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Viscosity of meson matter
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We report a calculation of the shear viscosity in a relativistic multicomponent meson gas as a function of
temperature and chemical potentials. We approximately solve the Uehling-Uhlenbeck transport equation of
kinetic theory, appropriate for a boson gas, with relativistic kinematics. Since at low temperatures the gas can
be taken as mostly composed of pions, with a fraction of kaons and etas, we explore the region where binary
elastic collisions with at least one pion are the dominant scattering processes. Our input meson scattering phase
shifts are fits to the experimental data obtained from chiral perturbation theory and the inverse amplitude
method. Our results take the correct nonrelativistic lifwiscosity proportional to the square root of the
temperaturg show a viscosity of the order of the cube of the pion mass up to temperatures somewhat below
that mass, and then a large increase due to kaons and etas. Our approximation may break down at even higher
temperatures, where the viscosity follows a temperature power law with an exponent near 3.
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[. INTRODUCTION pt, and observables within HBTHanbury-Brown-Twiss
interferometry and the elliptic flow coefficient seem to start
The conceptual framework of this paper is a hadronic merequiring viscous corrections, at least within the QGP A
dium at zero baryon number and dilute enough that it can béerief, pedagogical account of some of these issues can be
considered as a meson gas, not too different from a perfeéound in[4].
fluid. We have good reason to believe this is a satisfactory We expect a better approximation to be made by consid-
approximation to the state of matter in the debris following aering corrections to the equations of a perfect fluid, allowing
relativistic heavy ion collisiofRHIC) in the laboratory, and for a smoother transition to a free particle stream instead of a
it may also be relevant in future astrophysical considerationssharp cutoff at a given temperature. The ideal hydrodynami-
where the relatively simple extension of this work to includecal description requires the time scales of microscopic pro-
nucleons is definitely of importance. The observable particleesses to be much faster than the corresponding macroscopic
multiplicities, correlations, angular distributions, etc., mea-fluid scale. This is not necessarily true for a dilute pion gas at
sured in RHICs, are customarily fitted to a few parametersnoderate temperatures. For example[5f) the pion mean
within hydrodynamical models for an exploding gBE. free path is found to be as long as 4-5 fm before a thermal
These typically include a set of initial conditiofjshase tran-  freeze-out at temperatures of order 90-110 Mebhserva-
sition temperature after a putative quark and gluon plasmévely low), with the chemical freeze-out temperatures in the
(QGP reaches the confined stage, initial energy density andange 90-140 MeV.
state equation, ett.The hydrodynamical evolution is sup-  Thus if a gradient in the concentration of a conserved
posed to control the evolution of the gas through a chemicadjuantity is present in the medium, it can be smoothed out by
freeze-out temperature, after which the particle compositiopions flying randomly without colliding too often. This in-
is fixed and chemical potentials become necessary, down toduces a need for transport coefficients in the hydrodynamical
thermal freeze-out temperature, where the hadrons suddengguations, in particular for viscosity when the conserved
abandon their equilibrium state within the fluid and travelquantity is momentum. The larger the interaction, the shorter
unscattered to the detector. This sudden transition from pethe mean free path, and therefore the smaller the viscosity
fect local equilibrium to straight particle streaming is known (for a dilute gag As a consequence it is interesting to also
as the Cooper-Frye prescription. Whether a “geomettie>  document the sensitivity to the choice of parametrization of
lated to the finite size of the expanding almond-shaped rethe pion interaction given in terms of diverse scattering
gion) or a “dynamical” (related to the local expansion rate phase shift sets.
freeze-out, the scattering between individual particles gov- To approach a microscopic calculation of the transport
erns the mean free path that would make sensible a hydr@oefficients one can start from rigorous quantum field theory
dynamical approach. [6] with all the generality of Green’s functions coupled to
Mesons at low transverse momentum seem to behave hgach other through Schwinger-Dyson equations. In the prob-
drodynamically in the sense that the observed momenturiem at hand collisions are mostly elastic, not requiring a
distributions can be fitted with hydrodynamic models up to acoupling between states with different numbers of particles,
decoupling temperature?]. Still the fits are worse for high and as the mean free paths are relatively large, we can em-
ploy Boltzmann’s molecular chaos hypothesis, or decorrela-
tion between successive collisions. It is more reasonable in
*Electronic address: dobado@fis.ucm.es this case to employ the statistical formulation in terms of
"Electronic address: fllanes@fis.ucm.es distribution functiond, defined below in Sec. Il. These also
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satisfy coupled equations with the multiparticle distributionbaryon chemical potential as we work at zero baryon num-
functions(BBKGY hierarchy of equations, after Bogoliubov, ber. The corresponding elastic cross sections for meson scat-
Born, Kirkwood, Green, and Yuarthat the Boltzmann hy- tering will be denoted by

pothesis truncates. Quantum and relativistic effects need to

be taken into account for a meson gas. We thus set ourselves doa,=do(ab—ab)

the task of solving the Uehling-Uhlenbeck equatj@hwith

relativistic kinematics. The nonrelativistic formulation has With the following momentum assignments for the initial and
been published if8]. The relativistic pion gas has been final states:
treated before by9] at the quantum level and Q3] at the

classical (Boltzmann level as far as the viscosity is con-

cerned. We made a brief preliminary comment about this

system in[10]. We here report the full calculation and in-

clude the obvious extension to a gas composed of pions and

particles with strange quarkkaons and etasFor this pur-

pose we include pions, kaons, and etas, which populate the

low temperature meson gas. The other possible states, the

rho, sigma, and kappa mesons, appear through resonances in

meson scattering in our calculation. Consistent with a sort of ©)
virial expansion[11], we ignore collisions between kaons )

and etas, and include only those between them and the piongUrther.pap, is the two-body phase space

