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Abstract 

 

We report on the room temperature ferromagnetic properties of continuous 

macroscopic fibers made up of carbon nanotubes grown by floating catalyst chemical 

vapor deposition. Their ferromagnetic behavior originates from the presence of residual 

catalyst nanoparticles: martensite with 0.77 wt. % C content and FCC Fe. The first is 

intrinsically ferromagnetic, but the later only due to severe lattice distortion as a 

consequence of C supersaturation. The stabilization of martensite and austenite occurs 

mainly because of the small diameter of the nanoparticles, in the range of 4 – 20 nm.  

This is smaller than the embryonic nucleus of the relevant equilibrium phases, but also 

implies that large C concentrations can build up in FCC Fe before C can be segregated 

as a stable graphitic nucleus. Room temperature remanence ranges from 10 % to 25 % 

and coercivity from 55 to 300 Oe, depending on the choice of promoter for fiber 

synthesis (S or Se). Superparamagnetic behavior is only observed in S-grown samples 

on account of the smaller diameter of residual catalysts particles. The results of this 

work provide an explanation for widespread observation of magnetic properties in 

oxide-free CNT samples produced by catalytic growth under a wide range of synthesis 

conditions.  

 

1. Introduction  

 

Transition metals like Fe, Co and Ni are widely used as catalyst for CNT growth 

by chemical vapor deposition (CVD). They present few unfilled d-orbitals that thus 

limit carbon solubility and enhance the formation of graphitic C [1]. CVD-grown 
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samples of CNTs have a considerable fraction of residual catalyst, often higher than 30 

wt. %, consisting of distributed nanoparticles separated by the CNTs. These 

nanoparticles can be magnetic depending on their crystal structure [2] and they are 

encapsulated either inside the nanotubes or spherical carbon shells, in both cases 

preventing oxidation and providing magnetic separation between vicinal particles or 

magnetic structures [3]. Bulk samples of CNTs have hence been considered 

magnetically functionalized (MFCNT) and suitable for a range of potential applications 

in magnetoelectronics and biomedicine [4].  

The interest in applications that exploit the presence of residual magnetic 

particles in CNT samples has often implied that the origin of such magnetic behavior is 

not studied in detail. Furthermore, explaining the formation of magnetic phases as a 

result of the CVD reaction has proven challenging. Ferromagnetism has been reported 

in CNT samples produced with Fe [5,6] or Co [7]. In particular, growth of CNTs under 

conventional CVD conditions at 700-900ºC using Fe catalyst produces FCC, BCC and 

cementite (Fe3C) crystal phases [8] and the observed ferromagnetism has been generally 

attributed to BCC Fe or cementite (Fe3C) [3,9–11] since bulk FCC Fe is paramagnetic 

[12]. But some systems with distorted FCC Fe can in fact be ferromagnetic. Thin FCC 

Fe layers epitaxially grown on Cu(100) [13–15] develop perpendicular magnetic 

anisotropy due to lattice mismatch with the substrate and the resulting strain in the layer 

[13]. Room temperature ferromagnetism has also been claimed in FCC Fe catalyst 

nanoparticles produced from CNT synthesis [16]. This is attributed to the presence of C 

in FCC Fe structure increasing its lattice parameter and to a charge transfer between C 

and Fe.  

The examples of magnetic CNT samples discussed above include most common 

catalysts (Fe and Co), and include phases that are paramagnetic in the bulk. The 

ferromagnetic behavior in CNT samples would thus seem inevitable. But it remains to 

clarify how CNT growth conditions produce different phases of the same transition 

metal, what stabilizes metastable phases and what the C content in the nanoparticles is, 

amongst several questions. Their answer would provide a better understanding of CNT 

growth by CVD while also providing a tool to engineer magnetic properties by catalyst 

control.  

In this work we provide evidence of ferromagnetic behavior in samples 

consisting of macroscopic fibers of CNTs produced by floating catalyst CVD. The 

residual catalyst had been previously shown to contain negligible amounts of BCC or 
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cementite [17]. Here, we demonstrate that room temperature ferromagnetism in CNT 

fibers is due to the presence of martensite (M) and distorted FCC Fe residual catalyst 

nanoparticles. The stabilization of both phases is discussed in the context of the 

estimated cooling rates and on the barriers for nucleation of stable Fe-C phases. Finally, 

we show that superparamagnetic properties correlate well with the observed catalyst 

particle size distribution obtained under different synthesis conditions. 

