
Integrating Maude into Hets

Mihai Codescu, Till Mossakowski, Adrián Riesco, and Christian Maeder

Technical Report 07/10

Departamento de Sistemas Informáticos y Computación
Universidad Complutense de Madrid

September 2010
(Revised February 2, 2011)

Abstract

Maude modules can be understood as models that can be formally analyzed and verified with
respect to different properties expressing various formal requirements. However, Maude lacks the
formal tools to perform some of these analyses and thus they can only be done by hand. The
Heterogeneous Tool Set Hets is an institution-based combination of different logics and corresponding
rewriting, model checking, and proof tools. We present in this paper an integration of Maude into
Hets that allows to use the logics and tools already integrated in Hets with Maude specifications.
To achieve such integration we have defined an institution for Maude based on preordered algebras
and a comorphism between Maude and Casl, the central logic in Hets.

Keywords: rewriting logic, heterogeneous specifications, Maude, Casl

Contents

1 Introduction 3

2 Rewriting logic and Maude 4
2.1 Membership equational logic . 4
2.2 Maude functional modules . 4
2.3 Rewriting logic . 5
2.4 Maude system modules . 5
2.5 Advanced features . 6

2.5.1 Module operations . 6
2.5.2 Theories . 6
2.5.3 Views . 7
2.5.4 Parameterized modules . 8

3 Hets 9

4 Relating the Maude and Casl logics 12
4.1 Maude . 12
4.2 Casl . 14
4.3 Encoding Maude into Casl . 15

5 Building development graphs 16
5.1 Creating the development graph . 16

5.1.1 Modules . 16
5.1.2 Module expressions . 17
5.1.3 Importations . 17
5.1.4 Views . 17
5.1.5 An example of development graph . 17

5.2 Normalization of free definition links . 18

6 An example: Reversing lists 21
6.1 An easier proof: Revisiting our initial example . 22

7 Implementation 24
7.1 Abstract syntax . 24
7.2 Maude parsing . 26
7.3 Logic . 27

7.3.1 Signature . 27
7.3.2 Sentences . 28
7.3.3 Morphisms . 29

7.4 Development graph . 29
7.5 Comorphism . 36
7.6 Freeness constraints . 40

8 Concluding remarks and future work 43

1 Introduction

Maude [6] is a high-level language and high-performance system supporting both equational and rewriting
logic computation for a wide range of applications. Maude modules correspond to specifications in
rewriting logic, a simple and expressive logic which allows the representation of many models of concurrent
and distributed systems. The key point is that there are three different uses of Maude modules:

1. As programs, to implement some application. We may have chosen Maude because its features
make the programming task easier and simpler than other languages.

2. As formal executable specifications, that provide a rigorous mathematical model of an algorithm,
a system, a language, or a formalism. Because of the agreement between operational and mathe-
matical semantics, this mathematical model is at the same time executable. Therefore, we can use
it as a precise prototype of our system to simulate its behavior.

3. As models that can be formally analyzed and verified with respect to different properties express-
ing various formal requirements. For example, we may want to prove that our Maude module
terminates; or that a given function, equationally defined in the module, satisfies some properties
expressed as first-order formulas.

However, when we follow this last approach we find that, although Maude can automatically perform
analyses like model checking of temporal formulas or verification of invariants, other formal analyses have
to be done “by hand,” thus disconnecting the real Maude code from its logical meaning. Although some
efforts, like the Inductive Theorem Prover [8], have been dedicated to palliate this problem, they are
restricted to inductive proofs in Church-Rosser equational theories, and they lack the generality to deal
with all the features of Maude. Hence, and since it is unlikely that a single system will ever have all
the analysis tools required by every programmer, it would be useful to connect Maude to other systems
in a correct and general way. Moreover, when designing complex systems it is usually required to use
different formalisms to define the different their different parts such as databases, specifications, or real-
time mechanisms. For this reason, it would also be interesting to have a framework where different tools
can be used and related to each other.

Among all the tools providing such an integration, we have selected the Heterogeneous Tool Set
(Hets) [27], an institution-based combination of different logics and corresponding rewriting, model
checking, and proof tools. The reasons for this decision are:

• It is formal, that is, it allows the user to reason about the mathematical properties of his speci-
fications. This feature makes it much more adequate for our purposes than the Unified Modeling
Language UML [2], probably the best known system of this kind.

• It is multilateral, in the sense that the specifications can be introduced in any of the logics supported
by Hets, while other approaches, like the Prosper toolkit [9], which provides several decision
procedures and model checkers based in the theorem prover HOL98 [31], only provide one logic,
and all specifications must be translated to it before using the tool.

• It focus on codings between logics, unlike other approaches that focus on codings between theories
as OMDoc [18], an ontology language for mathematics. The former allows to reason about different
elements in different logics, while the latter only permits to reason about different elements in the
same logic.

• Several tools have already been integrated into Hets, including the SAT solvers zChaff [22] and
MiniSat [14], the automated provers SPASS [37], Vampire [35], and Darwin [15], and the interactive
provers Isabelle [30] and VSE [1].

In this paper, we describe an integration of Maude into Hets from which we expect several benefits.
On the one hand, Maude will be the first dedicated rewriting engine that is integrated into Hets (so
far, only the rewriting engine of Isabelle is integrated, which however is quite specialized towards higher-
order proofs). On the other hand, certain features of the Maude module system like views lead to proof
obligations that cannot be checked with Maude—Hets will be the suitable framework to prove them,
using the above mentioned proof tools; with our approach, we cover arbitrary first-order properties (also
written in logics different from Maude), and open the door to automated induction strategies such as
those of ISAplanner [11].

3

The rest of the paper is organized as follows. After briefly introducing rewriting logic in Section 2 and
Hets in Section 3, Section 4 describes the institution we have defined for Maude and the comorphism
from this institution to Casl. Section 5 shows how development graphs for Maude specifications are built,
and then how they are normalized to deal with freeness constraints. Section 6 illustrates the integration
of Maude into Hets with the help of an example, while Section 7 outlines the implementation of the
integration. Section 8 concludes and outlines some future work.

2 Rewriting logic and Maude

As mentioned in the introduction, Maude modules are executable rewriting logic specifications. Rewriting
logic [20] is a logic of change very suitable for the specification of concurrent systems that is parameterized
by an underlying equational logic, for which Maude uses membership equational logic [4, 21], which, in
addition to equations, allows the statement of membership axioms characterizing the elements of a sort.
In the following sections we present both logics and how their specifications are represented as Maude
modules.

2.1 Membership equational logic

A signature in membership equational logic is a triple (K,Σ, S) (just Σ in the following), with K a set
of kinds, Σ = {Σk1...kn,k}(k1...kn,k)∈K∗×K a many-kinded signature, and S = {Sk}k∈K a pairwise disjoint
K-kinded family of sets of sorts. The kind of a sort s is denoted by [s]. We write TΣ,k and TΣ,k(X) to
denote respectively the set of ground Σ-terms with kind k and of Σ-terms with kind k over variables in
X, where X = {x1 : k1, . . . , xn : kn} is a set of K-kinded variables. Intuitively, terms with a kind but
without a sort represent undefined or error elements.

The atomic formulas of membership equational logic are either equations t = t′, where t and t′ are
Σ-terms of the same kind, or membership axioms of the form t : s, where the term t has kind k and
s ∈ Sk. Sentences are universally-quantified Horn clauses of the form (∀X)A0 ⇐ A1 ∧ . . . ∧ An, where
each Ai is either an equation or a membership axiom, and X is a set of K-kinded variables containing
all the variables in the Ai. A specification is a pair (Σ, E), where E is a set of sentences in membership
equational logic over the signature Σ.

Models of membership equational logic specifications are Σ-algebras A consisting of a set Ak for each
kind k ∈ K, a function Af : Ak1 × · · · × Akn

−→ Ak for each operator f ∈ Σk1...kn,k, and a subset
As ⊆ Ak for each sort s ∈ Sk. The meaning [[t]]A of a term t in an algebra A is inductively defined as
usual. Then, an algebra A satisfies an equation t = t′ (or the equation holds in the algebra), denoted
A |= t = t′, when both terms have the same meaning: [[t]]A = [[t′]]A. In the same way, satisfaction of a
membership is defined as: A |= t : s when [[t]]A ∈ As.

A membership equational logic specification (Σ, E) has an initial model TΣ/E whose elements are
E-equivalence classes of terms [t]. We refer to [4, 21] for a detailed presentation of (Σ, E)-algebras, sound
and complete deduction rules, as well as the construction of initial and free algebras.

2.2 Maude functional modules

Maude functional modules [6, Chapter 4], introduced with syntax fmod ... endfm, are executable mem-
bership equational specifications and their semantics is given by the corresponding initial membership
algebra in the class of algebras satisfying the specification. The membership equational logic specifica-
tions that we consider are assumed to satisfy the executability requirements of confluence, termination,
and sort-decreasingness.

In a functional module we can declare sorts (by means of keyword sort(s)); subsort relations between
sorts (subsort); operators (op) for building values of these sorts, giving the sorts of their arguments
and result, and which may have attributes such as being associative (assoc) or commutative (comm), for
example; memberships (mb) asserting that a term has a sort; and equations (eq) identifying terms. Both
memberships and equations can be conditional (cmb and ceq).

Maude does automatic kind inference from the sorts declared by the user and their subsort relations.
Kinds are not declared explicitly, and correspond to the connected components of the subsort relation.
The kind corresponding to a sort s is denoted [s]. For example, if we have sorts Nat for natural numbers
and NzNat for nonzero natural numbers with a subsort NzNat < Nat, then [NzNat] = [Nat].

An operator declaration like

op _div_ : Nat NzNat -> Nat .

4

is logically understood as a declaration at the kind level

op _div_ : [Nat] [Nat] -> [Nat] .

together with the conditional membership axiom

cmb N div M : Nat if N : Nat and M : NzNat .

A subsort declaration NzNat < Nat is logically understood as the conditional membership axiom

cmb N : Nat if N : NzNat .

2.3 Rewriting logic

Rewriting logic extends equational logic by introducing the notion of rewrites corresponding to transitions
between states; that is, while equations are interpreted as equalities and therefore they are symmetric,
rewrites denote changes which can be irreversible.

A rewriting logic specification, or rewrite theory, has the form R = (Σ, E,R), where (Σ, E) is an
equational specification and R is a set of rules as described below. From this definition, one can see that
rewriting logic is built on top of equational logic, so that rewriting logic is parameterized with respect to
the version of the underlying equational logic; in our case, Maude uses membership equational logic, as
described in the previous sections. A rule in R has the general conditional form1

(∀X) t⇒ t′ ⇐
n∧
i=1

ui = u′i ∧
m∧
j=1

vj : sj ∧
l∧

k=1

wk ⇒ w′k

where the head is a rewrite and the conditions can be equations, memberships, and rewrites; both sides
of a rewrite must have the same kind. From these rewrite rules, one can deduce rewrites of the form
t⇒ t′ by means of general deduction rules introduced in [20] (for a generalization see also [5]).

Models of rewrite theories are called R-systems. Such systems are defined as categories that possess
a (Σ, E)-algebra structure, together with a natural transformation for each rule in the set R. More intu-
itively, the idea is that we have a (Σ, E)-algebra, as described in Section 2.1, with transitions between the
elements in each set Ak; moreover, these transitions must satisfy several additional requirements, includ-
ing that there are identity transitions for each element, that transitions can be sequentially composed,
that the operations in the signature Σ are also appropriately defined for the transitions, and that we have
enough transitions corresponding to the rules in R. Then, if we keep in this context the notation A to
denote an R-system, a rewrite t ⇒ t′ is satisfied by A, denoted A |= t ⇒ t′, when there is a transition
[[t]]A →A [[t′]]A in the system between the corresponding meanings of both sides of the rewrite, where→A
will be our notation for such transitions.

The rewriting logic deduction rules introduced in [20] are sound and complete with respect to this
notion of model. Moreover, they can be used to build initial and free models; see [20] for details.

2.4 Maude system modules

Maude system modules [6, Chapter 6], introduced with syntax mod ... endm, are executable rewrite
theories and their semantics is given by the initial system in the class of systems corresponding to the
rewrite theory. A system module can contain all the declarations of a functional module and, in addition,
declarations for rules (rl) and conditional rules (crl).

The executability requirements for equations and memberships in a system module are the same as
those of functional modules, namely, confluence, termination, and sort-decreasingness. With respect to
rules, the satisfaction of all the conditions in a conditional rewrite rule is attempted sequentially from
left to right, solving rewrite conditions by means of search; for this reason, we can have new variables in
such conditions but they must become instantiated along this process of solving from left to right (see
[6] for details). Furthermore, the strategy followed by Maude in rewriting with rules is to compute the
normal form of a term with respect to the equations before applying a rule. This strategy is guaranteed
not to miss any rewrites when the rules are coherent with respect to the equations [36, 6]. In a way
quite analogous to confluence, this coherence requirement means that, given a term t, for each rewrite
of it using a rule in R to some term t′, if u is the normal form of t with respect to the equations and
memberships in E, then there is a rewrite of u with some rule in R to a term u′ such that u′ =E t′ (that
is, the equation t′ = u′ can be deduced from E).

1There is no need for the condition listing first equations, then memberships, and then rewrites: this is just a notational
abbreviation, they can be listed in any order.

5

2.5 Advanced features

In addition to the modules presented thus far, we present in this section some other Maude features that
will be used throughout this paper. More information on these topics can be found in [6].

2.5.1 Module operations

To ease the specification of large systems, Maude provides several mechanisms to structure its modules.
We describe in this section these structuring mechanisms, that will be used later to build the development
graphs in Hets.

Maude modules can import other modules in three different modes:

• The protecting mode (abbreviated as pr) indicates that no junk and no confusion can be added
to the imported module, where junk refers to new terms in canonical form while confusion implies
that different canonical terms in the initial module are made equal by equations in the imported
module.

• The extending mode (abbreviated as ex) indicates that junk is allowed but confusion is forbidden.

• The including mode (abbreviated as inc) allows both junk and confusion.

More specifically, these importation modes do not import modules but module expressions that, in
addition to a single module identifier, can be:

• A summation of two module expressions ME 1 +ME 2, which creates a new module that includes all
the information in its summands.

• A renaming ME * (Renaming), where Renaming is a list of renamings. They can be renaming of
sorts:

sort sort1 to sort2 .

of operators, distinguishing whether it renames all the operators with the given identifier (when the
attributes are modified, only prec, gather, and format are allowed, see [6])

op id1 to id2 .

op id1 to id2 [atts] .

or it renames the operators of the given arity:

op id1 : arity -> coarity to id2 .

op id1 : arity -> coarity to id2 [atts] .

or of labels:

label label1 to label2 .

2.5.2 Theories

Theories are used to declare module interfaces, namely the syntactic and semantic properties to be
satisfied by the actual parameter modules used in an instantiation. As for modules, Maude supports
two different types of theories: functional theories and system theories, with the same structure of
their module counterparts, but with a different semantics. Functional theories are declared with the
keywords fth ... endfth, and system theories with the keywords th ... endth. Both of them can
have sorts, subsort relationships, operators, variables, membership axioms, and equations, and can import
other theories or modules. System theories can also have rules. Although there is no restriction on the
operator attributes that can be used in a theory, there are some subtle restrictions and issues regarding
the mapping of such operators (see Section 2.5.3). Like functional modules, functional theories are
membership equational logic theories, but they do not need to be Church-Rosser and terminating.