This is valid at moderate temperatures because their density 1

is small (they form a very dilute gas up to temperatures of S P SRS SV S Y. Y S —

order 150 M)(/av or morélyl]). s P Pab S\/s + Mg+ My — 2mgm,— 251G — 25,

in terms of the Mandelstam variabée= (p+ p;)?. The vari-

ablet=(p—p’)? is related to the scattering angle in the
We gather here our conventions and notation for the restenter of momentum frame:

of the paper, many borrowed frofi2]. Since we will be

II. NOTATION AND KINEMATICS

considering meson matter at low temperatures, composed 2t
mainly of pions, kaons, and eta mesons, latin indices from COSfcm=1+ o2 (4)
the beginning of the alphabet,b, ... denote the particle Pab

type and will take the values= 7,K, 7 in the formulas be-
low. Notice that tensor quantities such gsalso carry latin
indices in the range 1,2,3 for Cartesian coordinate label

which will bg d~enoted with th_e letteisj k, .. . . Ff)r these below), the collision needs to be taken in an arbitrary frame

tensors, a tilde/;; means their traceless part, as is commonyit respect to which all collision angles and momenta will

use in textbooks. Greek indices are reserved for Minkowskjenceforth be referred. This also leads to an additional diffi-

space and run over the values 0,1,2,3. The mgificwill be ¢ty due to a double valuedness in E87) below that is not

taken as diagt ———) (7 is reserved for the viscosity present in the center of mass frame usually employed in
In the isospin limit that we employ, the degeneracy of meson-meson scattering. The distribution functions in phase

each species of particle in the gas is space will be denoted bf, ,f,,f.,f,, and they are short-

hand for

which is used below in formul&49) and following. The total

Jnomentum isP=p+p; and the total energf. Since we
Will choose a frame where the fluid is locally at résee

gﬂ':37 gK:41 gn:l' (l)

We will work in the approximatiorirelated, for example, to fa=Ta(x.p:0).
the virial expansion if11]) in which the particle density

dN, /dV for each species satisfies The normalization constants for these functiofis=(1) are
(2m)?

nﬂ.>nK,n7]. (2) éa g
a

Therefore we consider binary collisions between pion pairs

or between a pion and either a kaon or an eta meson. This IIl. THEORETICAL BACKGROUND
amounts to neglecting terms of ordeﬁ ,nf]. For the elastic
collisions we considergr7m— 7w, mK— 7K, mp— 775, the
particle numberdN . ,N ,N, are separately conserved. This ~ We start by writing all magnitudes for only one particle

is a good approximation in the hadron gas following a rela-species. The generalization to the three types of meson con-
tivistic collision after chemical freeze-out. This conservationsidered is obviously additive in this subsection and will be
forces the introduction of chemical potentials collectively de-understood. The energy-stress tensor for an ideal fluid with
noted u, and fugacitiesz,=e?(*a~M) We introduce no local velocity fieldU“(x) is

A. Hydrodynamics
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Top=—PguptwU,Up (5  The volume viscosity¢ is usually much smaller than the
shear viscosityy, this being the reason why we concentrate
with the enthalpy per unit of proper volunteomoving vol-  on the latter. This was shown for a pure pion gas by Davesne
ume at velocityU with respect to the fixed Lagrangian ref- in [9]. We expect this result to hold in the multicomponent
erence framebeing the sum of pressure and energy densityextension of the theory and accept it henceforth. For com-

(also per proper volume pleteness we give the expression #oin a general frame of
reference:
w=P+p.
Also conserved in the fluid’s evolution is the vector field Tap= — M| IgUT3,Ug—UgU%, U,

associated with the particle density flow:
2
n,=nu,, (6) -U,U%,Ug+ §(97U7(gaﬁ—uauﬁ) .

where again the particle density is taken per unit of proper ) . o
volume. The velocity fieldJ as seen from the fixed reference At the hydrodynamic level of a fluid’s description, is an

. . ] ~ empirical parameter. Its value needs to be meas(fitteld)
frame can be interpreted in terms of the three-velovitgy for the different experimental conditions of the considered

introducing they factor y=(y1-V-V) ! as fluid.

U=y(1V). B. Thermodynamics

All quantities will by default be referred to the comoving or ~ We collect in this subsection the relevant thermodynami-
Eulerian fluid frame, wher®=0. The ideal fluid continuity €&l properties leading to the equation of state of an ideal
equation is multicomponent Bose gas. Since we are interested in the
leading viscosity effects, we take the thermodynamical quan-
vi 7 — tities to be unaffected by the interactions. These could be
H(Nny)+V(nV)=0. @ corrected if interest were found in it, using the method of the
If we now assume the fluid to be slightly out of equilib- virial expansion and the physipal phase shifts described in
rium microscopically, that is, a small departure from thel13]- Various symbols are used in the following formulas: the
ideal fluid, the conserved quantities need to be modified t¢hemical potentia., for each species, particle masg,
allow for the various transport phenomena: in a gas particleiémperaturer and inverse temperaturg, fugacity z,, and
can move from one element of the fluid to another at a miPressure?. _ _ _
croscopic level, carrying their charge, particle number, en- First we give the number density for particle of speaes
ergy, momentum, etc., and maximizing entropy; they smooth
out the gradients of these quantities in the fluid. The macro- || _ Ya fwdppz 1 L9 1
scopic description of these phenomena is achieved by adding ¢ 27 Jo e Bra=B)_ 1  V g Blra—ma) _1°
transport terms to the conserved currents and tensors. In par- (10
ticular, for the stress-energy tensor we add a

The partial pressure for speciageads
TQIBZ—PgaIB-‘erQUB-‘r Ta,B (8)