2. Experimental section 

2.1. CNT fiber samples preparation 

 

CNT fibers (CNTfs) were synthesized by direct spinning of CNTs from the gas 

phase by floating catalyst CVD [18] using butanol as C source, ferrocene as Fe catalyst 

and S (S-CNTf) or Se (Se-CNTf) as promoters. The concentration of precursors during 

fiber production was adjusted so as to produce CNTs of predominantly single-wall  

(SWCNTs) or multi-wall (MWCNTs) of few layers (<5) [19,20]. Thus, four types of 

fibers were produced and analyzed: SWCNT from S, SWCNT from Se, MWCNT from 

S and MWCNT from Se (Table 1).  

 

2.2. CNT fiber samples characterization 

 

Thermogravimetric analysis (TGA) was carried out with a Q800 TA Instruments 

with a ramp of 10 °C/min.  

Catalyst crystal structure was identified by X-ray diffraction (XRD) and high 

resolution transmission electron microscopy (HRTEM). XRD data was acquired with an 

Empyrean PANalytical diffractometer, with Cu Kα radiation (1.54 Å) and 45 kV/40 

mA. For these measurements, CNT fiber sample was collected for 1.5 hours in order to 

maximize X-ray scattering intensity. Data acquisition was adjusted to enhance angular 

resolution, with 0.03º step and 35 s/step acquisition (13 hours measurement) for the full 

range pattern and 0.02º and 4 s/step acquisition (6 hours measurement) for the 40-50° 2θ 

region. Data were analyzed after linear background subtraction and smoothing of the 

patterns with High Score software plus. HRTEM was performed with a JEOL JEM 

3000F TEM at 300 kV and catalyst structure was determined from the Fast-Fourier-

Transform (FFT) of lattice-resolved micrographs. 

 

2.3. Magnetic measurements 
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Hysteresis loops with applied magnetic field at different angles with respect to 

the fiber axis were measured at room temperature in a vibrating sample magnetometer 

(VSM) from LakeShore. The magnetic characteristics as a function of the temperature 

were probed with field-cooled (FC) and zero-field-cooled (ZFC) magnetization curves 

in a superconducting quantum interference device (SQUID) magnetometer. For FC 

curves, the sample was first cooled from room temperature to 5 K under a saturation 

field of 5 kOe and then, the magnetization was recorded with an applied magnetic field 

of 100 Oe during heating. The same procedure was performed for the ZFC except that 

cooling was done in a zero applied magnetic field. Hysteresis loops at 10 K after FC and 

ZFC procedures were also recorded in the SQUID. In order to rule out spurious 

contributions to the room temperature ferromagnetic behavior of the fibers, we also 

measured hysteresis loops at 300 K in the SQUID magnetometer mounted differently 

from when measuring in the VSM. In addition, different pieces of the samples were 

measured in each magnetometer but hysteresis loops were identical in both cases (S1).  

  

3. Results and discussion  

 

3.1. Room temperature ferromagnetism 

 

All the CNT fibers grown present ferromagnetism at low (10 K) and room 

temperature independently from the choice of promoter (S or Se) as indicated by the 

hysteresis and remanence loops in magnetic measurements at these two temperatures 

(Fig. 1a and S1).  The hysteresis loops are not affected by the direction of the applied 

magnetic field (Fig 1b), therefore the ferromagnetic behavior exhibited by the fibers is 

considered as isotropic. Because the CNTs in the fiber are predominantly oriented along 

its main axis, the absence of anisotropy in the hysteresis loops indicates that the residual 

catalyst particles are the source of the magnetic behavior observed and discards any 

relevant contribution from the nanotubes.  
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Fig. 1. (a) Room (●) and low temperature (■) SQUID hysteresis loops of S-CNT fiber confirming the 

presence of ferromagnetism. (b) Comparison of room temperature hysteresis loops of the sample in a 

VSM magnetometer for different orientations between the applied magnetic field and the fiber axis: (●) 

0°, i.e. the applied magnetic field is in the direction of the fiber axis, (■) 30°, (▲) 60° and (○) 90°, i.e. the 

applied magnetic field is perpendicular to the fiber axis. 

 

 

In order to rule out the presence of antiferromagnetic phases, reported in CNTs 

synthesized by pyrolysis of similar precursors [21], we compared field-cooled  and zero 

field-cooled loops recorded at 10 K and also, low and room temperature hysteresis 

loops of the same fiber (Fig. 1a). The absence of a shift in the field axis discards 

interactions between ferro- and antiferromagnetic phases and suggests a high 

homogeneity of magnetic phases in the CNT fibers of this study. 