For example, we can define a theory for some processes. First, we indicate that a sort for processes is
required:

6

fth PROCESS is

pr BOOL .

sort Process .

Then, we state that two operators, one updating the processes and another one checking whether a
process has finished, have to be defined:

op update : Process -> Process .

op finished? : Process -> Bool .

Finally, we require an operator _<_ over processes that is required to be irreflexive and transitive:

vars X Y Z : Process .

op _<_ : Process Process -> Bool .

eq X < X = false [nonexec label irreflexive] .

ceq X < Z = true if X < Y /\ Y < Z [nonexec label transitive] .

endfth

2.5.3 Views

We use views to specify how a particular target module or theory satisfies a source theory. In general,
there may be several ways in which such requirements might be satisfied by the target module or theory;
that is, there can be many different views, each specifying a particular interpretation of the source theory
in the target. In the definition of a view we have to indicate its name, the source theory, the target
module or theory, and the mapping of each sort and operator in the source theory. The source and target
of a view can be any module expression, with the source module expression evaluating to a theory and the
target module expression evaluating to a module or a theory. Each view declaration has an associated set
of proof obligations, namely, for each axiom in the source theory it should be the case that the axiom’s
translation by the view holds true in the target. Since the target can be a module interpreted initially,
verifying such proof obligations may in general require inductive proof techniques. Such proof obligations
are not discharged or checked by the system.

The mappings allowed in views are:

• Mappings between sorts:

sort sort1 to sort2 .

• Mappings between operators, where the user can specify the arity and coarity of the operators to
disambiguate them:

op id1 to id2 .

op id1 : arity -> coarity to id2 .

• In addition to these mappings, the user can map a term term1, that can only be a single operator
applied to variables, to any term term2 in the target module, where the sorts of the variables in
the first term have been translated by using the sort mappings. Note that in that case the arity of
the operator in the source theory and the one in the target module can be different:

op term1 to term term2 .

Notice that we cannot map labels, and thus we cannot identify the statements in the theory with
those in the target module.

We can now create a view NatProcess from the theory PROCESS in the previous section to NAT, the
predefined module for natural numbers:

view NatProcess from PROCESS to NAT is

We need a sort in NAT to identify processes. We use Nat, the sort for natural numbers:

7

sort Process to Nat .

Since we identify now processes with natural numbers, we can update a process by applying the
successor function, which is declared as s_ in NAT:

op update to s_ .

We map the operator finished? in a different way: we create a term with this operator with a
variable as argument, and it is mapped to a term in the syntax of the target module. In that case we
consider a process has finished if it reaches 100:

op finished?(P:Process) to term P:Nat < 100 .

Since the NAT module already contains an operator _<_, it is not necessary to explicitly indicate the
corresponding mapping, i.e., identity mappings for sorts and operators can be omitted when defining
views.

2.5.4 Parameterized modules

Maude modules can be parameterized. A parameterized system module has syntax

mod M{X1 :: T1, . . . , Xn :: Tn} is ... endm

with n ≥ 1. Parameterized functional modules have completely analogous syntax.
The {X1 :: T1, . . . , Xn :: Tn} part is called the interface, where each pair Xi :: Ti is a parameter, each

Xi is an identifier—the parameter name or parameter label—, and each Ti is an expression that yields a
theory—the parameter theory. Each parameter name in an interface must be unique, although there is
no uniqueness restriction on the parameter theories of a module. The parameter theories of a functional
module must be functional theories.

In a parameterized module M , all the sorts and statement labels coming from theories in its interface
must be qualified by their names. Thus, given a parameter Xi :: Ti, each sort S in Ti must be qualified as
Xi$S, and each label l of a statement occurring in Ti must be qualified as Xi$l. In fact, the parameterized
module M is flattened as follows. For each parameter Xi :: Ti, a renamed copy of the theory Ti, called
Xi :: Ti is included. The renaming maps each sort S to Xi$S, and each label l of a statement occurring
in Ti to Xi$l. The renaming has no effect on importations of modules. Thus, if Ti includes a theory T ′,
when the renamed theory Xi :: Ti is created and included into M , the renamed theory Xi :: T ′ will also
be created and included into Xi :: Ti. However, the renaming will have no effect on modules imported
by either the Ti or T ′; for example, if BOOL is imported by one of these theories, it is not renamed,
but imported in the same way into M . Moreover, sorts declared in parameterized modules can also be
parameterized, and these may duplicate, omit, or reorder parameters.

The parameters in parameterized modules are bound to the formal parameters by instantiation. The
instantiation requires a view from each formal parameter to its corresponding actual parameter. Each such
view is then used to bind the names of sorts, operators, etc. in the formal parameters to the corresponding
sorts, operators (or expressions), etc. in the actual target. The instantiation of a parameterized module
must be made with views explicitly defined previously.

We can define a parameterized module for multisets of the processes shown in Section 2.5.3. This
module defines the sort MSet{X} for multisets, which is a supersort of Process:

fmod PROCESS_MSET{X :: PROCESS} is

sort MSet{X} .

subsort X$Process < MSet{X} .

The constructors of multisets are empty for the empty multiset and the juxtaposition operator __ for
bigger multisets:

op empty : -> MSet{X} [ctor] .

op __ : MSet{X} MSet{X} -> MSet{X} [ctor assoc comm id: empty] .

We can also use the operators declared in the view. For example, we can remove a process from the
multiset if it is finished:

8

Figure 1: The Heterogeneous Tool Set

var P : X$Process .

var MS : MSet{X} .

ceq P MS = MS if finished?(P) .

endfm

We can use the view NatProcess to instantiate this parameterized module and create multisets of
processes identified as natural numbers.

fmod NAT_PROCSES_MSET is

pr PROCESS_MSET{NatProcess} .

endfm

3 Hets

The central idea of Hets [24, 27, 28] is to provide a general logic integration and proof management
framework. One can think of Hets acting like a motherboard where different expansion cards can be
plugged in, the expansion cards here being individual logics (with their analysis and proof tools) as
well as logic translations. The benefit of plugging in a new logic and tool such as Maude into the Hets
motherboard is the gained interoperability with the other logics and tools available in Hets; for example,
we can now compose the translation from Maude to Casl with the corresponding translation to Isabelle
to prove properties in Maude specifications.

Figure 1 shows how, by adding up different tools for single logics, we obtain a bigger tool which
supports all of them by (i) providing a small set of mechanisms specific for each tool, (ii) relating the
logics in such a way that all of them are connected, and (iii) using these relations to translate the initial
specification to another logic where the required tool is available. The current logic graph for Hets
is depicted in Figure 2 (where different colors stand for different subgraphs and relations we are not
interested here), where each node corresponds to a different logic and the links are relations between them.
Note that the central node of this graph is Casl, the Common Algebraic Specification Language [29],
which is based in first order logic; new logics are expected to be translated to this logic in order to relate
them with all the other logics in an easy and efficient way.

Following the ideas shown in Figure 1, the work that needs to be done for such an integration is to
prepare both the Maude logic and tool so that it can act as an expansion card for Hets:

9

Figure 2: Current logic graph

• On the side of the semantics, this means that the logic needs to be organized as an institution [17, 34].

• On the side of the tool, each one must provide a parser and static analysis mechanisms, in such a
way that specifications in different logics can be translated to a common framework, which in our
case consists of development graphs, a graphical representation of structured specifications.

Before describing institutions we recall the notions of category, small category, dual category, and
functor.

A category C consists of:

• a class |C| of objects;

• a class hom(C) of morphisms, (also known as arrows), between the objects;

• operations assigning to each morphism f an object dom(f), its domain, and an object cod(f), its
codomain (we write f : A→ B to indicate that dom(f) = A and cod(f) = B);

• a composition operator assigning to each pair of morphisms f and g, with cod(f) = dom(g), a
composite morphism g ◦ f : dom(f) → cod(g), satisfying the associative law: for any morphisms
f : A→ B, g : B → C, and h : C → D, h ◦ (g ◦ f) = (h ◦ g) ◦ f ; and

• for each object A, an identity morphism idA : A→ A satisfying the identity law: for any morphism
f : A→ B, idB ◦ f = f and f ◦ idA = f .

A category C is called small if both |C| and hom(C) are sets and not proper classes.
For each category C, its dual category Cop is the category that has the same objects as C and whose

arrows are the opposites of the arrows in C, that is, if f : A→ B ∈ C, then f : B → A ∈ Cop . Composite
and identity arrows are defined in the obvious way.

Let C and D be categories. A functor F : C→ D is a map taking each C-object A to a D-object F(A)
and each C-morphism f : A→ B to a D-morphism F(f) : F(A)→ F(B), such that for all C-objects A
and composable C-morphisms f and g:

• F(idA) = idF(A),

• F(g ◦ f) = F(g) ◦ F(f).

10

It is worth mentioning two interesting categories: Set, the category whose objects are sets and whose
morphisms between sets A and B are all functions from A to B; and Cat, the category whose objects
are all small categories and whose morphisms are functors between them.

An institution consists of:

• a category Sign of signatures;

• a functor Sen : Sign→ Set giving a set Sen(Σ) of Σ-sentences for each signature Σ ∈ |Sign|;

• A functor Mod : Signop → Cat, giving a category Mod(Σ) of Σ-models for each signature
Σ ∈ |Sign|; and

• for each signature Σ ∈ |Sign|, a satisfaction relation |=Σ⊆ |Mod(Σ)| × Sen(Σ) between models
and sentences such that for any signature morphism σ : Σ → Σ′, Σ-sentence ϕ ∈ Sen(Σ) and
Σ′-model M ′ ∈ |Mod(Σ)|:

M ′ |=Σ′ Sen(σ)(ϕ) ⇐⇒ Mod(σ)(M ′) |=Σ ϕ

which is called the satisfaction condition.

It is also important to define, for our purposes in this work, the notion of institution comorphism [32].
Given two institutions I = (Sign,Mod,Sen, |=) and I ′ = (Sign′,Mod′,Sen′, |=′), an institution co-
morphism from I to I ′ consists of Φ : Sign→ Sign′, a natural transformation α : Sen⇒ Φ; Sen′, and a
natural transformation β : Φ; Mod′ ⇒Mod such that the following satisfaction condition holds for each
Σ ∈ |Sign|, f ∈ |Sen(Σ′)|, and m′ ∈ |Mod′(Φ(Σ))|:

βΣ(m′) |=Σ f ⇐⇒ m′ |=′Φ(Σ) αΣ(f)

Institutions capture in a very abstract and flexible way the notion of a logical system, by leaving
open the details of signatures, models, sentences (axioms), and satisfaction (of sentences in models). The
satisfaction condition states that truth is invariant under change of notation (also called enlargement of
context), which is captured by the notion of signature morphism (which leads to translations of sentences
and reductions of models). See [17] for formal details.

Indeed, Hets has interfaces for plugging in the different components of an institution: signatures,
signature morphisms, sentences, and their translation along signature morphisms. Recently, even (some)
models and model reducts have been covered, although this is not needed here. Note, however, that the
model theory of an institution (including model reducts and the satisfaction condition) is essential when
relating different logics via institution comorphisms. The logical correctness of their use in multi-logic
proofs is ensured by model-theoretic means.

For proof management, Hets uses development graphs [25]. They can be defined over an arbitrary
institution, and they are used to encode structured specifications in various phases of the development.
Roughly speaking, each node of the graph represents a theory. The links of the graph define how theories
can make use of other theories. In this way, we represent complex specifications by representing each
component (e.g. each module) as a node in the development graph and the relation between them (e.g.
importations) as links.

A development graph is an acyclic, directed graph DG = 〈N ,L〉, where:

• N is a set of nodes. Each node N ∈ N is a pair (ΣN ,ΦN) such that ΣN is a signature and
ΦN ⊆ Sen(ΣN) is the set of local axioms of N .

• L is a set of directed links, so-called definition links, between elements of N . Each definition link
from a node M to a node N is either

– global (denoted M
σ +3 N), annotated with a signature morphism σ : ΣM → ΣN , or

– local (denoted M
σ // N), again annotated with a signature morphism σ : ΣM → ΣN , or

– hiding (denoted M
σ

hide
+3 N), annotated with a signature morphism σ : ΣN → ΣM going

against the direction of the link, or

– free (denoted M
σ

free
+3 N), annotated with a signature morphism σ : Σ → ΣM where Σ is a

subsignature of ΣM .

11

In addition to these links we add a new link, denoted M
σ

n.p.free
+3 N, that stands for non-persistent free links

and will be used when dealing with protecting importations in Maude modules. However, these nodes
are only used for Maude specifications and thus are nonstandard, we will show in Section 5.2 how these
links and the associated nodes are transformed into a new graph that only uses standard constructions.
Intuitively, these links indicate that no new elements can be added to the sorts, although they can be
added to the kind.

Given a node M in a development graph DG, its associated class ModDG(M) of models (or M -models
for short) is inductively defined to consist of those ΣM -models m for which

1. m satisfies the local axioms ΦM ,

2. for each N
σ +3 M ∈ DG, m|σ is an N -model,

3. for each N
σ // M ∈ DG, m|σ satisfies the local axioms ΦN ,

4. for each N
σ

hide
+3 M ∈ DG, m has a σ-expansion m′ (i.e. m′|σ = m) that is an N -model, and

5. for each N
σ

free
+3 M ∈ DG, m is an N -model that is persistently σ-free in Mod(N). The latter

means that for each N -model m′ and each model morphism h : m|σ → m′|σ, there exists a unique
model morphism h# : m→ m′ with h#|σ = h.

Complementary to definition links, which define the theories of related nodes, we introduce the notion
of a theorem link with the help of which we are able to postulate relations between different theories.
Theorem links are the central data structure to represent proof obligations arising in formal developments.
Again, we distinguish between local and global theorem links (denoted by N

σ +3___ ___ M and N
σ //___ M

respectively). We also need theorem links N
σ

hide θ
+3___ ___ M (where for some Σ, θ : Σ→ ΣN and σ : Σ→ ΣM)

involving hiding. The semantics of theorem links is given as follows:
Let DG be a development graph and N , M nodes in DG.

• DG implies a global theorem link N
σ +3___ ___ M (denoted DG |= N

σ +3___ ___ M) iff for all m ∈ Mod(M),
m|σ ∈ Mod(N).

• DG implies a local theorem link N
σ //___ M (denoted DG ` N σ //___ M) iff for all m ∈ Mod(M),

m|σ |= φ for all φ ∈ ΦN .

• DG implies a hiding theorem link N
σ

hide θ
+3___ ___ M (denoted DG |= N

σ

hide θ
+3___ ___ M) iff for all m ∈ Mod(M),

the m|σ has a θ-expansion to some N -model.

We refer to [26, 24] for more details on how to use development graphs.

4 Relating the Maude and Casl logics

In this section, we will relate Maude and Casl at the level of logical systems. The structuring level will
be considered in the next section by means of development graphs.