: —Qal (* T
with P.= Ya f dpp? log[1—efra=B)]— 9a log[ 1— eB*a]
27% Jo v
T,gUP=0 (11)

since these transport phenomena act across fluid elemengid the total pressure is simply given by the sum of the
and out of the world-line of one of them. This implies that in partial pressures:

the Eulerian framer,g= 7;= 790=0.
To first order in the velocity gradienishat is, for small
spatial variations of the velocity fieldr is given by PzE P,. (12
a
7ij=—27V;; +volume term, - _ o
We will immediately drop the Bose-Einstein condensate term
1 1 since it is relevant only at essentially zero temperature, and
Vij =§(aivj+ajvi)— §akvk5ij , keep only the integral over the state continuum in both ex-
pressions. Figure 1 shows the number density normalized to
make the species-independent quantityggm®) as a func-
z ¥, =o0. (9) tion of t_he fugacity. _ o
i The internal energy density per species is then

116004-3



A. DOBADO AND F. J. LLANES-ESTRADA

Number Density vs. Fugacity

n/{gm*)

z

FIG. 1. Number density for a given species as a function of-l- n
Ha

fugacity (see texk for various values of the quotiegt=m_./T.

N E
ea_zwzfo dppze_ﬁ(ﬂa_E)_l.

In the absence of a chemical potential it scale§asCor-

13

rections due to interactiorfavhich we consider second order

are to be found, e.g., ifl1]. We will operate with the con-
venient shorthanded adimensional variablgsz:

E=m,J1+X,

My
ya:Bma:?v

z,=ePlraMa), (14)
Defining two simple functions through quadrature,
x"dx

| ,z=f — ,
n(Y:2) o VLix(z lCTD_q)

th(y,2)= Jm

0 (z teV(TTX L1y’

(19

x" dx

(16)

that satisfy a recursion relation

_ ¥z dla(y,2)
2n 9z

th-1(y,2) (17

PHYSICAL REVIEW D69, 116004 (2004
the expressions for the partial pressure and number density
become very compact:

4
JaMmy

P,= 1277_2|3/2(ya 1Za), (18
3
gam
Na=——tyAYa Za). (19
4

Therefore the equation of state for a one-component gas is

:% |3/2(yaaza)
3 tllz(yaaza)
and summing over all species we obtain the final equation of

state for a multicomponent ideal gas in thermodynamic equi-
librium:

Ng, (20

| 3/2( Ya 1Za)

Bt Yarza)' )

P= g MaNa(Ya:Za)

in which the independent variables can be taken t® ag or
by use of Eq(10). Equation(21) is a generalization of
the classicalnonrelativistig, ideal mixed gas state equation

P=T> n,.
a

C. Kinetic theory

The distribution functions f; satisfy an Uehling-
Uhlenbeck equation. This is a Boltzmann-type equation that
includes quantum Bose-Einstein statistics in the final state.
Since we consider three particle species, we have a set of
coupled equations:

df.
W:C[fﬂ'vfw]+c[f7rifK]+C[fﬂ'vf77]v

dfy

dt C[fKYf’ZT]’

(22

df"—Cf i
H_ [ n1 7T]’

neglectingKK,K , 7 as well as inelastic interactions, with
the collision term

Clfa.fpl= f da’abdﬁlUrel[f;fib(l"'gafa)(l""gbflb)

—fafip(1+&afo) (1+Epf1p) ] (23)
Herewv, is the relative velocity between the colliding par-
ticles, and in terms of the Lorentz-invariant square of the
scattering amplitude and phase space, we have

ITI2dL(s;p’,p}) (24)

1
4%an= 2E(p)Erorg
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with IV. SOLUTION OF THE TRANSPORT EQUATION
o We next show how the transport equatiai2®2) can be
di= i p'dE dQ(p')S(E(p)+E,—E'—E}) simply solved near equilibrium. We describe the method for
47% Ej ! v only one particle species and leave the generalization to three

(25)  or more to the reader.

For pion-pion collisions, since the particles in the final state A. Advective term

are indistinguishable to the strong interactions in the isospin — S o
limit, a factor of 3 should multiply the integral ovedo ... To simplity the left hand side in Eq22) we write it as

The collision term is annihilated by the Bose-Einstein dis- >
I : . ) - df of p -
tribution function corresponding to a gas in thermal equilib- — =+ —.Vf (32)
rium dt at  E(p)
gt [v=p/E(p)] with an approximately constant perturbation
_ a
foa_z‘leB[E(p)‘”‘al— 1 @9 af=a,f,.

Small departures from equilibrium are conventionally de- In the proper Eulerian frame we know= 0 but this does

noted by not apply to its derivatives,V which are in general not null.
This forces us to Lorentz transform to an arbitrary, nearby

Xoa frame in this derivation:

faz f0a+ 5f0a=f0a 1+ ?

(27)

g—l

fo= T
[e—p,/Te[E(p)— p-VI/TV1-VZ_ 1]

The particle and energy densities can be obtained by inte-
grating over momenta:

with E(p)=p?+m? and w<m. Thus, in Eq.(32),

0= [ dbto, o= [ dtE(m). @8 )
T T T el PP T ol or
The contribution to the stress-energy tensor can be shown gt T 1-e AER-#\ T ot~ oP| dt
to be, summing over particle species,
aT b T at ]’

dp
Tijzg Epipj5fa- (29

This can be reducefll2] by using the standard thermody-

, ) , ) namical relations, valid near equilibrium to first order in the
For the purpose of evaluating the shear viscosity, which aps

- ! ,Iﬁ)erturbation, such as the Maxwell identities, to the form
pears at the hydrodynamic level as a tensor of first order i

