
points.

VII. PION GAS VISCOSITY

We first evaluate the viscosity with a constant amplitu
~54!. The result is plotted in Fig. 2. Since the cross section
le
in
,
-
-

e

e
or

e
f

e
is

independent of energy, an increase in temperature sim
populates states with faster pions which transfer momen
more efficiently. Thus, the viscosity grows out of control
an unrealistic manner. But this calculation is useful to che
the nonrelativistic limit reported in@8#, which used precisely
this interaction. The behavior at low temperature~and this is
common to all our calculations! is governed by a nonanalyti
h}AT behavior. To see it, simply remember that for a ha
sphere classical gas, the mean free path is inversely pro
tional to the cross section and density:

l5
1

A2ns
,

and by calculating the momentum transferred by rand
flight of the gas molecules one can obtain

h5
1

3
nmAv2l

in terms of the rms velocity. This shows that the viscosity
4-8
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inversely proportional to the cross section and upon emp
ing the equal partitioning of energymv2/2.3kT/2 we see
that the viscosity is also proportional to the root of the te
perature, providing a convenient check.

Next we turn to some more realistic pion interaction
These are provided by the simple analytical fit to the p
phase shifts from Eq.~52! and by theSU(2) or SU(3) in-
verse amplitude method. The results are quite consistent
plotted in Figs. 3, 4, and 5, respectively. The difference
tween them gives us an idea of the sensitivity of the visco
to the employed phase shifts, since all sets of phase shift
reasonable. To what precision these scattering phase s
are known is an ongoing debate@23#, and if a future deter-
mination pinned them down with greater accuracy a mu
better prediction for the viscosity could be made, since
parametrization used for the phase shifts seems to be on
the largest uncertainty sources in the present~already realis-
tic! computation.

VIII. FULL PION, KAON, ETA GAS VISCOSITY

Finally, we turn to a gas including kaon and eta meso
We first introduce either type of particle separately and plo
in Figs. 6 and 7. The effect of kaons is considerably lar
than the effect of eta mesons. By comparing with Fig.
which was calculated with the same pion phase shifts,
can see that already at 100 MeV the addition of the ka
alone gives a viscosity much bigger than present in the p
gas. The sensitivity of this calculation to the pion fugac
~density! is also very large. The combined effect of addi

FIG. 2. Shear viscosity of the pion gas with a constant scatte
amplitude ~from Weinberg’s theorem!. Since the interaction doe
not grow with the pion momentum, the viscosity is unaccepta
large even for somewhat low temperatures. But this is used to ch
the low temperature limit.
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both kaons and etas to the gas is finally plotted in Fig. 8.
course, in a relativistic heavy ion collision we expect t
chemical freeze-out of heavier mesons to occur before,
therefore we need to introduce chemical potentials for
species, those corresponding to the heavier mesons b
larger than those for lighter mesons.

In natural units the viscosity has dimensions of an ene
cubed, and indeed at moderate to high temperatures, the

g

y
ck

FIG. 3. Shear viscosity of the pion gas from the simple anal
cal phase shifts~52! from Welkeet al. @15#.

FIG. 4. Shear viscosity of the pion gas from the inverse am
tude method andSU(2) chiral perturbation theory.
4-9
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cosity approximately follows a temperature power law w
an exponent near~and slightly above! 3, which suggests tha
the viscosity is dominated by the highest energy pions wh
the mass and chemical potential scales are less impo
than the momentum scale. The low temperature behavio
the viscosity is plotted in Fig. 9 where we observe how
low temperature the effect of adding the more massive p

FIG. 6. Separate effect of addingK or h mesons to the pion gas
with their chemical potential vanishing. The kaons are much m
important~partly due to their multiplicity!.

FIG. 5. Shear viscosity of the pion gas from theSU(3) inverse
amplitude method phase shifts.
11600
re
nt

of
t
r-

ticles is to decrease the plateau in which the viscosity
approximately independent of the temperature.

The resulting viscosities for various temperatures a
chemical potentials are tabulated in Table III and convey
final results.

e

FIG. 8. The shear viscosity for the full meson (p,K,h) gas in
linear ~upper! and semilogarithmic~lower! panels. At very lowz
and T the reader can appreciate how the nonrelativistic beha
(h}AT) is recovered. The chemical potential for bothK andh has
been set to zero.

FIG. 7. Separate effect of addingK or h mesons to the pion gas
with their chemical potential vanishing. Fugacity for the pions se
z50.01.
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IX. COMPARISON WITH OTHER APPROACHES
AND DISCUSSION

The viscosity of a pion gas has already been treated
Davesne in@9# as a quantum relativistic system. In this pi
neering work, to solve the relativistic Uehling-Uhlenbe
equation the pion interaction was modeled following R
@15#, which corresponds to the phase shifts~52! above. If we
consider only a pion gas and employ the same set of ph
shifts then we can approximately reproduce these res

FIG. 9. The shear viscosity for the full meson (p,K,h) gas at
lower temperature. The chemical potentials aremp5100 MeV,
mK5250 MeV, mh5300 MeV. The low energy plateau is reduce
by adding more species, as kaons and etas behave less like
stone bosons than the pion, so their low energy interactions
already larger and have a smaller relative increase than the
with collision energy; thus the viscosity increases more rapidly w
the temperature as the number of species is increased.