4.1 Maude

As we have seen in Section 2, Maude is an efficient tool for equational reasoning and rewriting. Method-
ologically, Maude specifications are divided into a specification of the data objects and a specification
of some concurrent transition system, the states of which are given by the data part. Two logics have
been introduced and studied in the literature for this binary relation: rewriting logic [20] and preordered
algebra [16]. They essentially differ in the treatment of rewrites: whereas in rewriting logic, rewrites are
named, and different rewrites between two given states (terms) can be distinguished (which corresponds
to equipping each carrier set with a category of rewrites), in preordered algebra, only the existence of a
rewrite does matter (which corresponds to equipping each carrier set with a preorder of rewritability).

Rewriting logic has been announced as the logic underlying Maude [6]. Maude modules lead to
rewriting logic theories, which can be equipped with loose semantics (fth/th specifications) or initial/free

12

semantics (fmod/mod specifications). Although rewriting logic is not given as an institution [10], a so-
called specification frame (collapsing signatures and sentences into theories) would be sufficient for our
purposes.

However, after a closer look at Maude and rewriting logic, we found out that de facto, the logic
underlying Maude differs from the rewriting logic as defined in [20]. The reasons are:

1. In Maude, labels of rewrites cannot (and need not) be translated along signature morphisms. This
means that e.g. Maude views do not lead to theory morphisms in rewriting logic!

2. Although labels of rewrites are used in traces of counterexamples, they play a subsidiary role,
because they cannot be used in the linear temporal logic of the Maude model checker.

Specially the first reason completely rules out a rewriting logic-based integration of Maude into Hets: if
a view between two modules is specified, Hets definitely needs a theory morphism underlying the view.2

However, the Maude user does not need to provide the action of the signature morphism on labeled
rewrites, and generally, there is more than one possibility to specify this action.

The conclusion is that, for the time being, the most appropriate logic to use for Maude is preordered
algebra [16]. In this logic, rewrites are neither labeled nor distinguished, only their existence is impor-
tant. This implies that Maude views lead to theory morphisms in the institution of preordered algebras.
Moreover, this setting also is in accordance with the above observation that in Maude rewrite labels are
not first-class citizens, but are mere names of sentences that are convenient for decorating tool output
(e.g. traces of the model checker). Labels of sentences play a similar role in Hets, which perfectly fits
here.

Actually, the switch from rewriting logic to preordered algebras has effects on the consequence relation,
contrary to what is said in [20]. Consider the following Maude theory:

th A is
sorts S T .
op a : -> S .
eq X:S = a .
ops h k : S -> T .
rl [r] : a => a .
rl [s] : h(a) => k(a) .
endfth

This logically implies h(x)⇒ k(x) in preordered algebra, but not in rewriting logic, since in the latter
logic it is easy to construct models in which the naturality condition r; k(r) = h(r); s fails to hold.

Thus, we will work with preordered algebra semantics for Maude. We will define an institution, that
we will denote Maudepre , which can be, like in the case of Maude’s logic, parametric over the underlying
equational logic. Following the Maude implementation, we have used membership equational logic [21].
Notice that the resulting institution Maudepre is very similar to the one defined in the context of CafeOBJ
[16, 10] for preordered algebra (the differences are mainly given by the discussion about operation profiles
below, but this is only a matter of representation). This allows us to make use of some results without
giving detailed proofs.

Signatures of Maudepre are tuples (K,F, kind : (S,≤) → K), where K is a set of kinds, kind is a
function assigning a kind to each sort in the poset (S,≤), and F is a set of function symbols of the form
F = {Fk1...kn→k | ki, k ∈ K} ∪ {Fs1...sn→s | si, s ∈ S} such that if f ∈ Fs1...sn→s, there is a symbol
f ∈ Fkind(s1)...kind(sn)→kind(s). Notice that there is actually no essential difference between our putting
operation profiles on sorts into the signatures and Meseguer’s original formulation putting them into the
sentences.

Given two signatures Σi = (Ki, Fi, kindi), i ∈ {1, 2}, a signature morphism φ : Σ1 → Σ2 consists
of a function φkind : K1 → K2 which preserves ≤1, a function between the sorts φsort : S1 → S2 such
that φsort; kind2 = kind1;φkind and the subsorts are preserved, and a function φop : F1 → F2 which
maps operation symbols compatibly with the types. Moreover, the overloading of symbol names must
be preserved, i.e. the name of φop(σ) must be the same both when mapping the operation symbol σ on
sorts and on kinds. With composition defined component-wise, we get the category of signatures.

2If the Maude designers would let (and force) users to specify the action of signature morphisms on rewrite labels, it
would not be difficult to switch the Hets integration of Maude to being based on rewriting logic. In that case the labels
would be taken into account, while the sentences would remain unchanged.

13

For a signature Σ, a model M interprets each kind k as a preorder (Mk,≤), each sort s as a subset
Ms of Mkind(s) that is equipped with the induced preorder, with Ms a subset of Ms′ if s < s′, and each
operation symbol f ∈ Fk1...kn,k as a function Mf : Mk1× . . .×Mkn

→Mk which has to be monotonic and
such that for each function symbol f on sorts, its interpretation must be a restriction of the interpretation
of the corresponding function on kinds. For two Σ-models A and B, a homomorphism of models is a
family {hk : Ak → Bk}k∈K of preorder-preserving functions which is also an algebra homomorphism and
such that hkind(s)(As) ⊆ Bs for each sort s.

The sentences of a signature Σ are Horn clauses built with three types of atoms: equational atoms
t = t′, membership atoms t : s, and rewrite atoms t ⇒ t′, where t, t′ are Σ-terms and s is a sort in S.3

Given a Σ-model M , an equational atom t = t′ holds in M if Mt = Mt′ , a membership atom t : s holds
when Mt is an element of Ms, and a rewrite atom t ⇒ t′ holds when Mt ≤ Mt′ . The satisfaction of
sentences extends the satisfaction of atoms in the obvious way.

4.2 Casl

Casl, the Common Algebraic Specification Language [3, 29], has been designed by CoFI, the inter-
national Common Framework Initiative for algebraic specification and development. Its underlying logic
combines first-order logic and induction (the latter is expressed using so-called sort generation constraints,
which express term-generatedness of a part of a model; this is needed for the specification of the usual
inductive datatypes) with subsorts and partial functions. The institution underlying Casl is introduced
in two steps: first, many-sorted partial first-order logic with sort generation constraints and equality
(PCFOL=) is introduced, and then, subsorted partial first-order logic with sort generation constraints
and equality (SubPCFOL=) is described in terms of PCFOL= [23]. Basically this institution is composed
of:

• A subsorted signature Σ = (S,TF ,PF , P,≤S), where S is a set of sorts, TF and PF are two S∗×S-
sorted families TF = (TFw,s)w∈S∗,s∈S and PF = (PFw,s)w∈S∗,s∈S of total function symbols and
partial function symbols, respectively, such that TFw,s ∩ PFw,s = ∅, for each (w, s) ∈ S∗ × S,
P = (Pw)w∈S∗ a family of predicates, and ≤S is a reflexive and transitive subsort relation on the
set S. Given two signatures Σ = (S,TF ,PF , P) and Σ′ = (S′,TF ′,PF ′, P ′), a signature morphism
σ : Σ→ Σ′ consists of:

– a map σS : S → S′ preserving the subsort relation,

– a map σFw,s : TFw,s ∪ PFw,s → TFσS∗ (w),σS(s) ∪ PF ′σS∗ (w),σS(s) preserving totality, for each
w ∈ S∗, s ∈ S, and

– a map σPw : Pw → P ′
σS∗ (w)

for each w ∈ S∗.

Identities and composition are defined in the obvious way.

With each subsorted signature Σ = (S,TF ,PF , P,≤S) we associate a many-sorted signature Σ̂,
which is the extension of the underlying many-sorted signature (S,TF ,PF , P) with:

– a total injection function symbol inj : s→ s′, for each pair of sorts s ≤S s′,
– a partial projection function symbol pr : s′ →? s, for each pair of sorts s ≤S s′, and

– a unary membership predicate symbol ∈s: s′, for each pair of sorts s ≤S s′.

Signature morphisms σ : Σ→ Σ′ are extended to signature morphisms σ̂ : Σ̂→ Σ̂′ by just mapping
the injections, projections, and memberships in Σ̂ to the corresponding injections, projections, and
memberships in Σ̂′.

For a subsorted signature Σ = (S,TF ,PF , P,≤S), we define overloading relations (also called
monotonicity orderings), ∼F and ∼P , for function and predicate symbols, respectively:

Let f : w1 → s1, f : w2 → s2 ∈ TF ∪ PF , then f : w1 → s1 ∼F f : w2 → s2 iff there exist w ∈ S∗
with w ≤S∗ w1 and w ≤S∗ w2 and s ∈ S with s1 ≤S s and s2 ≤S s.
Let p : w1, p : w2 ∈ P , then p : w1 ∼P p : w2 iff there exists w ∈ S∗ with w ≤S∗ w1 and w ≤S∗ w2.

3Note that this is slightly more general than Maude’s version, because rewrite conditions are allowed in equations and
membership axioms.

14

• A set of subsorted Σ-sentences, that correspond to ordinary Σ̂-many-sorted sentences, that is, closed
many-sorted first-order Σ̂-formulas or sort generation constraints over Σ. Sentence translation along
a subsorted signature morphism σ is just sentence translation along the many-sorted signature
morphism σ̂.

• Subsorted Σ-models M are ordinary many-sorted Σ̂-models, which are composed of:

– a non-empty carrier set Ms for each sort s ∈ S,

– a partial function fM from Mw to Ms for each function symbol f ∈ TFw,s ∪ PFw,s, w ∈ S∗,
s ∈ S, the function being total if f ∈ TFw,s, and

– a predicate pM ⊆Mw for each predicate symbol p ∈ Pw, w ∈ S∗.

satisfying the following set of axioms Ĵ(Σ):

– inj (s,s)(x) e= x (identity),

where e= stands for existential equation.

– inj (s,s′)(x) e= inj (s,s′)(x) =⇒ x
e= y for s ≤S s′ (embedding-injectivity),

– inj (s′,s′′)(inj s,s′(x)) e= inj (s,s′′)(x) for s ≤S s′ ≤S s′′ (transitivity),

– pr (s′,s)(inj (s,s′)(x)) e= x for s ≤S s′ (projection),

– pr (s′,s)(x) e= pr (s′,s)(y) =⇒ z
e= y for s ≤S s′ (projection-injectivity),

– ∈ss′ (x) ⇐⇒ pr (s′,s)(x) for s ≤S s′ (membership),

– inj (s′,s)(fw′,s′(inj s1,s′1(x1), . . . , inj sn,s′n
(xn))) =

inj (s′′,s)(fw′′,s′′(inj (s1,s′′1)(x1), . . . , inj (sn,s′′n)(xn))) for fw′,s′ ∼F fw′′,s′′ , where w ≤ w′, w′′,
s′, s′′ ≤ s, w = s1, . . . , sn, w′ = s′1, . . . , s

′
n, and w′′ = s′′1 , . . . , s

′′
n (function-monotonicity),

and

– pw′(inj (s1,s′1)(x1), . . . , inj (sn,s′n)(xn)) ⇐⇒ pw′′(inj (s1,s′′1)(x1), . . . , inj (sn,s′′n)(xn)) for pw′ ∼P
pw′′ , where w ≤ w′, w′′, w = s1 . . . sn, w′ = s′1 . . . s

′
n, and w′′ = s′′1 . . . s

′′
n (predicate-monotonicity).

• Satisfaction and the satisfaction condition are inherited from the many-sorted institution. Roughly
speaking, a formula ϕ is satisfied in a model M iff it is satisfied w.r.t. all variable valuations into
M .

In contrast to Maude, Casl’s subsort relations may be interpreted by arbitrary injections injs,t , not
only by subsets. We refer to [29] for details. We will only need the Horn clause fragment of first-order
logic. For freeness, we will also need sort generation constraints, as well as the second-order extension of
Casl with quantification over predicates; we show the details in Section 5.2.

4.3 Encoding Maude into Casl

We now present an encoding of Maude into Casl, which is formalized as an institution comorphism. The
idea of the encoding of Maudepre in Casl is that we represent rewriting as a binary predicate and we
axiomatize it as a preorder compatible with operations.

Every Maude signature Σ = (K,F, kind : (S,≤) → K) is translated to the Casl theory Φ(Σ) =
((S′,≤′, F, P), E), where S′ is the disjoint union of K and S, ≤′ extends the relation ≤ on sorts with
pairs (s, kind(s)), for each s ∈ S, rew ∈ Ps,s for any s ∈ S′ is a binary predicate and E contains
axioms stating that for any kind k, rew ∈ Pk,k is a preorder compatible with the operations. The latter
means that for any f ∈ Fs1..sn,s and any xi, yi of sort si ∈ S′, i = 1, .., n, if rew(xi, yi) holds, then
rew(f(x1, . . . , xn), f(y1, . . . , yn)) also holds.

Let Σi, i = 1, 2 be two Maude signatures and let ϕ : Σ1 → Σ2 be a Maude signature morphism. Then
its translation Φ(ϕ) : Φ(Σ1)→ Φ(Σ2) denoted φ, is defined as follows:

• for each s ∈ S, φ(s) := ϕsort(s) and for each k ∈ K, φ(k) := ϕkind(k).

• the subsort preservation condition of φ follows from the similar condition for ϕ.

• for each operation symbol σ, φ(σ) := ϕop(σ).

• rew is mapped identically.

15

The sentence translation map for each signature is obtained in two steps. While the equational atoms
are translated as themselves, membership atoms t : s are translated to Casl memberships t in s and
rewrite atoms of the form t ⇒ t′ are translated as rew(t, t′). Then, any sentence of Maude of the form
(∀xi : ki)H =⇒ C, where H is a conjunction of Maude atoms and C is an atom is translated as
(∀xi : ki)H ′ =⇒ C ′, where H ′ and C ′ are obtained by mapping all the Maude atoms as described
before.

Given a Maude signature Σ, a model M ′ of its translated theory (Σ′, E) is reduced to a Σ-model
denoted M where:

• for each kind k, define Mk = M ′k and the preorder relation on Mk is rew;

• for each sort s, define Ms to be the image of M ′s under the injection injs,kind(s) generated by the
subsort relation;

• for each f on kinds, let Mf (x1, .., xn) = M ′f (x1, .., xn) and for each f on sorts of result sort s,
let Mf (x1, .., xn) = injs,kind(s)(M ′f (x1, .., xn)). Mf is monotone because axioms ensure that M ′f is
compatible with rew.

The reduct of model homomorphisms is the expected one. Let Σ be a Maude signature, M ′, N ′ be two
Φ(Σ)-models (in Casl) and let h′ : M ′ → N ′ be a model homomorphism. Let us denote M = βΣ(M ′),
N = βΣ(N ′) and let us define h : M → N as follows: for any kind k of Σ, hk := h′k (this is correct
because the domain and the codomain match, by definition of M and N). We need to show that h is
indeed a Maude model homomorphism. For this, we need to show three things:

1. hk is preorder preserving for any kind k.

Assume x ≤Mk y. By definition, the preorder on Mk is the one given by rew , so this means Mrew (x, y)
holds. By the homomorphism condition for h′ we have Nrew (h′(x), h′(y)) holds, which means by
definition of the preorder on N that h′(x) ≤Nk h′(y).

2. h is an algebra homomorphism.

This follows directly from the definition of Mσ where σ is an operation symbol and from the
homomorphism condition for operation symbols for h′.

3. for any sort s, hks
(Ms) ⊆ Ns, where ks is the kind of s, by a slight notational abuse.