;gtramvelocity gradient, the perturbation is taken to be of the o fo 1 A a\7+ 1 9P
AT 1—e AE@ -\ P 5t That
Xazggvij aT
+ BLE(p)~ win]—|, (349

with V defined in Eq(9) above; and as a consequence of the
contraction with a traceless tensor, only the traceless part ofq in an analogous way
g is relevant, so we can also take

L 1 ( 1.
1 V=l | ppVi+—p-VP
g?j:<pipi—§5up2)ga<p) (30) P T 1 estEm o | PRI P
with g(p) a scalar function, conveniently expanded in a +B[E(p)—w/n]5-§T>. (35

polynomial base
Next we profit again from the vicinity to equilibrium and

_ - (@S, . employ the equation of continuity7) and state equation
ga(x)‘szo BSP(GY.2), (31) (20), while we ignore all terms proportional -V not al-
ready included irV;; andVT,VP, since they influence the
the polynomialsP being defined in Appendix B. calculation of the volume viscosity or thermal conductivity,
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but not the shear viscosity. Upon comparison with @gwe
obtain the final expression for the advective term;

df  fo 1

dt TE Wp'pl (36)

B. Collision term

The integrand of any of the collision functiondl$f,,f,]

contains the product of Bose-Einstein distributions with en-

hanced final state phase space:

F=faf1p(1+&afa) (14 &ofan) — fafin(1+ Eafa) (14 £ufiy).
(37

For perturbations near local equilibrium, the distribution

function can be written as in E7), and this entails for the
integrand

F=Fo+ oF.

PHYSICAL REVIEW D69, 116004 (2004

(42

2f = p.p,fé )

[compare with expressio®.19 in Ref.[14]]. The angular
integrals can be trivially performed, reducing the expression

to
w3 T

which in terms of dimensionless variablgksose ofg can be
read off Eq.(27)] gives

6 [* xg4(x)

\/1+ (z; Ve THx-D_1)"
(44)

P’ 5a0a(p"), (43)

2
=— =2 My
g 15@2

Employing Eq.(31) we can write

The collision functional evaluated on the Bose-Einstein equi-

librium distribution is naturally zero:

Clfoa,fon]=0. (38
After some simple algebra we can show that
~ foafowfoafom
=— % T eBEHaT A y(1—e AE-M)],
TEL, [x( )]
(39

A[X]=Xa+X1p=Xa= X1p,

and it finally follows that

£abp
Clfo fo]= For | G0 oo ThafbufoalomA {1
a

—eA(E- )]} (40)

C. Expression for the viscosity

Upon substitution of Eq31) in Eg. (40), and neglecting
o6f compared td in the advective terni36), the linearized
transport equation takes the form

ATHASHAT A A Bg Cx
A Ay O Bo | = C«
Az 0 Aj; BJ C,,

(41

Once the integrals in thA's (this is the largest computatipn

6

S S e

X JO dXWS/Z(Xa;yavZa) Ps(za;xavya) (45)
and using the orthogonality relatiqgB?2)
3 6
m,
Pl T

V. MESON SCATTERING

The strong interactions respect isospin symmetry, and
thusl is a good quantum number to label scattering ampli-
tudes. These we project on the various possible partial waves

1 1
Tiy(s)= ﬁﬁldx P,0)Ti(s,t(s,x),u(s,x))  (47)

(the symmetry factoN=2 is necessary for pion-pion scat-
tering, N=1 otherwise. After neglecting inelastic channels,
the partial wave scattering amplitudes can be parametrized in
terms of a single phase shift.

sin8,,e' 13
Pab .

(48)

9=

and C's have been performed, the matrix system can ba&Ne content ourselves with keeping only the lowest possible

solved and theB coefficients in Eq.(31) provide the first

for each isospin channel, as this provides for most of the

approximation to the functiog(p). The series converges interaction.

very fast as shown ifi8], and therefore we keep only this

Then, with our kinematical choice of variablésee Sec.

order in the present work. This can then be substituted in th) we can express the square of the scattering amplitude for
viscosity expressions below which can then be easily intesr-7r collisions in terms of an average over the three isospin

grated on a computer:

channels as
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1 TABLE |. Values of theSU(2) chiral perturbation theory pa-
|T7777|2:§(|T0|2+ 3|T4|2+5|T,|?) rameters employed in the IAM fit to the pion scattering amplitudes
(input to this calculation of the viscosity
2
1(32m)\? t —
= 5(—) sirSoy(s) + 27 ) 1 —0.27
Pam P2, 1, 5.56
73 3.4
X sir?814(S)+5 sirf 8,9 (49 T, 4.3
For pion/kaon collisions we can also average over isospin to 4
obtain: , 23mg
T*=7% T (54)

1
Tiwl? =5 (2] Ty 2+ 4| T3
[Tk 6 [ Tal™+ 4/ Tad”) (3) Next, through our calculation we profit from the 1AM

(the inverse amplitude methdd6]) fitted to the pion scat-

1 1677' i i i i i i
_- 2 S|r12530+5|r12510 tgnng phase shifts. Whether_ in the pion gas orin the m|_xed
3 p,TK pion, kaon, and eta gas, chiral perturbation theory provides
X an expansion of the scattering amplitudes at low energy:
t
+9 Slr\251 l( 1+ ) ] , (50) t|J_t(2)+t(4)+ (55)
Sp’TTK

where the order of a term in the expansion counts the powers
of m_ or momentum, or equivalently inverse powersfqf

2 The single channel inverse amplitude method constructs a

T . . .