A summary of the coercivity (Hc) and saturation magnetization (Ms) of all the studied 

fibers is shown in Table I. At 10 K values for remanence are around 40-45 % in all the 

fibers and coercivity ranges from 1.1 kOe to 0.6 kOe depending on the promoter. At 

300 K there are substantial differences between the samples produced with different 

promoters, remanence and coercivity are 16-25 % and 200-300 Oe for samples grown 
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with Se, compared with 10 % and 55-70 Oe for those grown with S. Again, the 

differences in magnetic properties are ascribed to residual catalyst, with no effect of the 

CNT type other than in the conditions used for synthesis. For samples produced with 

different promoters the values of room temperature coercivity does not correlate well 

with residual Fe content determined by TGA (S2 and Table 1). This is partly due to 

differences in particle size, shape [22] or the presence of defects, all of which have an 

impact on absolute values of coercivity.  

 

 

Table 1. Summary of magnetic properties of samples composed different CNT type, and produced with 

different promoters. Data include: promoter to carbon ratio in precursor mixture, residual Fe wt. % 

obtained by TGA and magnetic properties of the samples. 

 

3.2. Effect of particle size 

 

To further characterize the magnetic behavior of CNT fibers, FC-ZFC curves 

were also performed (Fig. 2 and Fig. S3). The distance between FC and ZFC curves at 

300 K confirms the ferromagnetic behavior measured at room temperature by VSM and 

SQUID for all fibers. The fact that FC curves are not flat indicates the absence of a 

strong interparticle interaction [10], in this case prevented by graphitic encapsulation of 

the nanoparticles and the presence of the CNTs. It suggests that this material is well 

suited for applications requiring small separated magnetic domains [22]. 
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Fig. 2. FC-ZFC curves for (a) S- and (b) Se-CNT fibers. S-CNT fibers show clear superparamagnetic 

behaviour, with a TB around 140 K, indicative of the presence of small nanoparticles. 

 

The main difference between samples obtained from different promoters is the 

presence of a maximum (or a cusp) in the ZFC curves for fibers produced with S, 

indicative of superparamagnetic behavior. Superparamagnetic behavior is a size 

dependent effect that occurs in nanoscopic materials, for which a transition from 

ferromagnetic to superparamagnetic takes place at a critical temperature, known as the 

blocking temperature (TB). The broad cusp in the ZFC (Fig 2a inset) reflects a wide 

range of superparamagnetic particle sizes and gives a blocking temperature TB of 140 K. 

In contrast, ZFC curves for samples grown with Se  show a continuous increase of the 

magnetization as the temperature is raised from 5 to 300 K (Fig. 2b). This corresponds 

to particles without a clear superparamagnetic behavior because of a blocking 

temperature higher than 300 K and/or an extremely wide size distribution. 
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These results agree with the size distribution of catalyst particles obtained 

experimentally by extensive HRTEM analysis, presented in Fig. 3. The distribution of 

nanoparticles produced with S peaks at around 4-8 nm (Fig. 3a), whereas the 

distribution of produced with Se is centred at diameters around 9-15 nm (Fig. 3b). For 

the latter, as a consequence of such a relatively large particle size superparamagnetism 

is not observed at or below 300 K. This can be confirmed by comparison with the 

theoretical particle size obtained from TB using equation (1): 

 

KV=kBTB        (1) 

where K is the magnetic anisotropy constant, V is the nanoparticle volume and kB is 

Boltzmann’s constant. We consider the magnetic anisotropy constant  KFe_BCC=4.18  

10
4
 J/m

3 
for BCC Fe, since to our knowledge there are no literature data on the 

anisotropy constant for metastable phases of Fe. Therefore a TB = 140 K corresponds to 

a nanoparticle diameter around 4.5 nm (S4), which is in the range determined by TEM 

for the superparamagnetic S-CNT fiber (Fig 3a) and in good agreement with 

experimental observations of  superparamagnetism in BCC Fe encapsulated in CNTs 

[24]. For reference, TB = 300 K gives a particle diameter of 6 nm (S4), from which it is 

clear that only the smaller nanoparticles in the sample contribute to the 

superparamagnetic behavior observed, while also confirming that the particle size in Se 

samples is too large to provide a clear superparamagnetic signal.  