By definition, Ms = inj s,ks
(M ′s). By the homomorphism condition for inj s,ks

, which is an explicit
operation symbol in Casl, we have that hks

(Ms) = hks
(inj s,ks

(M ′s)) = inj s,ks
(hs(M ′s)). Since

hs(M ′s) ⊆ N ′s by definition, we have that inj s,ks
(hs(M ′s)) ⊆ inj s,ks

(N ′s), which by definition is Ns.

5 Building development graphs

We describe in this section how Maude structuring mechanisms described in Section 2 are translated
into development graphs. Then, we explain how these development graphs are normalized to deal with
freeness constraints.

5.1 Creating the development graph

We describe here how Maude modules, theories, and views are translated into development graphs,
illustrating it with an example.

5.1.1 Modules

Each Maude module generates two nodes in the development graph. The first one contains the theory
equipped with the usual loose semantics. The second one, linked to the first one with a free definition link
(whose signature morphism is detailed in Section 5.2), contains the same signature but no local axioms
and stands for the free models of the theory. Note that Maude theories only generate one node, since
their initial semantics is not used by Maude specifications.

The model class of parameterized modules consists of free extensions of the models of their parameters,
that are persistent on sorts, but not on kinds. This notion of freeness has been studied in [4] under
assumptions like existence of top sorts for kinds and sorted variables in formulas; our results hold under
similar hypotheses. We use non-persistent free links to link these modules with their corresponding
theories.

16

5.1.2 Module expressions

Maude module expressions allow to combine and modify the information contained in Maude modules:

• When the module expression is a simple identifier the development graph remains unchanged.

• The summation of the module expressions ME 1 and ME 2 generates a new node in the development
graph (ME 1 + ME 2) with the union of the information in both summands. A definition link is also
created between the original expressions and the resulting one.

• The renaming expression ME ∗ (R) creates a morphism with the information given in R that will be
used to label the link between the node standing for the module expression and the node importing
it.

5.1.3 Importations

As explained above, each Maude module generates two nodes in the development graph; when importing
a module, we will select between these nodes depending on the chosen importation mode:

• The protecting mode generates a non-persistent free link between the current node and the node
standing for the free semantics of the included one. We use the same links for the parameters in
parameterized modules.

• The extending mode generates a global link with the annotation PCons?, that stands for proof-
theoretic conservativity and that can be checked with a special conservativity checker that is inte-
grated into Hets.

• The including mode generates a global definition link between the current node and the node
standing for the loose semantics of the included one.

5.1.4 Views

Maude views have a theory as source and either a module or a theory as target. All the sorts and the
operators declared in the source theory have to be mapped to sorts and operators in the target.

As seen in Section 2.5.3, a particular case of mapping between operators is the mapping between terms,
that has the general form op e to term t. Since this shortcut allows to map operators with different
profiles, in these cases it generates an auxiliary node with the signature of the target specification extended
by an extra operator of the appropriate arity; this node will be used as new target.

Views generate a theorem link between the theory and the module satisfying it. Note that an instan-
tiation generates some implicit morphisms and modifies the ones stated in the views, see Section 2.5 for
details:

• Sorts and labels are qualified by the parameter name in order to distinguish different labels/sorts
with the same name defined in different theories. Thus, the mapping indicated by the view (more
specifically, the source sorts) is modified depending on the name of the parameter.

• As explained in Section 2.5.4, parameterized modules can define parameterized sorts, that is, sorts
that use the parameters as part of the sort name and hence they are modified by the mapping in the
view. Moreover, when the target of a view is a theory the identifiers of these sorts are extended with
the name of the view and the name of the new parameter. Thus, the sort morphism is extended
with these new renamings.

5.1.5 An example of development graph

We illustrate how to build the development graph with an example. Consider the following Maude
specification:

fmod M1 is fmod M2 is

sort S1 . sort S2 .

op _+_ : S1 S1 -> S1 [comm] . endfm

endfm

th T is mod M3{X :: T} is

17

Figure 3: Development graph for Maude specifications

sort S1 . sort S4 .

op _._ : S1 S1 -> S1 . endm

eq V1:S1 . V2:S1 = V2:S1 . V1:S1 [nonexec] .

endth

mod M is view V from T to M is

ex M1 + M2 * (sort S2 to S) . op _._ to _+_ .

endm endv

Hets builds the graph shown in Figure 3, where the following steps take place:

• First, the modules in the predefined Maude prelude generate their own graph. These nodes can be
used by the ones of the current specification, like the BOOL node in the image (where the node has
rectangular form because it hides part of its structure, like the modules it imports).

• Each module has generated a node with its name and another primed one that contains the initial
model, while both of them are linked with a non-persistent free link (in blue in the illustration).
Note that theory T did not generate this primed node.

• The summation expression has created a new node that includes the theories of M1 and M2, importing
the latter with a renaming; this new node, since it is imported in extending mode, uses a link with
the PCons? annotation. This is the (unfortunately blurry) label in the link from {M2 + M1} to M.

• There is a theorem link (red link in the figure) between T and the free (here, initial) model of M.
This link is labeled with the mapping defined in the view V, namely op _._ to _+_ ..

• The parameterized module M3 includes the theory of its parameter with a renaming, that qualifies
the sort. Note that these nodes are connected by means of a non-persistent free link.

It is straightforward to show:

Theorem 1 The translation of Maude modules into development graphs is semantics-preserving.

Once the development graph is built, we can apply the (logic independent) calculus rules that reduce
global theorem links to local theorem links, which are in turn discharged by local theorem proving [25].
This can be used to prove Maude views, like “natural numbers are a total order.” For example, we
can automatically prove the view V above correct by using the first order automated provers SPASS or
Vampire.

We show in the next section how we deal with the freeness constraints imposed by free definition links.

5.2 Normalization of free definition links

Maude uses initial and free semantics intensively. The semantics of freeness is, as mentioned, different
from the one used in Casl in that the free extensions of models are required to be persistent only on
sorts and new error elements can be added on the interpretation of kinds. As explained before, attempts
to design the translation to Casl in such a way that Maude free links would be translated to usual free
definition links in Casl have been unsuccessful, and thus we decided to use non-persistent free links.
Hence, in order not to break the development graph calculus, we need a way to normalize them, by

18

M
n.p.free

σ +3

��

N

��

M ′

ιN

��
M ′′

free

σ#
+3 K

hide

ιN +3 N ′

Figure 4: Normalization of Maude free links

replacing them with a semantically equivalent development graph in Casl. The main idea is to make a
free extension persistent by duplicating parameter sorts appropriately, such that the parameter is always
explicitly included in the free extension.

For any Maude signature Σ, let us define an extension Σ# = (S#,≤#, F#, P#) of the translation
Φ(Σ) of Σ to Casl as follows:

• S# adds the sorts of Φ(Σ) to the set {[s] | s ∈ Sorts(Σ)};

• ≤# extends the subsort relation ≤ with pairs (s, [s]) for each sort s and ([s], [s′]) for any sorts s ≤ s′;

• F# adds the function symbols {f : [w]→ [s]} for all function symbols on sorts f : w → s;4 and

• P# adds the predicate symbol rew on all new sorts.

Now, we consider a Maude non-persistent free definition link and let σ : Σ → Σ′ be the morphism
labeling it.5 We define a Casl signature morphism σ# : Φ(Σ) → Σ′#: on sorts, σ#(s) := σsort(s) and
σ#([s]) := [σsort(s)]; on operation symbols, we can define σ#(f) := σop(f) and this is correct because
the operation symbols were introduced in Σ′#; rew is mapped identically.

The normalization of Maude freeness is then illustrated in Figure 4. Given a non-persistent free
definition link M

σ

n.p.free
+3 N, with σ : Σ → ΣN , we first take the translation of the nodes to Casl (nodes

M ′ and N ′), and create the node M ′′, an extension (the morphism ι is a renaming to make the signature
distinct from M) of M ′ where the signature has been extended with sorts [s] for each sort s ∈ ΣM , such
that s ≤ [s] and [s] ≤ [s′] if s ≤ s′; function symbols have been extended with f : [w] → [s] for each
f : w → s ∈ ΣM ; and new rew predicates have been added for these sorts. Then, we introduce a new
node, K, labeled with Σ#

N , a free definition link from M ′′ to K labeled with σ# and a hiding definition
link from K to N ′ labeled with the inclusion ιN .6

Notice that the models of N are Maude reducts of Casl models of K, reduced along the inclusion
ιN .

Now we show how to eliminate Casl free definition links in a logic-independent way. The idea is to
use a transformation specific to the second-order extension of Casl to normalize freeness. The intuition
behind this construction is that it mimics the quotient term algebra construction, that is, the free model
is specified as the homomorphic image of an absolutely free model (i.e. term model).

We are going to make use of the following known facts [33]:

Fact 1 Extensions of theories in Horn form admit free extensions of models.

Fact 2 Extensions of theories in Horn form are monomorphic.7

Given a free definition link M
σ

free
+3 N, with σ : Σ→ ΣN such that Th(M) is in Horn form, replace

it with M
incl +3 K

incl

hide
+3 N ′ , where N ′ has the same signature and axioms as N , incl denote inclusions

and the node K is constructed as follows.
4[s1 . . . sn] is defined to be [s1] . . . [sn].
5In Maude, this would usually be an injective renaming.
6The arrows without labels in Figure 4 correspond to heterogeneous links from Maude to Casl.
7That is, if N is an extension of K under a morphism σ, then every K-model has a σ-expansion to an N -model that is

unique up to isomorphism.

19

The signature ΣK consists of the signature ΣM disjointly united with a copy of ΣM , denoted ι(ΣM)
which makes all function symbols total (let us denote ι(f) the corresponding symbol in this copy for each
symbol f from the signature ΣM) and augmented with new operations h : ι(s) →? s, for any sort s of
ΣM and makes : s → ι(s), for any sort s of the source signature Σ of the morphism σ labelling the free
definition link.

The axioms ψK of the node K consist of:

• sentences imposing the bijectivity of make;

• axiomatization of the sorts in ι(ΣM) as free types with all operations as constructors, including
make for the sorts in ι(Σ);

• homomorphism conditions for h:

h(ι(f)(x1, . . . , xn)) = f(h(x1), . . . , h(xn))

and

ι(p)(t1, . . . , tn)⇒ p(h(t1), . . . , h(tn))

• surjectivity of homomorphisms:

∀y : s.∃x : ι(s).h(x) e= y

• a second-order formula saying that the kernel of h (ker(h)) is the least partial predicative congru-
ence8 satisfying Th(M). This is done by quantifying over a predicate symbol for each sort for the
binary relation and one predicate symbol for each relation symbol as follows:

∀{Ps : ι(s), ι(s)}s∈Sorts(ΣM), {Pp:w : ι(w)}p:w∈ΣM

. symmetry ∧ transitivity ∧ congruence ∧ satThM =⇒ largerThanKerH

where symmetry stands for ∧
s∈Sorts(ΣM)

∀x : ι(s), y : ι(s).Ps(x, y) =⇒ Ps(y, x),

transitivity stands for∧
s∈Sorts(ΣM)

∀x : ι(s), y : ι(s), z : ι(s).Ps(x, y) ∧ Ps(y, z) =⇒ Ps(x, z),

congruence is the conjunction of∧
fw→s∈ΣM ∀x1 . . . xn : ι(w), y1 . . . yn : ι(w) .

D(ι(fw,s)(x̄)) ∧D(ι(fw,s)(ȳ)) ∧ Pw(x̄, ȳ) =⇒ Ps(ι(fw,s)(x̄), ι(fw,s)(ȳ))

and ∧
pw∈ΣM ∀x1 . . . xn : ι(w), y1 . . . yn : ι(w) .

D(ι(fw,s)(x̄)) ∧D(ι(fw,s)(ȳ)) ∧ Pw(x̄, ȳ) =⇒ Pp:w(x̄)⇔ Pp:w(ȳ)

where D indicates definedness. satThM stands for

Th(M)[e= /Ps; p : w/Pp:w;D(t)/Ps(t, t); t = u/Ps(t, u) ∨ (¬Ps(t, t) ∧ ¬Ps(u, u))]

where, for a set of formulas Ψ, Ψ[sy1/sy
′
1; . . . ; syn/sy′n] denotes the simultaneous substitution of

sy′i for syi in all formulas of Ψ (while possibly instantiating the meta-variables t and u). Finally
largerThanKerH stands for∧

s∈Sorts(ΣM) ∀x : ι(s), y : ι(s).h(x) e= h(y) =⇒ Ps(x, y)∧
∧pw∈ΣM∀x̄ : ι(w).ι(p : w)(x̄) =⇒ Pp:w(x̄)

8A partial predicative congruence consists of a symmetric and transitive binary relation for each sort and a relation of
appropriate type for each predicate symbol.

20

Proposition 1 The models of the nodes N and N ′ are the same.

Proof. Let n be an N -model. To prove that n is also an N ′-model, we need to show that it has a
K-expansion.

Let us define the following ΣK model, denoted k:

• on ΣM , k coincides with n;

• on ι(ΣM), the interpretation of sorts and function symbols is given by the free types axioms (i.e.,
sorts are interpreted as set of terms, operations ι(f) map terms t1, . . . , tn to the term ι(f)(t1, . . . , tn)).
We define the interpretation of predicates after defining h;

• make assigns to each x the term make(x);

• the homomorphism h is defined inductively as follows:

– h(make(x)) = x, if x ∈ ns and s ∈ Sorts(Σ);

– h(make(t)) = h(t), otherwise;

– h(ι(f)(t1, . . . , tn)) is defined iff f(h(t1), . . . , h(tn)) is defined in n and then h(ι(f)(t1, . . . , tn)) =
f(h(t1), . . . , h(tn));

• for predicates in ι(ΣM) we define ι(p)(t1, . . . , tn) iff p(h(t1), . . . , h(tn)).

Notice that the first three types of axioms of the node K hold by construction and also notice that
ker(h) satisfies Th(M) because n is an M -model. The surjectivity of h and the minimality of ker(h) are
exactly the “no junk” and the “no confusion” properties of the free model n.

For the other inclusion, let n′ be a model of N ′, n0 be its Σ-reduct and k′ a K-expansion of n′.
Using the fact that the theory of M is in Horn form, we get an expansion of n0 to a σ-free model n. We
have seen that all free models are also models of N ′ and moreover we have seen that ker(kh) is the least
predicative congruence satisfying Th(M). The free types axioms of K fix the interpretation of ι(ΣM)
and therefore ker(k′h) and ker(kh) are both minimal on the same set, and must be the same. This and
the surjectivity of kh and k′h allow us to define easily an isomorphism between n and n′ and because n′

is isomorphic with a free model it must be free as well.
ut

6 An example: Reversing lists

The example we are going to present is a standard specification of lists with empty lists, concatenation,
and reversal. We want to prove that by reversing a list twice we obtain the original list. Since Maude
syntax does not support marking sentences of a theory as theorems, the methodology to state proof
obligations in Maude would normally be to write a view (PROVEIDEM in Figure 5, left side) from a
theory containing the theorem (REVIDEM) to the module with the axioms defining reverse (LISTREV).