—) Sirt . (51 model amplitude based on this low energy expansion that,
Py incorporating exactas opposed to perturbative order by or-
den unitarity above the two-particle threshold and below in-
elastic thresholds, allows one to extend chiral perturbation
theory, providing satisfactory fits to the scattering amplitudes
up to around 1 GeV. The one-channel IAM amplitude is

and finally for -7 scattering

Tyl =

Notice that the partial wave normalization gives a fa¢td)

for distinguishable and32) for identical particles in agree-
ment with[14]. If only a pion gas is considered, the relevant
phase shifts ard=0, 1=0,2 andl=1, J=1, which domi-

nate the cross section at low energy. We next study the pion, t(z)

and then the meson gas, in various approximations as fol- t (56)
n= — (2

lows. 113

(1) The approximation studied 5] corresponds to tak-
ing a simple resonance saturation parametrization for thand can be understood as {lie1] Padeapproximant corre-

isoscalar and isovector phase shifts: sponding to the Taylor serie$5). The first order follows
from Weinberg’s low energy theorem. The second order in-
Soo(E) = z+arcta E-m, cludes chiral perturbation theory meson loops and opfer
0 2 r,/2 counterterms. These have a series of coefficients, usually de-

notedl; after the work of Gasser and Leutwyldr7], that can
E-m at the moment be computed theoretically only approximately
T2 ) (52 [18]. These coefficients are in practice fitted to the pion scat-
tering amplitudes or other observables. Since this rational
with momentum dependent, width I',=2.06p and mass approximation to the scattering amplitudes presents poles in

611(E)= + arctarE

m,=5.8m,., andp width general(in particular, thec and p mesons are clearly vis-
ible), it has been applied recently to the behavior of reso-
p/m._ 2 nances in a thermal pion bdth9]. Here we employ the fit of
I'p)(p)=0.099| ———— that paper to the scattering amplitudes at zero temperature,
1+(p/my) that is, we ignore the possible effect of the thermal bath on

the parameters entering the fitss( f ., andm_ which are
adjusted to their physical valuess a higher order effect.
The I's employed in ourSU(2) fits to the pion scattering
S,0=—0.12p/m_. (53  amplitudes are given in Table I.
(4) Finally, the full calculation including kaons and etas

(2) To connect with the nonrelativistic calculation, we will requires a parametrization of the elasit)(3) phase shifts.
also briefly employ atotally unrealistic at moderate tem- This is again provided by chiral perturbation theory, now
peratures above, say, a few Mepion scattering amplitude with the strange quark incorporat¢@0] and extended to
based on the low energy theorem of Weinberg. This is higher energies via a unitarization method, now the coupled

and massn,=5.53n,., whereas the scalar isotensor phase
shift is S|mply parametrized as a straight line
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TABLE II. Values of theSU(3) chiral perturbation theory pa- VI. NUMERICAL EVALUATION
rameters employed in the IAM fit to the meson scattering ampli-

tudes(input to this calculation of the viscosity A number of integrals need to be numerically evaluated to

— — complete the calculation. Those of the ty{®2) needed to

hl 0.59 £5 18 compute the coefficientS in Eq. (41) as well as the viscos-

L, 118 Le 0.006 ity in Eq. (46) are simple one-dimensional integrals. The
Ls —-2.93 L, -012 Bose-Einstein factors ensure very good convergence at high
L, 0.2 Lg 0.78 momentum. They are evaluated in a one-dimensional grid

with 2000 points by an open-interval trapezoidal rule in es-
sentially no computer time. More complicated are the inte-

channel IAM. We use the phase shifts obtainedi2li] with ~ 9rals stemming from the collision term of the Uehling-

the L chiral perturbation theory parameters shown in TabléJhlenbeck equation needed for tig, coefficients in Eg.

I. (41). Since we have already chosen the system of reference
The use of the IAM is of course not necessary to obtain avhere all magnitudes are expressed in the comoving fluid

good description of the transport coefficients, but it is a veryframe, we have no freedom to study the collision in the cen-

convenient parametrization of the experimental data, providter of mass, so we employ arbitrary momenta in these inte-

ing outstanding fits to the complete set of meson scatteringrals. The nominal variables ape p;, andQ(p’), while p}

channels described f21]. is fixed by momentum conservation ajjf | by energy con-
We finally quote the meson masses employed in this y y gy

paper:m_=139.57 MeV, m,=493.677 MeV,m, =547.30 servation. The latter has a somewhat messy expression, in
MeV. ! e Y terms of the anglg8 betweenp’ andP:

P2—m2+m?|°
oy
Peosp \[| 1-—

2[1— (p?cosB)/E?]

P%os’-ﬂ)( , (E?=P%+m?—m})?
———||m

P2cos B—4| 1—
A ( E2 AE?

1 R R R - -
cospB= 5{p1 sin#(py)siné(p’)cose(p’)+cosh(p’)[p+ p; cosd(p1)]}- (57

Two solutions of this quadratic energy equation are possibléndependent of energy, an increase in temperature simply
and need to be summed over in the integrand for certaipopulates states with faster pions which transfer momentum
kinematical configurations. Of the eight remaining integrals,more efficiently. Thus, the viscosity grows out of control in
three are trivial. Invariance of the collision under three-an unrealistic manner. But this calculation is useful to check
dimensional rotations allows us to perform the angular intethe nonrelativistic limit reported if8], which used precisely

grals associated with, sap, and refer all angles to thp  this interaction. The behavior at low temperataed this is
axis. Then there is still an axial symmetry of the other threecOmmon to all our calculationss governed by a nonanalytic
particles around this axis which allows us to perform the7>\T behavior. To see it, simply remember that for a hard-
azimuthal integral ovety(p;). The remaining five variables sphere classical gas, the mean free path is inversely propor-

are thedﬁ|, |F31|, 0(py), andﬂ(ﬁr). The resulting integral tional to the cross section and density:
is performed numerically with the Veg§22] random-point

algorithm. Again the Bose-Einstein factors concentrate the 1
integrand in a compact set and convergence is very fast. For A= 2ne’

precision around 1/1000 and=1, it is enough to start with
2000 points and double that number five or six times, while .

nd by calculating the momentum transferred by random
points flight of the gas molecules one can obtain

evaluating the integral ten times for each fixed number of!