 



9 
 

 

 

Fig. 3. Catalyst nanoparticle diameter distribution for (a) S- and (b) Se-CNTf, extracted from HRTEM 

images. Insets: examples of TEM micrographs of residual catalyst nanparticles.  

 

3.3. Origin of ferromagnetic behavior 

 

The results presented above clearly establish that the magnetic properties of 

CNT fibers are due to residual catalyst nanoparticles and that these are sensitive to their 

size distribution. It is then of interest to analyze the origin of the size-independent 

ferromagnetic behavior observed. We first note that of the 4-15 wt. % residual Fe 

catalyst in the fibers more than 99.9 % in fact does not lead to the growth of CNTs, but 

ends up trapped between CNT bundles as residual quasispherical catalyst particles 

capped by graphitic layers [19] (Fig. 3 insets). In previous studies the presence of Fe 

oxide was ruled out through a combination of X-ray photoelectron spectroscopy, 

HRTEM and elemental analysis. No evidence of BCC Fe or carbides (e.g. Fe3C) was 

observed, and thus the residual catalyst was assigned mainly to FCC Fe [19,25]. XRD 

data obtained by azimuthal integration of 2D wide-angle X-ray patterns confirmed these 

observations, but was not of sufficient resolution to provide further information while 
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also covering such a wide Q-range. Here we present new powder X-ray data collected 

under conditions optimized to analyze the catalyst region (see experimental section) and 

which help to explain the ferromagnetic behavior of CNT fibers discussed above.   

Fig. 4a shows a XRD pattern in the range 40º - 80º, with intense reflections from 

the CNTs and evidence of the (200) and (220) reflections from FCC Fe. But 

interestingly, closer inspection of the patterns shows the presence of martensite. In a 

detailed plot in the range 40º-50º (Fig. 4b) the martensite (101) (110) reflections can 

now be clearly identified and distinguished from other intense contributions from FCC 

(111), CNTs (100) and the expected positions for Fe3C (031)(112). The split of the 

martensite (002) and (200) peaks at 62.7º and 65.3º respectively [26], is also observed. 

In addition to exposing the presence of martensite, the data confirm the absence of BCC 

Fe or Fe oxide. 
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Fig. 4. XRD patterns showing the composition of CNT fibres. In the range (a) from 40º to 80º, the 

presence of FCC Fe and graphitic peaks related to CNTs are clearly observed. Magnified data in the 

ranges of (b) 40º - 50º and (c) 60º - 70º clearly show the presence of FCC Fe and martensite with 0.77 wt. 

% C as the major constituents of the catalyst, while confirming absence of BCC Fe.  

 

The amount of interstitial carbon in martensite can be conveniently determined from the 

position of the XRD peaks, since the change in lattice parameters depends linearly on 

carbon content [27], related by equation (2): 

 

c/a = 1 + 0.045 Cwt.%              (2) 
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From the (200) and (002) XRD peaks we obtained interplanar distances of 1.48 

Å and 1.43 Å, giving lattice parameters of a= 2.86 Å and c= 2.96 Å. The resulting 

carbon content Cwt.% comes out as 0.77 wt.%.  

Martensite is ferromagnetic [28] and is thus largely responsible for the 

ferromagnetic behavior discussed above (Fig.1a, Fig. S1b and Fig. S1c further rule out 

contribution from Fe oxide)
1
. But martensite alone cannot explain the observed high 

values of saturation magnetization. Therefore the implication is that FCC Fe also 

contributes to ferromagnetic behavior of the samples. While retained austenite (FCC Fe) 

in bulk steel samples is paramagnetic [29], changes in FCC lattice spacing of Fe 

nanoparticles due to C supersaturation lead to ferromagnetic behavior [16]. Theoretical 

calculations suggest that interstitial C stabilizes FCC Fe and increases its magnetic 

moment (from 0 μB) as a result of lattice expansion, reaching values around 2μB for a 

lattice parameter increase of 0.03 nm [16]. Thus, the development of a magnetic 

moment occurs both as a consequence of lattice distortion and charge transfer between 

Fe and C, since the two are in fact closely related.   