TABLE III. Shear viscosity at various values of chemical pote
tial and temperature. Units are MeV (T andma) and (100 MeV)3

(hs). The error due to the Monte Carlo evaluation of the 5D in
gral is ~5! on the last significant digit of the viscosity. This calc
lation employs the inverse amplitude method phase shifts wi
SU(3).

T mp mK mh hs

100 0 0 0 3.37
100 0 100 150 5.24
100 0 200 250 9.96
100 100 100 150 3.04
100 100 200 250 4.56
100 100 400 450 19.0
125 0 0 0 7.13
125 0 100 150 11.4
125 0 200 250 20.1
125 100 100 150 6.31
125 100 200 250 9.69
125 100 400 450 31.6
150 0 0 0 15.4
150 0 100 150 24.2
150 0 200 250 39.6
150 100 100 150 13.4
150 100 200 250 20.2
150 100 400 450 53.8
11600
y

.
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ts.

Furthermore, we document the sensitivity of the viscosity
the parametrization of the phase shifts, which was not trea
in this reference. We also streamlined the numerical solu
of the transport equation, by employing a new family
orthogonal polynomials that allows one to systematically
tract better approximations if so wished, and performing
Monte Carlo evaluation of the collision multidimensional i
tegral, whereas the more analytical treatment in@9# is also
somewhat more obscure. It is also interesting that a re
ation time estimation of the Boltzmann equation~with no
quantum corrections! permits one to approximate the she
viscosity of a pion/kaon gas in@14,24#. The order of magni-
tude and qualitative behavior as a function of temperature
correct. We obtain somewhat larger results, which are
unexpected as quantum corrections in a Bose gas may
to decrease the cross section for scattering to initially
populated states, increasing the viscosity, and furtherm
some difference is expected due to our use of theSU(3)
phase shifts.

To summarize, we have presented a systematic calcula
of the shear viscosity in meson matter at moderate temp
tures. We found the viscosity to behave as expected fro
nonrelativistic gas point of view at very low temperatures,
stabilize and even decrease~depending on the chemical po
tential! at small temperatures because of the larger cross
tion at increasing energies~the decrease would be a typic
effect of a Goldstone boson gas!, and to follow a positive
power law at moderate to high temperatures. At highT
~above 150 MeV! our approach should be less reliable b
cause we are employing scattering phase shifts paramet
up to momenta of 1 GeV and with sizable temperatures st
with higher momentum start being populated. Eventually o
reaches the phase transition temperature, and any result
tained from within the chirally broken phase~as built-in in
our use of meson fields and chiral perturbation theory! are
simply not appropriate. Extensions of this work to inclu
nucleons or to evaluate other interesting transport coe
cients are now straightforward.
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APPENDIX A: LINEARIZED TRANSPORT
EQUATION COEFFICIENTS

In this appendix we provide the matrix elements nec
sary for the first order Chapman-Enskog solution of t
transport equation. The right-hand side of the system~41! is

S Cp

CK

Ch

D 5S 4pmp
6

3jp
l 5/2~yp ,zp!

4pmK
6

3jK
l 5/2~yK ,zK!

4pmh
6

3jh
l 5/2~yh ,zh!

D . ~A1!

ld-
re
on
h

-

in
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The left-hand side matrix elements can be given by the
mula

Aab5
jajb

zazb
E dsabv rel dpW dpW 1eb(E2ma2mb) f 0af 0b1f 0a8 f 0b18

3~12zaeb[E(p)2ma] !S d ikd j l 2
1

3
d i j dklD pipj~Aab!kl

~A2!

in terms of a tensor (Aab)kl which takes the values

~Ap
11!kl5p8k p8 l~12e2b[E82mp] !2pkpl~1

2e2b[E(p)2mp] !1p18
kp18

l~12e2b[E182mp] !2p1
kp1

l

3~12e2b[E12mp] !,

~AK
11!kl5~Ah

11!kl5p8k p8 l~12e2b[E82mp] !2pkpl

3~12e2b[E(p)2mp] !,

~A12!kl5p18
kp18

l~12e2b[E182mK] !2p1
kp1

l ~12e2b[E12mK] !,

~A13!kl5p18
kp18

l~12e2b[E182mh] !2p1
kp1

l ~12e2b[E12mh] !,

~A22!kl5p8k p8 l~12e2b[E82mK] !2pkpl

3~12e2b[E(p)2mK] !,

~A21!kl5~A31!kl

5p18
kp18

l~12e2b[E182mp] !2p1
kp1

l ~12e2b(E12mp)!,

~A33!kl5p8k p8 l~12e2(E82mh] !2pkpl~12e2b[E(p)2mh] !.
11600
r- APPENDIX B: ORTHOGONAL POLYNOMIALS

In solving the Uehling-Uhlenbeck equation with relativi
tic kinematics and quantum statistics, one needs to integ
over the measure

dm r~x;y,z!5wr~x;y,z!dx5
xrdx

A11x~z21ey(A11x21)21!
.