1 =
VIl. PION GAS VISCOSITY n= gnm VN

We first evaluate the viscosity with a constant amplitude
(54). The result is plotted in Fig. 2. Since the cross section isn terms of the rms velocity. This shows that the viscosity is
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Shear Viscosity for Hard Sphere Pion Gas. Shear Viscosity, Pion Gas (phase shifts from Welke et al.)
1.8 0.012
1.6 —
[ 0.01
1.4 —
1.2 L 0.008
R =
> ! [ 2
.g r g 0.006
(] r O
£ 08 B
06 — 0.004
0.4 —
r 0.002
0.2 —
0 0
0.02 0.04 006 008 0.1 0.12 0.14 0.16 0.18 0.02 0.04 006 0.08 0.1 Q.12 0.14 0.16 0.18
T(GeV) T{(GeV)

FIG. 2. Shear viscosity of the pion gas with a constant scattering FIG. 3. Shear viscosity of the pion gas from the simple analyti-
amplitude (from Weinberg’s theorein Since the interaction does cal phase shift$52) from Welkeet al. [15].
not grow with the pion momentum, the viscosity is unacceptably

large even for somewhat low temperatures. But this is used to check _— N
the low temperature limit, %oth kaons and etas to the gas is finally plotted in Fig. 8. Of

course, in a relativistic heavy ion collision we expect the
chemical freeze-out of heavier mesons to occur before, and

inversely proportional to the cross section and upon emplo therefore we need to introduce chemical potentials for all

. . — ecies, those corresponding to the heavier mesons bein
ing the equal partitioning of energyw?/2=3kT/2 we see species Se_corresponding vier Sons being

; o ; larger than those for lighter mesons.
that the V'SCOS.'IY is also prop_ortlonal to the root of the tem- In natural units the viscosity has dimensions of an energy
perature, providing a convenient check.

o . cubed, and indeed at moderate to high temperatures, the vis-
Next we turn to some more realistic pion interactions.

These are provided by the simple analytical fit to the pion
phase shifts from EC(SZ) and by theS U(2) or SU(S) in- ors Shear Viscosity, Pion Gas (phase shifts from SU(2) IAM).
verse amplitude method. The results are quite consistentan
plotted in Figs. 3, 4, and 5, respectively. The difference be-
tween them gives us an idea of the sensitivity of the viscosity
to the employed phase shifts, since all sets of phase shifts ar
reasonable. To what precision these scattering phase shift ©014
are known is an ongoing debdt23], and if a future deter-
mination pinned them down with greater accuracy a much o012
better prediction for the viscosity could be made, since thex.
parametrization used for the phase shifts seems to be one & o1
the largest uncertainty sources in the pregalready realis-
tic) computation.

0.016

Viscosity

0.008

VIIl. FULL PION, KAON, ETA GAS VISCOSITY 0.006

Finally, we turn to a gas including kaon and eta mesons.
We first introduce either type of particle separately and plot it
in Figs. 6 and 7. The effect of kaons is considerably larger
than the effect of eta mesons. By comparing with Fig. 5, %92 [
which was calculated with the same pion phase shifts, we C
can see that already at 100 MeV the addition of the kaons 0.0z 0.04 0.06 0.08 T(%;v) 012 014 0.16 018
alone gives a viscosity much bigger than present in the pion
gas. The sensitivity of this calculation to the pion fugacity = FIG. 4. Shear viscosity of the pion gas from the inverse ampli-
(density is also very large. The combined effect of addingtude method an@U(2) chiral perturbation theory.

0.004
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Shear Viscosity for Pion Gas with SU(3) Phase Shifts Shear Viscosity for meson gas (various) with SU(3) Phase Shifts

0.025 — 0.025 — !
r L h
0.02 — 0.02 —
+ + Pions only
= 0.015 |- = 0.015 |-
o o
£ [ £ [ ;
2 r 2 r e Pions, Kaons |
) L 0 L
o o
5] 5]
@ L 3 L
> >
0.01 = 001 = Pions, Etas !
0.005 — 0.005 —
LT i b b b b b b b L vl by b b e b b e b Ly a

0.02 0.04 0.06 0.08 0.1

T{(GeV)

0.12 0.14 Q.16 0.18 0.02 0.04 0.06 0.08 0.1

T{(GeV)

0.12 0.14 Q.16 0.18

FIG. 5. Shear viscosity of the pion gas from t8&)(3) inverse
amplitude method phase shifts.

FIG. 7. Separate effect of addikgor » mesons to the pion gas,
with their chemical potential vanishing. Fugacity for the pions set at
z=0.01.

cosity approximately follows a temperature power law withticles is to decrease the plateau in which the viscosity is
an exponent negand slightly above3, which suggests that approximately independent of the temperature.

the viscosity is dominated by the highest energy pions where The resulting viscosities for various temperatures and
the mass and chemical potential scales are less importanhemical potentials are tabulated in Table Ill and convey our
than the momentum scale. The low temperature behavior dfnal results.

the viscosity is plotted in Fig. 9 where we observe how at

low temperature the effect of adding the more massive par- Shear Viscosity for SU(3) pion/kaon/eta gas.