Although it is difficult to deconvolute XRD intensities contributions, the broad 

FCC Fe (111) peak in Fig. 4b suggests a range of interplanar distances. This is 

confirmed by HRTEM analysis of over 40 residual catalyst particles (Fig. 5a). A 

histogram of lattice parameters extracted from FFT of HRTEM micrographs with lattice 

fringe resolution 0.2 Å (Fig. 5b) shows that the distribution extends significantly 

beyond the equilibrium interplanar distances for FCC Fe [30] and martensite [26], 

evidencing substantial lattice expansion as a result of a high C content. Lattice 

parameter increases in FCC Fe nanoparticles as a consequence of C uptake have been 

observed in-situ at temperatures as low as 500°C [24] and extensively measured by 

dilatometry on bulk low-C steel samples at higher temperatures [31]. In our system, 

there are likely to be other contributions to the lattice expansion arising from the small 

size of the particles and their graphitic core-metallic shell structure. Residual thermal 

strain, for example, could arise from the difference between the volumetric thermal 

expansion (CTE) of Fe ( ̴ 10
-6

 /°C) and the in-plane CTE of graphite (-1.3x10
-6

).  

 

                                                           
1
 Field-cooled loops recorded at 10 K (Fig. 1a and Fig. S1b) further confirm that no 

antiferromagnetic Fe oxides are present in the samples, since the absence of exchange-

bias rules out the coupling between ferro- and antiferromagnetic phases. 
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Fig. 5. (a)  HRTEM image and FFT analysis of a residual catalyst nanoparticle in a CNT fibre sample. 

The interplanar distances measured are d1= 2.1 0.2 Å and d2= 1.8 0.2 Å. (b) Interplanar distances 

distribution and the corresponding values for FCC Fe and martensite (M) with 0.77 wt. % C content. 

 

Finally, it is interesting to enquire into the stabilization of FCC Fe and 

martensite in the CVD growth of CNTs. Both phases form in the bulk under severe 

quenching and martensite can form under severe plastic deformation of perlitic steel 

[32]. In the CVD method used in this work nanoparticles are expected to cool down 

rapidly by radiative losses on account of their large surface/volume ratio, certainly 
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much faster that the cooling rate extracted from the temperature profile of gases in the 

reaction. But quenching is unlikely to be the only cause for the stabilization of FCC Fe 

and martensite. Most literature reports of residual FCC Fe after CNT growth involve 

very slow cooling rates (~ 0.1°C/s). Instead, we point to the fact that the C content in the 

nanoparticles is below the required concentration to produce a stable form of segregated 

C, namely a graphitic nucleus. In Fig. S5 we plot the minimum C concentration needed 

to produce a graphitic cap as a function of Fe particle size. It includes a scheme showing 

the expected evolution of a C supersaturated Fe particle. For 6nm particles, for example, 

this critical C content is as high as 10wt. %. The size of the particles is also too small 

for the formation of even ultra-fine pearlite [33] which has a lamella lateral size of 

around 20nm. In view of these considerations, it should be no surprise that only 

metastable retained austenite and martensite are observed in the residual catalyst 

produced in the continuous CNT fibers spinning process.  

 

4. Conclusions 

 

Our results show that continuous CNT fibers have ferromagnetic behavior at 

room temperature. The choice of promoter (S or Se) changes the room temperature 

remanence from 10 % to 25 % and coercivity from 55 to 300 Oe. FC-ZFC curves 

further show that only S-CNT fibers present a clear superparamagnetic behavior below 

300 K (TB = 140K), which is a consequence of the smaller size of residual catalyst 

nanparticles compared to those produced using Se. This is consistent with previous 

observations on the size and shape of catalyst nanoparticles in Se assisted CNT fiber 

[20] and highlights the role of the promoter in controlling C solubility, catalytic activity 

and catalyst particle coarsening through coalescence.  

Ferromagnetic behavior is isotropic, arising from quasipherical residual catalyst 

nanoparticles. These particles are of two types:  martensite with 0.77 wt. % C content 

and FCC Fe.  Both are encapsulated by graphitic layers. Martensite is intrinsically 

ferromagnetic, but bulk FCC Fe is not, therefore ferromagnetic properties of FCC Fe 

nanoparticles derive from severe lattice distortion due to C supersaturation, stabilized 

by the presence of the graphitic shell and their small size impeding a stable phase 

transformation and limiting segregation of C into a stable graphitic nucleus.  

The experimental results of this work would suggest that FCC Fe distortion is 

equivalent to BCT martensite formation (Fig. S6) in terms of the resulting 
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ferromagnetic properties. Further work should employ more advanced characterization 

techniques to confirm this hypothesis.  Valuable input is likely to come from simulation 

work since nanoparticles produced as a product of CVD growth of CNTs are inevitably 

often smaller than the minimum size of an embryonic nucleus and instead resemble 

more a cluster of atoms [34].    
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