The first advantage that the integration of Maude in Hets brings in is that we can use heterogeneous
Casl structuring mechanisms and the %implies annotation to obtain the same development graph in
a shorter way—see the right side of Figure 5, whose development graph is shown in Figure 6, where
the blue link9 stands for freeness and the red one10 for proof obligations, and only the rightmost node
has name, while all the others are intermediate nodes introduced by the Hets constructors (free, used
to indicate that the specification is free, and then, used to import the previous specification without
assuming anything about it) used to structure the specification.

For our example, the development calculus rules are applied as follows.11 First, the whole graph is
translated to Casl; during this step, Maude non-persistent free links are normalized. The next step
is to normalize Casl free links, using the Freeness rule. We then apply the Normal-Form rule which
introduces normal forms for the nodes with incoming hiding links (introduced at the previous step) and
then the Theorem-Hide-Shift rule which moves the target of any theorem link targeting a node with
incoming hiding links to the normal form of the latter. Finally, calling Automatic the development graph
in Figure 7 is obtained, where the proof obligation has been delegated to the normal form node (the red
node in the upper right corner).

9The leftmost link, if you are reading a black-and-white paper.
10The one starting in PROVEIDEM.
11All the rules listed below are accessible in the Edit/Proof menu.

21

fmod MYLIST is

sorts Elt List .

subsort Elt < List .

op nil : -> List [ctor] .

op __ : List List -> List

[ctor assoc id: nil] .

endfm

fmod MYLISTREV is

pr MYLIST .

op reverse : List -> List .

var L : List .

var E : Elt .

eq reverse(nil) = nil .

eq reverse(E L) = reverse(L) E .

endfm

fth REVIDEM is

pr MYLIST .

op reverse : List -> List .

var L : List .

eq reverse(reverse(L)) = L .

endfth

view PROVEIDEM from REVIDEM

to MYLISTREV is

sort List to List .

op reverse to reverse .

endv

logic Maude
spec PROVEIDEM =

free
{sorts Elt List .
subsort Elt < List .
op nil : −> List [ctor] .
op : List List −> List [ctor assoc id: nil] .
}

then {op reverse : List −> List .
var L : List . var E : Elt .
eq reverse(nil) = nil .
eq reverse(E L) = reverse(L) E .
} then %implies

{var L : List .
eq reverse(reverse(L)) = L .
}

Figure 5: Lists with reverse, in Maude (left) and Casl (right) syntax.

Figure 6: Development graph for the lists example

In this node, we now have a proof goal for a second-order theory. It can be discharged using the
interactive theorem prover Isabelle/HOL [30]. We have set up a series of lemmas easing such proofs, and
that can be adapted to other proofs over Maude specifications. First of all, normalization of freeness
introduces sorts for the free model which are axiomatized to be the homomorphic image of a set of the
absolutely free (i.e. term) model. A transfer lemma (that exploits surjectivity of the homomorphism)
enables us to transfer any proof goal from the free model to the absolutely free model. Since the absolutely
free model is term generated, we can use induction proofs here. For the case of datatypes with total
constructors (like lists), we prove by induction that the homomorphism is total as well. Once these
lemmas have been proved we prove the main theorem; to do that, two further lemmas on lists are proved
by induction: (1) associativity of concatenation and (2) the reverse of a concatenation is the concatenation
(in reverse order) of the reversed lists. This infrastructure then allows us to prove (again by induction)
that reverse(reverse(L)) = L.

While proof goals in Horn clause form often can be proved by induction, other proof goals like the
inequality of certain terms or extensionality of sets cannot. Here, we need to prove inequalities or
equalities with more complex premises, and this calls for use of the special axiomatization of the kernel
of the homomorphism. This axiomatization is rather complex, and we are currently setting up the
infrastructure for easing such proofs in Isabelle/HOL.

6.1 An easier proof: Revisiting our initial example

Recalling the example in Section 5.1.5, we stated in a theory T that an operator _._ over the sort S1
fulfilling the equation

eq V1:S1 . V2:S2 = V2:S1 . V1:S2 [nonexec] .

22

Figure 7: Development graph for the lists example after the transformation rules

Figure 8: Axiom proved by SPASS

was required. We mapped this operator by means of a view to another one with syntax _+_ and declared
with the commutativity attribute comm, and thus we want to check that this view is correct. This
easy proof can be automatically discarded by using provers such as SPASS just by transforming the
development graph with the Automatic command, that “pushes” proof obligations to the appropriate
nodes. We show in Figure 8 how it was proved (the + symbol indicates it was proved) by just using the
Run button. This straightforward strategy can be applied to most Maude views (such as the ones from
theories requiring different orders over the elements), making these proofs straightforward.

Of course, this proof can also be done in Isabelle. The code needed to prove it is:

theorem Ax1 :

"ALL (v1 :: kind_S1). ALL (v2 :: kind_S1). v1 +’’ v2 = v2 +’’ v1"

apply auto

apply (rule comm_Plus’_kind_S1)

done

where the theorem was introduced by Hets and comm_Plus’_kind_S1 is the axiom automatically gen-
erated by the system for the commutative operator _+_ in M1.

23

7 Implementation

We describe in this section how the integration described in the previous sections has been implemented.
We have used Maude to parse Maude modules, taking advantage of the reflective capabilities of rewriting
logic [7], while the rest of the system has been implemented in Haskell, the implementation language
of Hets. Section 7.1 shows the abstract syntax used to represent Maude modules in Haskell, while
Section 7.2 presents how these data structures are generated in Maude. Section 7.3 shows how Maude
signatures, sentences, and morphisms are obtained, Section 7.4 explains how they are introduced into
a development graph, and Section 7.5 describes the implementation of the comorphism between Maude
and Casl. Finally, Section 7.6 outlines how the freeness constraints are implemented.

7.1 Abstract syntax

In this section we show how the abstract syntax for Maude specifications is defined in Haskell. This
abstract syntax is based in the Maude grammar presented in [6, Chapter 24].

The main datatype of this abstract syntax is Spec, that distinguishes between the different specifica-
tions available in Maude: modules, theories, and views. Although both modules and theories contain the
same information, their semantics are different and need different constructors:

data Spec = SpecMod Module

| SpecTh Module

| SpecView View

deriving (Show, Read, Ord, Eq)

A Module is composed of the identifier of the module, a list of parameters, and a list of statements:

data Module = Module ModId [Parameter] [Statement]

deriving (Show, Read, Ord, Eq)

while a View is composed of a module identifier, the source and target module expressions, and a list of
renamings:

data View = View ModId ModExp ModExp [Renaming]

deriving (Show, Read, Ord, Eq)

The Parameter type contains the identifier of the parameter, a sort (used as the parameter identifier),
and its type (which is a module expression):

data Parameter = Parameter Sort ModExp

deriving (Show, Read, Ord, Eq)

A Statement can be any of the Maude statements: importation, sort, subsort, and operator declara-
tions, and equation, membership axiom, and rule statements:

data Statement = ImportStmnt Import

| SortStmnt Sort

| SubsortStmnt SubsortDecl

| OpStmnt Operator

| EqStmnt Equation

| MbStmnt Membership

| RlStmnt Rule

deriving (Show, Read, Ord, Eq)

Importations consist of a module expression qualified by the type of import:

data Import = Including ModExp

| Extending ModExp

| Protecting ModExp

deriving (Show, Read, Ord, Eq)

A subsort declaration keeps single relations between sorts, being the first one the subsort and the
second one the supersort:

24

data SubsortDecl = Subsort Sort Sort

deriving (Show, Read, Ord, Eq)

Operator declarations are composed of the identifier of the operator, a list of types giving the arity
of the operator, a type for its coarity, and a list of attributes:

data Operator = Op OpId [Type] Type [Attr]

deriving (Show, Read, Ord, Eq)

Membership statements consist of a term, its sort, a list of conditions, and a list of statement at-
tributes:

data Membership = Mb Term Sort [Condition] [StmntAttr]

deriving (Show, Read, Ord, Eq)

Equations and rules share the same elements: the lefthand and righthand terms of the statement, a
list of conditions, and a list of statement attributes:

data Equation = Eq Term Term [Condition] [StmntAttr]

deriving (Show, Read, Ord, Eq)

data Rule = Rl Term Term [Condition] [StmntAttr]

deriving (Show, Read, Ord, Eq)

We distinguish between the following module expressions:

• A single identifier:

data ModExp = ModExp ModId

• A summation, that keeps the two module expressions involved:

| SummationModExp ModExp ModExp

• A renaming, that contains the module expression renamed and the list of renamings:

| RenamingModExp ModExp [Renaming]

• An instantiation, composed of the module instantiated and the list of view identifiers applied:

| InstantiationModExp ModExp [ViewId]

deriving (Show, Read, Ord, Eq)

The Renaming type distinguishes the different renamings available in Maude:

• Renaming of sorts, that indicates that the first sort identifier is changed to the second one:

data Renaming = SortRenaming Sort Sort

• Renaming of labels, where the first label is renamed to the second one:

| LabelRenaming LabelId LabelId

• Renaming of operators, that can be of three kinds: renaming of operators without profile, with
profile, or a map between terms, as explained in Section 2.5.3:

| OpRenaming1 OpId ToPartRenaming

| OpRenaming2 OpId [Type] Type ToPartRenaming

| TermMap Term Term

deriving (Show, Read, Ord, Eq)

25

where ToPartRenaming specifies the new operator identifier and the new attributes:

data ToPartRenaming = To OpId [Attr]

deriving (Show, Read, Ord, Eq)

The Condition type distinguishes between the different conditions available in Maude, namely equa-
tional conditions, membership conditions, matching conditions, and rewriting conditions:

data Condition = EqCond Term Term

| MbCond Term Sort

| MatchCond Term Term

| RwCond Term Term

deriving (Show, Read, Ord, Eq)

We define the type Qid, a synonym of Token that will be used for identifiers:

type Qid = Token

Terms are always represented in prefix notation. Notice that the case of an operator applied to a list
of terms is slightly different to the Maude grammar because it also includes the type of the term. It will
be used later in the implementation to rename operators whose profile has been specified:

data Term = Const Qid Type

| Var Qid Type

| Apply Qid [Term] Type

deriving (Show, Read, Ord, Eq)

Finally, Type distinguishes between sorts and kinds:

data Type = TypeSort Sort

| TypeKind Kind

deriving (Show, Read, Ord, Eq)

7.2 Maude parsing

In this section we explain how the Maude specifications introduced in Hets are parsed in order to obtain
a term following the abstract syntax described in the previous section. We are able to implement this
parsing in Maude itself thanks to Maude’s metalevel [6, Chapter 14], a module that allows the programmer
to use Maude entities such as modules, equations, or rules as usual data by efficiently implementing the
reflective capabilities of rewriting logic [7].

The function haskellify receives a module (the first parameter stands for the original module, while
the second one contains the flattened one) and returns a list of quoted identifiers creating an object of
type Spec, that can be read by Haskell since this data type derives the class Read:

op haskellify : Module Module -> QidList .

ceq haskellify(M, M’) =

’SpecMod ’‘(’Module haskellifyHeader(H) ’ ’

’‘[haskellifyImports(IL) comma(IL, SS)

haskellifySorts(SS) comma(IL, SS, SSDS)

haskellifySubsorts(SSDS) comma(IL, SS, SSDS, ODS)

haskellifyOpDeclSet(M’, ODS) comma(IL, SS, SSDS, ODS, MAS)

haskellifyMembAxSet(M’, MAS) comma(IL, SS, SSDS, ODS, MAS, EqS)

haskellifyEqSet(M’, EqS) ’‘] ’‘) ’\n ’@#$endHetsSpec$#@ ’\n

if fmod H is IL sorts SS . SSDS ODS MAS EqS endfm := M .

This function prints the keyword SpecMod and uses the haskellify auxiliary functions to print the
different parts of the module. The functions comma introduce a comma whenever it is necessary. Since all
the “haskellify” functions are very similar, we describe them by using haskellifyImports as example.
This function traverses all the imports in the list and applies the auxiliary function haskellifyImport
to each of them:

26

op haskellifyImports : ImportList -> QidList .

eq haskellifyImports(nil) = nil .

eq haskellifyImports(I IL) = ’ImportStmnt ’ ’‘(haskellifyImport(I) ’‘)

comma(IL) haskellifyImports(IL) .

This auxiliary function distinguishes between the importation modes, using the appropriate keyword
for each of them:

op haskellifyImport : Import -> QidList .

eq haskellifyImport(protecting ME .) = ’Protecting haskellifyME(ME) .

eq haskellifyImport(including ME .) = ’Including haskellifyME(ME) .

eq haskellifyImport(extending ME .) = ’Extending haskellifyME(ME) .

where haskellifyME is in charge of printing the module expression. When it is just an identifier, it prints
it preceded by the word ModId:

op haskellifyME : ModuleExpression -> QidList .

eq haskellifyME(Q) = ’ ’‘(’ModExp ’ ’‘(’ModId qid2token(Q) ’‘) ’‘) ’ .

The summation module expression recursively prints the summands, and uses the keyword SummationModExp
to indicate the type of module expression:

eq haskellifyME(ME + ME’) = ’ ’‘(’SummationModExp haskellifyME(ME)

haskellifyME(ME’) ’‘) ’ .

To print a renaming we recursively apply haskellifyME for the inner module expression and then
we use the auxiliary function haskellifyMaps to print the renamings. In this case we use the constant
no-module as argument because it will only be used when parsing mappings from views, since it may be
needed to parse terms:

eq haskellifyME(ME * (RNMS)) = ’ ’‘(’RenamingModExp haskellifyME(ME)

’‘[haskellifyMaps(no-module, no-module, RNMS) ’‘] ’‘) ’ .

Finally, an instantiation is printed by using an auxiliary function haskellifyPL in charge of the
parameters:

eq haskellifyME(ME {PL}) = ’ ’‘(’InstantiationModExp haskellifyME(ME)

’‘[haskellifyPL(PL) ’‘] ’‘) ’ .

7.3 Logic

Once the Maude modules have been translated into their abstract syntax, we must implement the type
classes Language and Logic provided by Hets, that define the types needed to represent each logic as an
institution and the comorphisms between them. In the following section we describe the most important
of these datatypes, while more details about them can be found in [19].