5
Shear Viscosity for Pi/K (upper) or Pi/Eta gas (lower panel). E
F 4
05 F L
E 3 b
0.4 F r
g z=0.01 2 E
O3 B eeeees 7=0.5 s
L T =
02 L z=0.99 g
F o b
o1 0
0 F 1 PR L L 5 A mofrn L
0 0.02  0.04 0.06 008 0.1 0.12 014 10 g
c 1 E
0.18 £ £ E
E > E
0.16 2 -1[
= o 10
. 014 F = E
> E » E
& o2 B z=0.01 5 f
> o1 [ 2=05 L
1%} E |l
g 008 & 2=0.99 E
@ C =3
S 006 F 10 &<
E | v b b b b b
0.04 £ 0 0025 005 0075 0.1 0125 015 0.175 0.2
coz g - T{(GeV)
o b [ | T Ly s M
0 0.02 004 0.06 008 Q.1 0.12  0.14 . . .
T(GeV) FIG. 8. The shear viscosity for the full mesom,K, ) gas in

linear (uppe) and semilogarithmiclower) panels. At very lowz
FIG. 6. Separate effect of addikgor » mesons to the pion gas, and T the reader can appreciate how the nonrelativistic behavior
with their chemical potential vanishing. The kaons are much mord 7 T) is recovered. The chemical potential for bétrand 5 has
important(partly due to their multiplicity. been set to zero.
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-2
x 10

0.4

i |
0.35 Pions only
o3 £ T Pions + Kaons

0.25
0.2

0.15

Viscosity (Gev)®

0.1

0.05

Low T viscosity with SU(3) phase shifts.

Pions + Kaons + Eta;x’: ,,"

0.06
T(GeV)

FIG. 9. The shear viscosity for the full mesom,K,7) gas at
lower temperature. The chemical potentials are=100 MeV,
k=250 MeV, u,=300 MeV. The low energy plateau is reduced
by adding more species, as kaons and etas behave less like Go
stone bosons than the pion, so their low energy interactions ar
already larger and have a smaller relative increase than the pion
with collision energy; thus the viscosity increases more rapidly withP

0.08

0.1 0.12

the temperature as the number of species is increased.

IX. COMPARISON WITH OTHER APPROACHES

AND DISCUSSION

PHYSICAL REVIEW D69, 116004 (2004

Furthermore, we document the sensitivity of the viscosity to
the parametrization of the phase shifts, which was not treated
in this reference. We also streamlined the numerical solution
of the transport equation, by employing a new family of
orthogonal polynomials that allows one to systematically ex-
tract better approximations if so wished, and performing a
Monte Carlo evaluation of the collision multidimensional in-
tegral, whereas the more analytical treatmenf9his also
somewhat more obscure. It is also interesting that a relax-
ation time estimation of the Boltzmann equatiomith no
guantum correctionspermits one to approximate the shear
viscosity of a pion/kaon gas if14,24). The order of magni-
tude and qualitative behavior as a function of temperature are
correct. We obtain somewhat larger results, which are not
unexpected as quantum corrections in a Bose gas may tend
F_ decrease the cross section for scattering to initially un-
gopulated states, increasing the viscosity, and furthermore
Some difference is expected due to our use of $h3)
hase shifts.

To summarize, we have presented a systematic calculation
of the shear viscosity in meson matter at moderate tempera-
tures. We found the viscosity to behave as expected from a
nonrelativistic gas point of view at very low temperatures, to
stabilize and even decrea@tepending on the chemical po-

The viscosity of a pion gas has already been treated b ntia) at small temperatures because of the larger cross sec-

Davesne if9] as a quantum relativistic system. In this pio-
neering work, to solve the relativistic Uehling-Uhlenbeck
equation the pion interaction was modeled following Ref.
[15], which corresponds to the phase sh{fig) above. If we

consider only a pion gas and employ the same set of pha

ion at increasing energigghe decrease would be a typical
effect of a Goldstone boson gasnd to follow a positive
power law at moderate to high temperatures. At high
(above 150 MeY our approach should be less reliable be-
cause we are employing scattering phase shifts parametrized
to momenta of 1 GeV and with sizable temperatures states

shifts then we can approximately reproduce these result$yith higher momentum start being populated. Eventually one

reaches the phase transition temperature, and any results ob-

TABLE Ill. Shear viscosity at various values of chemical poten- tained from within the chirally broken phagas built-in in

tial and temperature. Units are MeW (and u,) and (100 MeV¥

our use of meson fields and chiral perturbation theane

(7). The error due to the Monte Carlo evaluation of the 5D inte-simply not appropriate. Extensions of this work to include
gral is (5) on the last significant digit of the viscosity. This calcu- nucleons or to evaluate other interesting transport coeffi-
lation employs the inverse amplitude method phase shifts withircients are now straightforward.

SU(3).

T Mo MK My 7s
100 0 0 0 3.37
100 0 100 150 5.24
100 0 200 250 9.96
100 100 100 150 3.04
100 100 200 250 4.56
100 100 400 450 19.0
125 0 0 0 7.13
125 0 100 150 11.4
125 0 200 250 20.1
125 100 100 150 6.31
125 100 200 250 9.69
125 100 400 450 31.6
150 0 0 0 15.4
150 0 100 150 24.2
150 0 200 250 39.6
150 100 100 150 13.4
150 100 200 250 20.2
150 100 400 450 53.8
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APPENDIX A: LINEARIZED TRANSPORT
EQUATION COEFFICIENTS

In this appendix we provide the matrix elements neces-
sary for the first order Chapman-Enskog solution of the
transport equation. The right-hand side of the systéi is

6

4mm;.