~B1!

With the variablex and parametersy,z defined in Eq.~14!
above, with rangeszP(0,1), yP(0,̀ ), xP(0,̀ ). The index
r>1 takes in typical applications a half-integer value due
relativistic kinematics. It can be easily seen thatdm r is a
valid measure, positive definite, with bound integrals

mn5E
0

`

dxWr~x;y,z!xn,`

for n a positive integer. As a consequence we can defin
family of orthogonal polynomials analogous to the Soni
polynomials, but more appropriate for a relativistic Bos
Einstein gas, which can conveniently be chosen monic~co-
efficient of highest dimension term equals 1!, denoted
Ps(x;y,z), and with an orthogonalization

E
0

`

dxWr~x;y,z!Pr
s~x;y,z!Pr

t ~x;y,z!5dstAr
s~y,z!.

~B2!

Since the polynomials are considered monic,A is not unity.
In the calculation presented we have considered a meson
slightly out of equilibrium, where a good approximation
achieved by keeping only the first polynomial in the expa
sion of g(p) defined in Eq.~30! above. This was verified in
@8# in the nonrelativistic limit. Therefore in this calculatio
we need to evaluate only theA00(y,z) function.
. B

the
the
ref-

2

@1# J.D. Bjorken, Phys. Rev. D27, 140 ~1983!. For a recent re-
view, see P.F. Kolb and U. Heinz, nucl-th/0305084.

@2# U. Heinz, nucl-th/0306046.
@3# D. Teaney, Phys. Rev. C68, 034913~2003!.
@4# R. Pisarski, in Proceedings of Quark Matter’02~to be pub-

lished!, nucl-th/0212015.
@5# P. Gerber, H. Leutwyler, and J.L. Goity, Phys. Lett. B246, 513

~1990!; J.L. Goity and H. Leutwyler,ibid. 228, 517 ~1989!.
@6# G. Aarts and J.M. Martı´nez Resco, Phys. Rev. D68, 085009

~2003!; T.S. Evanset al. Nucl. Phys.B654, 357 ~2003!.
@7# E.A. Uehling and G.E. Uhlenbeck, Phys. Rev.43, 552 ~1933!.
@8# A. Dobado and S.N. Santalla, Phys. Rev. D65, 096011~2002!.
@9# D. Davesne, Phys. Rev. C53, 3069~1996!.

@10# F.J. Llanes-Estrada and A. Dobado, hep-ph/0305151.
@11# P. Gerber and H. Leutwyler, Nucl. Phys.B121, 387 ~1989!.
@12# L. Landau and E.M. Lifshitz,Fluid Mechanics, Course of The-

oretical Physics, 2nd ed.~Pergamon, New York, 1981!, Vol. 6;
Physical Kinetics, Course of Theoretical Physics, Vol. 10~Per-
gamon, Oxford, 1981!; see also R. Liboff,Kinetic Theory,
Classical, Quantum and Relativistic Descriptions~Prentice-
Hall, Englewood Cliffs, NJ, 1990!.

@13# R. Venugopalan and M. Prakash, Nucl. Phys.A546, 718
~1996!.

@14# M. Prakashet al., Phys. Rep.227, 321 ~1993!.
@15# G.M. Welke, R. Venugopalan, and M. Prakash, Phys. Lett

245, 137 ~1990!.
@16# A. Dobado and J.R. Pela´ez, Phys. Rev. D59, 034004~1999!;

47, 4883~1993!; 56, 3057~1997!.
@17# J. Gasser and H. Leutwyler, Ann. Phys.~N.Y.! 158, 142

~1984!.
@18# F.J. Llanes-Estrada and P. de A. Bicudo, in Proceedings of

5th International Conference on Quark Confinement and
Hadron Spectrum, hep-ph/0212182; hep-ph/0306146, and
erences therein.

@19# A. Dobado et al., Phys. Rev. C66, 055201 ~2002!; F. J.
Llanes-Estradaet al., in Strong and Electroweak Matter 200
4-12



hys.

VISCOSITY OF MESON MATTER PHYSICAL REVIEW D69, 116004 ~2004!
~World Scientific, Singapore, 2003!, hep-ph/0212184.
@20# J. Gasser and H. Leutwyler, Nucl. Phys.B250, 465

~1985!.
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