7.3.1 Signature

The signature defines types for the sorts, kinds, subsort relations, operators, and sentences, and a map
relating each sort to its corresponding kind:

type SortSet = SymbolSet

type KindSet = SymbolSet

type SubsortRel = SymbolRel

type OpDecl = (Set Symbol, [Attr])

type OpDeclSet = Set OpDecl

type OpMap = Map Qid OpDeclSet

type Sentences = Set Sentence

type KindRel = Map Symbol Symbol

These types are used to define Sign, that stands for Maude signatures:

27

data Sign = Sign {

sorts :: SortSet,

kinds :: KindSet,

subsorts :: SubsortRel,

ops :: OpMap,

sentences :: Sentences,

kindRel :: KindRel

} deriving (Show, Ord, Eq)

The function fromSpec extracts the signature from a module:

fromSpec :: Module -> Sign

This type class also provides functions to join and intersect signatures:

union :: Sign -> Sign -> Sign

intersection :: Sign -> Sign -> Sign

7.3.2 Sentences

The type for sentences distinguishes between membership axioms, equations, and rules:

data Sentence = Membership Membership

| Equation Equation

| Rule Rule

deriving (Show, Read, Ord, Eq)

The sentences can be extracted from a module with fromSpec, that uses an auxiliary function to
obtain them from the statements:

fromSpec :: Module -> [Sentence]

fromSpec (Module _ _ stmts) = fromStatements stmts

This auxiliary function generates the sentences inferred from the operator attributes such as assoc
or comm with fromOperator, while the rest of statements are translated identically:

fromStatements :: [Statement] -> [Sentence]

fromStatements stmts = let

convert stmt = case stmt of

OpStmnt op -> fromOperator op

MbStmnt mb -> [Membership mb]

EqStmnt eq -> [Equation eq]

RlStmnt rl -> [Rule rl]

_ -> []

in concatMap convert stmts

fromOperator traverses the attributes and generates the appropriate sentence for each of them:

fromOperator :: Operator -> [Sentence]

fromOperator (Op op dom cod attrs) = let

name = getName op

first = head dom

second = head $ tail dom

convert attr = case attr of

Comm -> commEq name first second cod

Assoc -> assocEq name first second cod

Idem -> idemEq name first cod

Id term -> identityEq name first term cod

LeftId term -> leftIdEq name first term cod

RightId term -> rightIdEq name first term cod

_ -> []

in concatMap convert attrs

We show how the sentence for commutativity is created; the rest of them are produced analogously.
The function commEq generates two variables of the given sort, which are provided as arguments to the
operator in different order, thus creating two terms that are made equal by means of an equation:

28

commEq :: Qid -> Type -> Type -> Type -> [Sentence]

commEq op ar1 ar2 co = [Equation $ Eq t1 t2 [] []]

where v1 = mkVar "v1" $ type2Kind ar1

v2 = mkVar "v2" $ type2Kind ar2

t1 = Apply op [v1, v2] $ type2Kind co

t2 = Apply op [v2, v1] $ type2Kind co

7.3.3 Morphisms

To define the Maude morphisms we first declare maps for sorts, kinds (induced from the previous maps),
operators, and labels as map of symbols, a generic identifier for the different data that appears in Maude
modules:

type SortMap = SymbolMap

type KindMap = SymbolMap

type OpMap = SymbolMap

type LabelMap = SymbolMap

We create our morphisms by adding to these data types the source and target signatures:

data Morphism = Morphism {

source :: Sign,

target :: Sign,

sortMap :: SortMap,

kindMap :: KindMap,

opMap :: OpMap,

labelMap :: LabelMap

} deriving (Show, Ord, Eq)

Morphisms can be obtained from a list of renamings with fromSignRenamings:

fromSignRenamings :: Sign -> [Renaming] -> Morphism

The type class also provides functions to join and compose morphisms:

union :: Morphism -> Morphism -> Morphism

compose :: Morphism -> Morphism -> Result Morphism

and to generate an inclusion morphism, that is, an identity morphism between two signatures:

inclusion :: Sign -> Sign -> Morphism

inclusion src tgt = Morphism {

source = src,

target = tgt,

sortMap = Map.empty,

kindMap = Map.empty,

opMap = Map.empty,

labelMap = Map.empty

}

7.4 Development graph

We describe in this section the main functions used to draw the development graph for Maude specifica-
tions. The most important function is anaMaudeFile, that receives a record of all the options received
from the command line (of type HetcatsOpts) and the path of the Maude file to be parsed and returns a
pair with the library name and its environment. This environment contains two development graphs, the
first one containing the modules used in the Maude prelude and another one with the user specification:

anaMaudeFile :: HetcatsOpts -> FilePath -> IO (Maybe (LibName, LibEnv))

anaMaudeFile _ file = do

(dg1, dg2) <- directMaudeParsing file

let ln = emptyLibName file

lib1 = Map.singleton preludeLib $

computeDGraphTheories Map.empty $ markFree Map.empty $

29

markHiding Map.empty dg1

lib2 = Map.insert ln

(computeDGraphTheories lib1 $ markFree lib1 $

markHiding lib1 dg2) lib1

return $ Just (ln, lib2)

This environment is computed with the function directMaudeParsing, that receives the path in-
troduced by the user and returns a pair of development graphs. These graphs are obtained with the
function maude2DG, that receives the predefined specifications (obtained with predefinedSpecs) and the
user defined specifications (obtained with traverseSpecs):

directMaudeParsing :: FilePath -> IO (DGraph, DGraph)

directMaudeParsing fp = do

ml <- getEnvDef "MAUDE_LIB" ""

if null ml then error "environment variable MAUDE_LIB is not set" else do

ns <- parse fp

let ns’ = either (const []) id ns

(hIn, hOut, hErr, procH) <- runMaude

exitCode <- getProcessExitCode procH

case exitCode of

Nothing -> do

hPutStrLn hIn $ "load " ++ fp

hFlush hIn

hPutStrLn hIn "."

hFlush hIn

hPutStrLn hIn "in Maude/hets.prj"

psps <- predefinedSpecs hIn hOut

sps <- traverseSpecs hIn hOut ns’

(ok, errs) <- getErrors hErr

if ok

then do

hClose hIn

hClose hOut

hClose hErr

return $ maude2DG psps sps

else do

hClose hIn

hClose hOut

hClose hErr

error errs

Just ExitSuccess -> error "maude terminated immediately"

Just (ExitFailure i) -> error $ "calling maude failed with exitCode: " ++ show i

The function maude2DG first computes the data structures associated to the predefined specifications
and then uses them to compute the development graph related to the specifications introduced by the
user. These data structures are computed with insertSpecs:

maude2DG :: [Spec] -> [Spec] -> (DGraph, DGraph)

maude2DG psps sps = (dg1, dg2)

where (_, tim, vm, tks, dg1) = insertSpecs psps emptyDG Map.empty

Map.empty Map.empty [] emptyDG

(_,_, _, _, dg2) = insertSpecs sps dg1 tim Map.empty vm tks emptyDG

Before describing this function, we briefly explain the data structures used during the generation of
the development graph:

• The type ParamSort defines a pair with a symbol representing a sort and a list of tokens indi-
cating the parameters present in the sort, so for example the sort List{X, Y} generates the pair
(List{X, Y}, [X,Y]):

type ParamSort = (Symbol, [Token])

• The information of each node introduced in the development graph is stored in the tuple ProcInfo,
that contains the following information:

30

– The identifier of the node.

– The signature of the node.

– A list of symbols standing for the sorts that are not instantiated.

– A list of triples with information about the parameters of the specification, namely the name
of the parameter, the name of the theory, and the list of not instantiated sorts from this theory.

– A list with information about the parameterized sorts.

type ProcInfo = (Node, Sign, Symbols, [(Token, Token, Symbols)], [ParamSort])

• Each ProcInfo tuple is associated to its corresponding module expression in the TokenInfoMap
map:

type TokenInfoMap = Map.Map Token ProcInfo

• When a module expression is parsed a ModExpProc tuple is returned, containing the following
information:

– The identifier of the module expression.

– The TokenInfoMap structure updated with the data in the module expression.

– The morphism associated to the module expression.

– The list of sorts parameterized in this module expression.

– The development graph thus far.

type ModExpProc = (Token, TokenInfoMap, Morphism, [ParamSort], DGraph)

• When parsing a list of importation statements we return a ParamInfo tuple, containing:

– The list of parameter information: the name of the parameter, the name of the theory, and
the sorts that are not instantiated.

– The updated TokenInfoMap map.

– The list of morphisms associated with each parameter.

– The updated development graph.

type ParamInfo = ([(Token, Token, Symbols)], TokenInfoMap, [Morphism], DGraph)

• Data about views is kept in a separated way from data about theories and modules. The ViewMap
map associates to each view identifier a tuple with:

– The identifier of the target node of the view.

– The morphism generated by the view.

– The list of renamings that generated the morphism.

– A Boolean value indicating whether the target is a theory (True) or a module (False).

type ViewMap = Map.Map Token (Node, Token, Morphism, [Renaming], Bool)

• Finally, we describe the tuple InsSpecRes, used to return the data structures updated when a
specification or a view is introduced in the development graph. It contains:

– Two values of type TokenInfoMap. The first one includes all the information related to the
specification, including the one from the predefined modules, while the second one only contains
information related to the current development graph.

– The updated ViewMap.

– A list of tokens indicating the theories introduced thus far.

31

– The new development graph.

type InsSpecRes = (TokenInfoMap, TokenInfoMap, ViewMap, [Token], DGraph)

The function insertSpecs traverses the specifications updating the data structures and the develop-
ment graph with insertSpec:

insertSpecs :: [Spec] -> DGraph -> TokenInfoMap -> TokenInfoMap -> ViewMap -> [Token] -> DGraph

-> InsSpecRes

insertSpecs [] _ ptim tim vm tks dg = (ptim, tim, vm, tks, dg)

insertSpecs (s : ss) pdg ptim tim vm ths dg = insertSpecs ss pdg ptim’ tim’ vm’ ths’ dg’

where (ptim’, tim’, vm’, ths’, dg’) = insertSpec s pdg ptim tim vm ths dg

The behavior of insertSpec is different for each type of Maude specification. When the introduced
specification is a module, the following actions are performed:

• The parameters are parsed:

– The list of parameter declarations is obtained with the auxiliary function getParams.

– These declarations are processed with processParameters, that returns a tuple of type
ParamInfo described above.

– Given the parameters names, we traverse the list of sorts to check whether the module defines
parameterized sorts with getSortsParameterizedBy.

– The links between the theories in the parameters and the current module are created with
createEdgesParams.

• The importations are handled:

– The importation statements are obtained with getImportsSorts. Although this function also
returns the sorts declared in the module, in this case they are not needed and its value is
ignored.

– These importations are handled by processImports, that returns a list containing the infor-
mation of each parameter.

– The definition links generated by the imports are created with createEdgesImports.

• The final signature is obtained with sign_union_morphs by merging the signature in the current
module with the ones obtained from the morphisms from the parameters and the imports.

insertSpec :: Spec -> DGraph -> TokenInfoMap -> TokenInfoMap -> ViewMap -> [Token] -> DGraph

-> InsSpecRes

insertSpec (SpecMod sp_mod) pdg ptim tim vm ths dg = (ptimUp, tim5, vm, ths, dg6)

where ps = getParams sp_mod

(il, _) = getImportsSorts sp_mod

up = incPredImps il pdg (ptim, tim, dg)

(ptimUp, timUp, dgUp) = incPredParams ps pdg up

(pl, tim1, morphs, dg1) = processParameters ps timUp dgUp

top_sg = Maude.Sign.fromSpec sp_mod

paramSorts = getSortsParameterizedBy (paramNames ps) (Set.toList $ sorts top_sg

ips = processImports tim1 vm dg1 il

(tim2, dg2) = last_da ips (tim1, dg1)

sg = sign_union_morphs morphs $ sign_union top_sg ips

ext_sg = makeExtSign Maude sg

nm_sns = map (makeNamed "") $ Maude.Sentence.fromSpec sp_mod

sens = toThSens nm_sns

gt = G_theory Maude ext_sg startSigId sens startThId

tok = HasName.getName sp_mod

name = makeName tok

(ns, dg3) = insGTheory dg2 name DGBasic gt

tim3 = Map.insert tok (getNode ns, sg, [], pl, paramSorts) tim2

(tim4, dg4) = createEdgesImports tok ips sg tim3 dg3

dg5 = createEdgesParams tok pl morphs sg tim4 dg4

(_, tim5, dg6) = insertFreeNode tok tim4 morphs dg5

32

When the specification inserted is a theory the process varies slightly:

• Theories cannot be parameterized in Core Maude, so the parameter handling is not required.

• The specified sorts have to be qualified with the parameter name when used in a parameterized
module. These sorts are extracted with getImportsSorts and kept in the corresponding field of
TokenInfoMap.

insertSpec (SpecTh sp_th) pdg ptim tim vm ths dg = (ptimUp, tim3, vm, tok : ths, dg3)

where (il, ss1) = getImportsSorts sp_th

(ptimUp, timUp, dgUp) = incPredImps il pdg (ptim, tim, dg)

ips = processImports timUp vm dgUp il

ss2 = getThSorts ips

(tim1, dg1) = last_da ips (tim, dg)

sg = sign_union (Maude.Sign.fromSpec sp_th) ips

ext_sg = makeExtSign Maude sg

nm_sns = map (makeNamed "") $ Maude.Sentence.fromSpec sp_th

sens = toThSens nm_sns

gt = G_theory Maude ext_sg startSigId sens startThId

tok = HasName.getName sp_th

name = makeName tok

(ns, dg2) = insGTheory dg1 name DGBasic gt

tim2 = Map.insert tok (getNode ns, sg, ss1 ++ ss2, [], []) tim1

(tim3, dg3) = createEdgesImports tok ips sg tim2 dg2

The introduction of views into the development graph follows these steps:

• The function isInstantiated checks whether the target of the view is a theory or a module. This
value will be used to decide whether the sorts have to be qualified when this view is used.

• A morphism is generated between the signatures of the source and target specifications.

• If there is a renaming between terms the function sign4renamings generates the extra signature
and sentences needed. These values, kept in new_sign and new_sens are used to create an inner
node with the function insertInnerNode.

• Finally, a theorem link stating the proof obligations generated by the view is introduced between
the source and the target of the view with insertThmEdgeMorphism.

insertSpec (SpecView sp_v) pdg ptim tim vm ths dg = (ptimUp, tim3, vm’, ths, dg4)

where View name from to rnms = sp_v

(ptimUp, timUp, dgUp) = incPredView from to pdg (ptim, tim, dg)

inst = isInstantiated ths to

tok_name = HasName.getName name

(tok1, tim1, morph1, _, dg1) = processModExp timUp vm dgUp from

(tok2, tim2, morph2, _, dg2) = processModExp tim1 vm dg1 to

(n1, _, _, _, _) = fromJust $ Map.lookup tok1 tim2

(n2, _, _, _, _) = fromJust $ Map.lookup tok2 tim2

morph = fromSignsRenamings (target morph1) (target morph2) rnms

morph’ = fromJust $ maybeResult $ compose morph1 morph

(new_sign, new_sens) = sign4renamings (target morph1) (sortMap morph) rnms

(n3, tim3, dg3) = insertInnerNode n2 tim2 tok2 morph2 new_sign new_sens dg2

vm’ = Map.insert (HasName.getName name) (n3, tok2, morph’, rnms, inst) vm

dg4 = insertThmEdgeMorphism tok_name n3 n1 morph’ dg3

We describe now the main auxiliary functions used above. Module expressions are parsed following
the guidelines outlined in Section 5.1.2:

• When the module expression is a simple identifier its signature and its parameterized sorts are
extracted from the TokenInfoMap and returned, while the generated morphism is an inclusion:

processModExp :: TokenInfoMap -> ViewMap -> DGraph -> ModExp -> ModExpProc

processModExp tim _ dg (ModExp modId) = (tok, tim, morph, ps, dg)

where tok = HasName.getName modId

(_, sg, _, _, ps) = fromJust $ Map.lookup tok tim

morph = Maude.Morphism.inclusion sg sg

33

• The parsing of the summation expression performs the following steps:

– The information about the module expressions is recursively computed with processModExp.

– The signature of the resulting module expression is obtained with the union of signatures.

– The morphism generated by the summation is just an inclusion.

– A new node for the summation is introduced with insertNode.

– The target signature of the obtained morphisms is substituted by this new signature with
setTarget.