3—§ﬂ| 52 Y7 1Z7)
C. 5

4rmg
Cu | =| =7 lsrdYk 2K (A1)
c 3ék

47rm®

7
—3§7] l5/AY:2,)
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The left-hand side matrix elements can be given by the for-

mula

gagb

ZaZy

Aab: f dO’abU rel d pd ple'B(Eimai mb)foafOblféaf(,)bl

1
X(l—zaeB[E(p)_ma])( ik j1 — §5ij 5k|) PiPj(Aap)ki

(A2)

in terms of a tensorAp)k Which takes the values

(A" )=p’* p’'(1—e A"~y — pkpl(1
— e AIEM) ~1al) 4 prkp!l(1— e AlEL=#al) — pkpl

X (1—e PlEL=raly,

(AR )= (AT =p"% p''(1—e ALE"~#al) — pkp!
X (1—e PEM) =1zl

(A2 =Pi*py (1~ e AIEL~wwd) — plp (1— e AlE s,
(Ara=Ppi*py (1~ e AlEa~wl) —plph (1 - e AlEa~wal),

(Ap=p'* p’'(1—e FIE' ~#Kl) — pkp!
X (1— e ALE(P) ~rkly

(A2 k= (Azdk
= pi*pi!(1—e FlEL #al) — pkpl (1—e AE1 k),

(Agg=p"* p''(1—e” E'~#al) —pkp!(1—e AIEE 1]y

PHYSICAL REVIEW D69, 116004 (2004

APPENDIX B: ORTHOGONAL POLYNOMIALS

In solving the Uehling-Uhlenbeck equation with relativis-
tic kinematics and quantum statistics, one needs to integrate
over the measure

x"dx

Vi+x(z eI _1)’
(B1)

du(X;y,2)=w,(X;y,z)dx=

With the variablex and parameterg,z defined in Eq.(14)
above, with rangeze (0,1),y e (0,), xe (0,0). The index
r=1 takes in typical applications a half-integer value due to
relativistic kinematics. It can be easily seen tlat" is a
valid measure, positive definite, with bound integrals

:Uvn:f dXWi(X;y,2)X" <o
0

for n a positive integer. As a consequence we can define a
family of orthogonal polynomials analogous to the Sonine
polynomials, but more appropriate for a relativistic Bose-
Einstein gas, which can conveniently be chosen mécie
efficient of highest dimension term equalg, ldenoted
P3(x;y,z), and with an orthogonalization

fmde\/r(x;y,Z)P?(x;y,Z) PH(Xy,2)=85A%Y,2).
0
(B2

Since the polynomials are considered mowids not unity.

In the calculation presented we have considered a meson gas
slightly out of equilibrium, where a good approximation is
achieved by keeping only the first polynomial in the expan-
sion ofg(p) defined in Eq.(30) above. This was verified in

[8] in the nonrelativistic limit. Therefore in this calculation
we need to evaluate only the,(y,z) function.

[1] J.D. Bjorken, Phys. Rev. 27, 140 (1983. For a recent re-
view, see P.F. Kolb and U. Heinz, nucl-th/0305084.

[2] U. Heinz, nucl-th/0306046.

[3] D. Teaney, Phys. Rev. 68, 034913(2003.

[4] R. Pisarski, in Proceedings of Quark Matter’(® be pub-
lished, nucl-th/0212015.

[5] P. Gerber, H. Leutwyler, and J.L. Goity, Phys. Lett285 513
(1990; J.L. Goity and H. Leutwyleribid. 228 517 (1989.

[6] G. Aarts and J.M. Mafiez Resco, Phys. Rev. 68, 085009
(2003; T.S. Evanset al. Nucl. Phys.B654, 357 (2003.

[7] E.A. Uehling and G.E. Uhlenbeck, Phys. Rd8, 552(1933.

[8] A. Dobado and S.N. Santalla, Phys. Rev6H 096011(2002.

[9] D. Davesne, Phys. Rev. &3, 3069(1996.

[10] F.J. Llanes-Estrada and A. Dobado, hep-ph/0305151.

[11] P. Gerber and H. Leutwyler, Nucl. PhyB121, 387 (1989.

[12] L. Landau and E.M. LifshitzFluid Mechanics Course of The-
oretical Physics, 2nd edPergamon, New York, 1981Vol. 6;
Physical KineticsCourse of Theoretical Physics, Vol. {Ber-

gamon, Oxford, 1981 see also R. Liboff,Kinetic Theory,
Classical, Quantum and Relativistic DescriptiofBrentice-
Hall, Englewood Cliffs, NJ, 1990

[13] R. Venugopalan and M. Prakash, Nucl. Phys546, 718
(1996.

[14] M. Prakashet al, Phys. Rep227, 321(1993.

[15] G.M. Welke, R. Venugopalan, and M. Prakash, Phys. Lett. B
245 137(1990.

[16] A. Dobado and J.R. Pada, Phys. Rev. 39, 034004(1999;

47, 4883(1993; 56, 3057 (1997).

[17]J. Gasser and H. Leutwyler, Ann. Phy&\.Y.) 158 142
(1984).

[18] F.J. Llanes-Estrada and P. de A. Bicudo, in Proceedings of the
5th International Conference on Quark Confinement and the
Hadron Spectrum, hep-ph/0212182; hep-ph/0306146, and ref-
erences therein.

[19] A. Dobado et al, Phys. Rev. C66, 055201 (2002; F. J.
Llanes-Estradat al, in Strong and Electroweak Matter 2002

116004-12



VISCOSITY OF MESON MATTER PHYSICAL REVIEW D69, 116004 (2004

(World Scientific, Singapore, 2003hep-ph/0212184. [22] G. P. Lepage, Cornell Report No. CLNS-80/447, 1980.

[20] J. Gasser and H. Leutwyler, Nucl. Phy$250 465 [23]J.R. Pelaz and F.J. Ynduia, Phys. Rev. D68, 074005
(1985. (2003; J. Capriniet al, ibid. 68, 074006(2003.

[21] A. Gomez Nicola and J.R. Pada, Phys. Rev. 065, 054009  [24] M. Prakash, M. Prakash, R. Venugopalan, and G. Welke, Phys.
(2002. Rev. Lett.70, 1228(1993.

116004-13