– These new morphisms are used to generate the links between the summation and its summands
in insertDefEdgeMorphism.

processModExp tim vm dg (SummationModExp modExp1 modExp2) = (tok, tim3, morph, ps’, dg5)

where (tok1, tim1, morph1, ps1, dg1) = processModExp tim vm dg modExp1

(tok2, tim2, morph2, ps2, dg2) = processModExp tim1 vm dg1 modExp2

ps’ = deleteRepeated $ ps1 ++ ps2

tok = mkSimpleId $ concat ["{", show tok1, " + ", show tok2, "}"]

(n1, _, ss1, _, _) = fromJust $ Map.lookup tok1 tim2

(n2, _, ss2, _, _) = fromJust $ Map.lookup tok2 tim2

ss1’ = translateSorts morph1 ss1

ss2’ = translateSorts morph1 ss2

sg1 = target morph1

sg2 = target morph2

sg = Maude.Sign.union sg1 sg2

morph = Maude.Morphism.inclusion sg sg

morph1’ = setTarget sg morph1

morph2’ = setTarget sg morph2

(tim3, dg3) = insertNode tok sg tim2 (ss1’ ++ ss2’) [] dg2

(n3, _, _, _, _) = fromJust $ Map.lookup tok tim3

dg4 = insertDefEdgeMorphism n3 n1 morph1’ dg3

dg5 = insertDefEdgeMorphism n3 n2 morph2’ dg4

• The renaming module expression recursively parses the inner expression, computes the morphism
from the given renamings with fromSignRenamings, taking special care of the renaming of the
parameterized sorts with applyRenamingParamSorts. Once the values are computed, the final
morphism is obtained from the composition of the morphisms computed for the inner expression
and the one computed from the renamings:

processModExp tim vm dg (RenamingModExp modExp rnms) = (tok, tim’, comp_morph, ps’, dg’)

where (tok, tim’, morph, ps, dg’) = processModExp tim vm dg modExp

morph’ = fromSignRenamings (target morph) rnms

ps’ = applyRenamingParamSorts (sortMap morph’) ps

comp_morph = fromJust $ maybeResult $ compose morph morph’

• The parsing of the instantiation module expression works as follows:

– The information of the instantiated parameterized module is obtained with processModExp.

– The parameter names are obtained by applying fstTpl, that extracts the first component of
a triple, to the information about the parameters of the parameterized module.

– Parameterized sorts are instantiated with instantiateSorts, that returns the new parame-
terized sorts, in case the target of the view is a theory, and the morphism associated.

– The view identifiers are processed with processViews. This function returns the token iden-
tifying the list of views, the morphism to be applied from the parameterized module, a list of
pairs of nodes and morphisms, indicating the morphism that has to be used in the link from
each view, and a list with the updated information about the parameters due to the views
with theories as target.

– The morphism returned is the inclusion morphism.

– The links between the targets of the views and the expression are created with updateGraphViews.

34

processModExp tim vm dg (InstantiationModExp modExp views) =

(tok’’, tim’’, final_morph, new_param_sorts, dg’’)

where (tok, tim’, morph, paramSorts, dg’) = processModExp tim vm dg modExp

(_, _, _, ps, _) = fromJust $ Map.lookup tok tim’

param_names = map fstTpl ps

view_names = map HasName.getName views

(new_param_sorts, ps_morph) = instantiateSorts param_names

view_names vm morph paramSorts

(tok’, morph1, ns, deps) = processViews views (mkSimpleId "") tim’

vm ps (ps_morph, [], [])

tok’’ = mkSimpleId $ concat [show tok, "{", show tok’, "}"]

sg2 = target morph1

final_morph = Maude.Morphism.inclusion sg2 sg2

(tim’’, dg’’) = if Map.member tok’’ tim

then (tim’, dg’)

else updateGraphViews tok tok’’ sg2 morph1 ns tim’ deps dg’

We present the function insertNode to describe how the nodes are introduced into the development
graph. This function receives the identifier of the node, its signature,12 the TokenInfoMap map, a list
of sorts, and information about the parameters, and returns the updated map and the new development
graph. First, it checks whether the node is already in the development graph. If it is in the graph, the
current map and graph are returned. Otherwise, the extended signature is computed with makeExtSign
and used to create a graph theory that will be inserted with insGTheory, obtaining the new node
information and the new development graph. Finally, the map is updated with the information received
as parameter and the node identifier obtained when the node was introduced:

insertNode :: Token -> Sign -> TokenInfoMap -> Symbols -> [(Token, Token, Symbols)]

-> DGraph -> (TokenInfoMap, DGraph)

insertNode tok sg tim ss deps dg = if Map.member tok tim

then (tim, dg)

else let

ext_sg = makeExtSign Maude sg

gt = G_theory Maude ext_sg startSigId noSens startThId

name = makeName tok

(ns, dg’) = insGTheory dg name DGBasic gt

tim’ = Map.insert tok (getNode ns, sg, ss, deps, []) tim

in (tim’, dg’)

The function insertDefEdgeMorphism describes how the definition links are introduced into the
development graph. It receives the identifier of the source and target nodes, the morphism to be used
in the link, and the current development graph. The morphism is transformed into a development
graph morphism indicating the current logic (Maude) and the type (globalDef) and is introduced in the
development graph with insLEdgeDG:

insertDefEdgeMorphism :: Node -> Node -> Morphism -> DGraph -> DGraph

insertDefEdgeMorphism n1 n2 morph dg = snd $ insLEdgeDG (n2, n1, edg) dg

where mor = G_morphism Maude morph startMorId

edg = globDefLink (gEmbed mor) SeeTarget

Theorem links are introduced with insertThmEdgeMorphism in the same way, but specifying with
globalThm that the link is a theorem link. This function receives as extra argument the name of the view
generating the proof obligations, that is used to name the link:

insertThmEdgeMorphism :: Token -> Node -> Node -> Morphism -> DGraph -> DGraph

insertThmEdgeMorphism name n1 n2 morph dg = snd $ insLEdgeDG (n2, n1, edg) dg

where mor = G_morphism Maude morph startMorId

edg = defDGLink (gEmbed mor) globalThm

(DGLinkView name $ Fitted [])

The function insertFreeEdge receives the names of the nodes and the TokenInfoMap and builds an
inclusion morphism to use it in the FreeOrCofreeDefLink link:

12Note that when the function insertNode is used there are no sentences.

35

insertFreeEdge :: Token -> Token -> TokenInfoMap -> DGraph -> DGraph

insertFreeEdge tok1 tok2 tim dg = snd $ insLEdgeDG (n2, n1, edg) dg

where (n1, _, _, _, _) = fromJust $ Map.lookup tok1 tim

(n2, sg2, _, _, _) = fromJust $ Map.lookup tok2 tim

mor = G_morphism Maude (Maude.Morphism.inclusion Maude.Sign.empty sg2) startMorId

dgt = FreeOrCofreeDefLink NPFree $ EmptyNode (Logic Maude)

edg = defDGLink (gEmbed mor) dgt SeeTarget

7.5 Comorphism

We show in this section how the comorphism from Maude to Casl described in Section 4 is implemented.
The function in charge of computing the comorphism is maude2casl, that returns the Casl signature
and sentences given the Maude signature and sentences:

maude2casl :: MSign.Sign -> [Named MSentence.Sentence] -> (CSign.CASLSign,

[Named CAS.CASLFORMULA])

This function splits the work into different stages:

• The function rewPredicates generates the rew predicates for each sort to simulate the rewrite
rules in the Maude specification.

• The function rewPredicatesSens creates the formulas associated to the rew predicates created
above, stating that they are reflexive and transitive.

• The Casl operators are obtained from the Maude operators:

– The function translateOps splits the Maude operator map into a tuple of Casl operators
and Casl associative operators, (which are required for parsing purposes).

– Since Casl does not allow the definition of polymorphic operators, these operators are removed
from the map with deleteUniversal and for each one of these Maude operators we create a
set of Casl operators with all the possible profiles with universalOps.

• Casl sentences are obtained from the Maude sentences and from predefined Casl libraries:

– In the computation of the Casl formulas we split Maude sentences in equations defined without
the owise attribute, equations defined with owise, and the rest of statements with the function
splitOwiseEqs.

– The equations defined without the owise attribute are translated as universally quantified
equations, as shown in Section 4, with noOwiseSen2Formula.

– Equations with the owise attribute are translated using a negative existential quantification, as
we will show later, with the function owiseSen2Formula. This function requires as additional
parameter the definition of the formulas defined without the owise attribute, in order to state
that the equations defined with owise are applied when the rest of possible equations cannot.

– The rest of statements, namely memberships and rules, are translated with the function
mb_rl2formula.

– There are some built-in operators in Maude that are not defined by means of equations. To
allow the user to reason about them we provide some libraries with the definitions of these
operators as Casl formulas, obtained with loadLibraries.

• Finally, the Casl symbols are created:

– The kinds are translated to symbols with kinds2syms.

– The operators are translated with ops2symbols.

– The symbol predicates are obtained with preds2syms.

36

maude2casl msign nsens = (csign { CSign.sortSet = cs,

CSign.sortRel = sbs’,

CSign.opMap = cops’,

CSign.assocOps = assoc_ops,

CSign.predMap = preds,

CSign.declaredSymbols = syms }, new_sens)

where csign = CSign.emptySign ()

ss = MSign.sorts msign

ss’ = Set.map sym2id ss

mk = kindMapId $ MSign.kindRel msign

sbs = MSign.subsorts msign

sbs’ = maudeSbs2caslSbs sbs mk

cs = Set.union ss’ $ kindsFromMap mk

preds = rewPredicates cs

rs = rewPredicatesSens cs

ops = deleteUniversal $ MSign.ops msign

ksyms = kinds2syms cs

(cops, assoc_ops, _) = translateOps mk ops

cops’ = universalOps cs cops $ booleanImported ops

rs’ = rewPredicatesCongSens cops’

pred_forms = loadLibraries (MSign.sorts msign) ops

ops_syms = ops2symbols cops’

(no_owise_sens, owise_sens, mbs_rls_sens) = splitOwiseEqs nsens

no_owise_forms = map (noOwiseSen2Formula mk) no_owise_sens

owise_forms = map (owiseSen2Formula mk no_owise_forms) owise_sens

mb_rl_forms = map (mb_rl2formula mk) mbs_rls_sens

preds_syms = preds2syms preds

syms = Set.union ksyms $ Set.union ops_syms preds_syms

new_sens = concat [rs, rs’, no_owise_forms, owise_forms,

mb_rl_forms, pred_forms]

The rew predicates are declared with the function rewPredicates, that traverses the set of sorts
applying the function rewPredicate:

rewPredicates :: Set.Set Id -> Map.Map Id (Set.Set CSign.PredType)

rewPredicates = Set.fold rewPredicate Map.empty

This function defines a binary predicate using as identifier the constant rewID and the sort as type
of the arguments:

rewPredicate :: Id -> Map.Map Id (Set.Set CSign.PredType)

-> Map.Map Id (Set.Set CSign.PredType)

rewPredicate sort m = Map.insertWith (Set.union) rewID ar m

where ar = Set.singleton $ CSign.PredType [sort, sort]

Once these predicates have been declared, we have to introduce formulas to state their properties.
The function rewPredicatesSens accomplishes this task by traversing the set of sorts and applying
rewPredicateSens:

rewPredicatesSens :: Set.Set Id -> [Named CAS.CASLFORMULA]

rewPredicatesSens = Set.fold rewPredicateSens []

This function generates the formulas for each sort:

rewPredicateSens :: Id -> [Named CAS.CASLFORMULA] -> [Named CAS.CASLFORMULA]

rewPredicateSens sort acc = ref : trans : acc

where ref = reflSen sort

trans = transSen sort

We describe the formula for reflexivity, being the formula for transitivity analogous. A new variable
of the required sort is created with the auxiliary function newVar, then the qualified predicate name is
created with the rewID constant and applied to the variable. Finally, the formula is named with the
prefix rew_refl_ followed by the name of the sort:

37

reflSen :: Id -> Named CAS.CASLFORMULA

reflSen sort = makeNamed name $ quantifyUniversally form

where v = newVar sort

pred_type = CAS.Pred_type [sort, sort] nullRange

pn = CAS.Qual_pred_name rewID pred_type nullRange

form = CAS.Predication pn [v, v] nullRange

name = "rew_refl_" ++ show sort

The function translateOps traverses the map of Maude operators, applying to each of them the
function translateOpDeclSet:

translateOps :: IdMap -> MSign.OpMap -> OpTransTuple

translateOps im = Map.fold (translateOpDeclSet im) (Map.empty, Map.empty, Set.empty)

Since the values in the Maude operator map are sets of operator declarations, the auxiliary function
translateOpDeclSet has to traverse these sets, applying translateOpDecl to each operator declaration:

translateOpDeclSet :: IdMap -> MSign.OpDeclSet -> OpTransTuple -> OpTransTuple

translateOpDeclSet im ods tpl = Set.fold (translateOpDecl im) tpl ods

The function translateOpDecl receives an operator declaration, that consists of all the operators
declared with the same profile at the kind level. The function traverses these operators, transforming
them into Casl operators with the function ops2pred and returning a tuple containing the operators,
the associative operators, and the constructors:

translateOpDecl :: IdMap -> MSign.OpDecl -> OpTransTuple -> OpTransTuple

translateOpDecl im (syms, ats) (ops, assoc_ops, cs) = case tl of

[] -> (ops’, assoc_ops’, cs’)

_ -> translateOpDecl im (syms’, ats) (ops’, assoc_ops’, cs’)

where sym = head $ Set.toList syms

tl = tail $ Set.toList syms

syms’ = Set.fromList tl

(cop_id, ot, _) = fromJust $ maudeSym2CASLOp im sym

cop_type = Set.singleton ot

ops’ = Map.insertWith (Set.union) cop_id cop_type ops

assoc_ops’ = if any MAS.assoc ats

then Map.insertWith (Set.union) cop_id cop_type assoc_ops

else assoc_ops

cs’ = if any MAS.ctor ats

then Set.insert (Component cop_id ot) cs

else cs

As said above, Maude equations that are not defined with the owise attribute are translated to
Casl with noOwiseSen2Formula. This function extracts the current equation from the named sentence,
translates it with noOwiseEq2Formula and creates a new named sentence with the resulting formula:

noOwiseSen2Formula :: IdMap -> Named MSentence.Sentence -> Named CAS.CASLFORMULA

noOwiseSen2Formula im s = s’

where MSentence.Equation eq = sentence s

sen’ = noOwiseEq2Formula im eq

s’ = s { sentence = sen’ }

The function noOwiseEq2Formula distinguishes whether the equation is conditional or not. In both
cases, the Maude terms in the equation are translated into Casl terms with maudeTerm2caslTerm, and a
strong equation is used to create a formula. If the equation has no conditions this formula is universally
quantified and returned as result, while if it has conditions each of them generates a formula and their
conjunction, computed with conds2formula, will be used as premise of the equational formula:

noOwiseEq2Formula :: IdMap -> MAS.Equation -> CAS.CASLFORMULA

noOwiseEq2Formula im (MAS.Eq t t’ [] _) = quantifyUniversally form

where ct = maudeTerm2caslTerm im t

ct’ = maudeTerm2caslTerm im t’

form = CAS.Strong_equation ct ct’ nullRange

noOwiseEq2Formula im (MAS.Eq t t’ conds@(_:_) _) = quantifyUniversally form

38

where ct = maudeTerm2caslTerm im t

ct’ = maudeTerm2caslTerm im t’

conds_form = conds2formula im conds

concl_form = CAS.Strong_equation ct ct’ nullRange

form = createImpForm conds_form concl_form

maudeTerm2caslTerm is defined for each Maude term:

• Variables are translated into qualified Casl variables, and their type is translated to the corre-
sponding type in Casl:

maudeTerm2caslTerm :: IdMap -> MAS.Term -> CAS.CASLTERM

maudeTerm2caslTerm im (MAS.Var q ty) = CAS.Qual_var q ty’ nullRange

where ty’ = maudeType2caslSort ty im

• Constants are translated as functions applied to the empty list of arguments:

maudeTerm2caslTerm im (MAS.Const q ty) = CAS.Application op [] nullRange

where name = token2id q

ty’ = maudeType2caslSort ty im

op_type = CAS.Op_type CAS.Total [] ty’ nullRange

op = CAS.Qual_op_name name op_type nullRange

• The application of an operator to a list of terms is translated into another application, translating
recursively the arguments into valid Casl terms:

maudeTerm2caslTerm im (MAS.Apply q ts ty) = CAS.Application op tts nullRange

where name = token2id q

tts = map (maudeTerm2caslTerm im) ts

ty’ = maudeType2caslSort ty im

types_tts = getTypes tts

op_type = CAS.Op_type CAS.Total types_tts ty’ nullRange

op = CAS.Qual_op_name name op_type nullRange

The conditions are translated into a conjunction with conds2formula, that traverses the conditions
applying cond2formula to each of them, and then creates the conjunction of the obtained formulas:

conds2formula :: IdMap -> [MAS.Condition] -> CAS.CASLFORMULA

conds2formula im conds = CAS.Conjunction forms nullRange

where forms = map (cond2formula im) conds

• Both equality and matching conditions are translated into strong equations:

cond2formula :: IdMap -> MAS.Condition -> CAS.CASLFORMULA

cond2formula im (MAS.EqCond t t’) = CAS.Strong_equation ct ct’ nullRange

where ct = maudeTerm2caslTerm im t

ct’ = maudeTerm2caslTerm im t’

cond2formula im (MAS.MatchCond t t’) = CAS.Strong_equation ct ct’ nullRange

where ct = maudeTerm2caslTerm im t

ct’ = maudeTerm2caslTerm im t’

• Membership conditions are translated into Casl memberships by translating the term and the sort:

cond2formula im (MAS.MbCond t s) = CAS.Membership ct s’ nullRange

where ct = maudeTerm2caslTerm im t

s’ = token2id $ getName s

• Rewrite conditions are translated into formulas by using both terms as arguments of the corre-
sponding rew predicate:

39

cond2formula im (MAS.RwCond t t’) = CAS.Predication pred_name [ct, ct’] nullRange

where ct = maudeTerm2caslTerm im t

ct’ = maudeTerm2caslTerm im t’

ty = token2id $ getName $ MAS.getTermType t

kind = Map.findWithDefault (errorId "rw cond to formula") ty im

pred_type = CAS.Pred_type [kind, kind] nullRange

pred_name = CAS.Qual_pred_name rewID pred_type nullRange

The equations defined with the owise attribute are translated with owiseSen2Formula, that traverses
them and applies owiseEq2Formula to the inner equation:

owiseSen2Formula :: IdMap -> [Named CAS.CASLFORMULA] -> Named MSentence.Sentence

-> Named CAS.CASLFORMULA

owiseSen2Formula im owise_forms s = s’

where MSentence.Equation eq = sentence s

sen’ = owiseEq2Formula im owise_forms eq

s’ = s { sentence = sen’ }

This function receives all the formulas defined without the owise attribute and, for each formula with
the same operator in the lefthand side as the current equation (obtained with getLeftApp), it generates
with existencialNegationOtherEqs a negative existential quantification stating that the arguments do
not match or the condition does not hold that is used as premise of the equation:

owiseEq2Formula :: IdMap -> [Named CAS.CASLFORMULA] -> MAS.Equation -> CAS.CASLFORMULA

owiseEq2Formula im no_owise_form eq = form

where (eq_form, vars) = noQuantification $ noOwiseEq2Formula im eq

(op, ts, _) = fromJust $ getLeftApp eq_form

ex_form = existencialNegationOtherEqs op ts no_owise_form

imp_form = createImpForm ex_form eq_form

form = CAS.Quantification CAS.Universal vars imp_form nullRange

The translation from sorts, operators, and predicates to symbols works in a similar way to the trans-
formations shown above, so we only describe how the predicate symbols are obtained. The function
preds2syms traverses the map of predicates and inserts each obtained symbol into the set with pred2sym:

preds2syms :: Map.Map Id (Set.Set CSign.PredType) -> Set.Set CSign.Symbol

preds2syms = Map.foldWithKey pred2sym Set.empty

This function traverses the set of predicate types and creates the symbol corresponding to each one
with createSym4id:

pred2sym :: Id -> Set.Set CSign.PredType -> Set.Set CSign.Symbol -> Set.Set CSign.Symbol

pred2sym pn spt acc = Set.fold (createSym4id pn) acc spt

createSym4id generates the symbol and inserts it into the accumulated set:

createSym4id :: Id -> CSign.PredType -> Set.Set CSign.Symbol -> Set.Set CSign.Symbol

createSym4id pn pt acc = Set.insert sym acc

where sym = CSign.Symbol pn $ CSign.PredAsItemType pt

7.6 Freeness constraints

We describe here how the freeness constraints introduced in Section 5.2 have been implemented. This
implementation has been performed for general Casl theories, so it is not specific to Maude specifications.
Since this transformation is quite complex, we focus in this section on the second-order formula for the
kernel of h (the functions added for each ι(s)). As explained before, this formula is split into several
subformulas:

• The formula for symmetry of each sort is implemented by the function symmetry_ax. It first
generates two fresh variables, v1 and v2, of the given sort, and a binary predicate ps ranging in this
sort; then we create the righthand (rhs) and lefthand (lhs) sides of the implication, that finally is
universally quantified and returned:

40

symmetry_ax :: SORT -> CASLFORMULA

symmetry_ax s = quant

where free_sort = mkFreeName s

v1@(Qual_var n1 _ _) = newVarIndex 1 free_sort

v2@(Qual_var n2 _ _) = newVarIndex 2 free_sort

pt = Pred_type [free_sort, free_sort] nullRange

name = phiName s

ps = Qual_pred_name name pt nullRange

lhs = Predication ps [v1, v2] nullRange

rhs = Predication ps [v2, v1] nullRange

inner_form = Implication lhs rhs True nullRange

vd = [Var_decl [n1, n2] free_sort nullRange]

quant = Quantification Universal vd inner_form nullRange

• The formulas for transitivity are generated with transitivity_ax, that works in a similar way
to the function above: it first creates the fresh variables v1, v2, and v3, which are used in the
ps predicate to build the formulas fst_form (Φ(v1, v2)), snd_form (Φ(v2, v3)), and thr_form
(Φ(v1, v3)). The first two formulas are put together in the conjunction conj and imply the third
one in imp. Finally, the formula is universally quantified and returned as quant:

transitivity_ax :: SORT -> CASLFORMULA

transitivity_ax s = quant

where free_sort = mkFreeName s

v1@(Qual_var n1 _ _) = newVarIndex 1 free_sort

v2@(Qual_var n2 _ _) = newVarIndex 2 free_sort

v3@(Qual_var n3 _ _) = newVarIndex 3 free_sort

pt = Pred_type [free_sort, free_sort] nullRange

name = phiName s

ps = Qual_pred_name name pt nullRange

fst_form = Predication ps [v1, v2] nullRange

snd_form = Predication ps [v2, v3] nullRange

thr_form = Predication ps [v1, v3] nullRange

conj = mk_conj [fst_form, snd_form]

imp = Implication conj thr_form True nullRange

vd = [Var_decl [n1, n2, n3] free_sort nullRange]

quant = Quantification Universal vd imp nullRange

• Formulas stating congruence are more complex. The function congruence_ax computes the axioms
for each operator identifier by using the auxiliary function congruence_ax_aux:

congruence_ax :: Id -> Set.Set OpType -> [CASLFORMULA] -> [CASLFORMULA]

congruence_ax name sot acc = set_forms

where set_forms = Set.fold ((:) . (congruence_ax_aux name)) acc sot

This auxiliary function, after renaming the operator and the sorts to obtain the free identifiers,
creates the arrays of variables, xs and ys, and the two terms where they are applied, fst_term and
snd_term. Definedness formulas of the form D(t) are built as Ps(t, t) in fst_form and snd_form,
while the third part of the conjunction is built with congruence_ax_vars (not shown here) and kept
in vars_forms. These formulas are put together as a conjunction and used in the final implication,
which is returned once it is universally quantified:

congruence_ax_aux :: Id -> OpType -> CASLFORMULA

congruence_ax_aux name ot = cong_form’

where OpType _ args res = ot

free_name = mkFreeName name

free_args = map mkFreeName args

free_res = mkFreeName res

free_ot = Op_type Total free_args free_res nullRange

free_os = Qual_op_name free_name free_ot nullRange

lgth = length free_args

xs = createVars 1 free_args

41

ys = createVars (1 + lgth) free_args

fst_term = Application free_os xs nullRange

snd_term = Application free_os ys nullRange

phi = phiName res

pt = Pred_type [free_res, free_res] nullRange

ps = Qual_pred_name phi pt nullRange

fst_form = Predication ps [fst_term, fst_term] nullRange

snd_form = Predication ps [snd_term, snd_term] nullRange

vars_forms = congruence_ax_vars args xs ys

conj = mk_conj $ fst_form : snd_form : vars_forms

concl = Predication ps [fst_term, snd_term] nullRange

cong_form = Implication conj concl True nullRange

cong_form’ = quantifyUniversally cong_form

• The formulas for satThM are obtained by applying free_formula, which performs the substitutions
shown in Section 5.2, to the formulas in the current theory:

sat_thm_ax :: [Named CASLFORMULA] -> CASLFORMULA

sat_thm_ax forms = final_form

where forms’ = map (free_formula . sentence) forms

final_form = mk_conj forms’

• Finally, largerThanKerH formulas are computed with larger_than_ker_h. We split the work
between the function ltkh_sorts, in charge of the formulas related to the sorts, and ltkh_preds,
in charge of the formulas related to the predicates:

larger_than_ker_h :: Set.Set SORT -> Map.Map Id (Set.Set PredType) -> CASLFORMULA

larger_than_ker_h ss mis = conj

where ltkhs = ltkh_sorts ss

ltkhp = ltkh_preds mis

conj = mk_conj (ltkhs ++ ltkhp)

We describe how the ltkh_sorts function works. This function traverses all the sorts and applies
ltkh_sort to each of them:

ltkh_sorts :: Set.Set SORT -> [CASLFORMULA]

ltkh_sorts = Set.fold ((:) . ltkh_sort) []

This auxiliary function creates variables of the given sort and uses them in the homomorphism
function. The terms thus obtained are used in an existential equation to create the premise of
the implication, while the conclusion is a predicate with these variables as arguments. Finally, the
formula is universally quantified and returned:

ltkh_sort :: SORT -> CASLFORMULA

ltkh_sort s = imp’

where free_s = mkFreeName s

v1 = newVarIndex 1 free_s

v2 = newVarIndex 2 free_s

phi = phiName s

pt = Pred_type [free_s, free_s] nullRange

ps = Qual_pred_name phi pt nullRange

ot_hom = Op_type Partial [free_s] s nullRange

name_hom = Qual_op_name homId ot_hom nullRange

t1 = Application name_hom [v1] nullRange

t2 = Application name_hom [v2] nullRange

prem = Existl_equation t1 t2 nullRange

concl = Predication ps [v1, v2] nullRange

imp = Implication prem concl True nullRange

imp’ = quantifyUniversally imp

42

8 Concluding remarks and future work

We have presented how Maude has been integrated into Hets, a parsing, static analysis, and proof man-
agement tool that combines various tools for different specification languages. To achieve this integration,
we consider preordered algebra semantics for Maude and define an institution comorphism from Maude
to Casl. This integration allows to prove properties of Maude specifications like those expressed in
Maude views. We have also implemented a normalization of the development graphs that allows us to
prove freeness constraints. We have used this transformation to connect Maude to Isabelle [30], a Higher
Order Logic prover, and have demonstrated a small example proof about reversal of lists. Moreover, this
encoding is suited for proofs of e.g. extensionality of sets, which require first-order logic, going beyond
the abilities of existing Maude provers like ITP.

Since interactive proofs are often not easy to conduct, future work will make proving more efficient
by adopting automated induction strategies like rippling [11]. We also have the idea to use the automatic
first-order prover SPASS for induction proofs by integrating special induction strategies directly into
Hets.

We have also studied the possible comorphisms from Casl to Maude. We distinguish whether the
formulas in the source theory are confluent and terminating or not. In the first case, that we plan to
check with the Maude termination [12] and confluence checker [13], we map formulas to equations, whose
execution in Maude is more efficient, while in the second case we map formulas to rules.

Finally, we also plan to relate Hets’ Modal Logic and Maude models in order to use the Maude model
checker [6, Chapter 13] for linear temporal logic.

Acknowledgments We wish to thank Francisco Durán for discussions regarding freeness in Maude,
Martin Kühl for cooperation on the implementation of the system presented here, and Maksym Bortin
for help with the Isabelle proofs. This work has been supported by the German Federal Ministry of
Education and Research (Project 01 IW 07002 FormalSafe), the German Research Council (DFG) under
grant KO-2428/9-1, the Comunidad de Madrid project PROMETIDOS (S2009/TIC–1465), the MICINN
Spanish project DESAFIOS10 (TIN2009-14599-C03-01), and the Spanish Ministerio de Educación grant
AP2005-007.

References

[1] S. Autexier, D. Hutter, B. Langenstein, H. Mantel, G. Rock, A. Schairer, W. Stephan, R. Vogt, and
A. Wolpers. VSE: formal methods meet industrial needs. International Journal on Software Tools for
Technology Transfer, 3(1):66–77, 2009.

[2] T. Baar, A. Strohmeier, A. M. D. Moreira, and S. J. Mellor, editors. Proceedings of UML 2004 - The Unified
Modelling Language: Modelling Languages and Applications. 7th International Conference, volume 3273 of
Lecture Notes in Computer Science. Springer, 2004.

[3] M. Bidoit and P. D. Mosses. Casl User Manual, volume 2900 of Lecture Notes in Computer Science. Springer,
2004.

[4] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in membership equational logic.
Theoretical Computer Science, 236:35–132, 2000.

[5] R. Bruni and J. Meseguer. Semantic foundations for generalized rewrite theories. Theoretical Computer
Science, 360(1):386–414, 2006.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and C. Talcott. All About Maude: A
High-Performance Logical Framework, volume 4350 of Lecture Notes in Computer Science. Springer, 2007.

[7] M. Clavel, J. Meseguer, and M. Palomino. Reflection in membership equational logic, many-sorted equational
logic, Horn logic with equality, and rewriting logic. Theoretical Computer Science, 373(1-2):70–91, 2007.

[8] M. Clavel, M. Palomino, and A. Riesco. Introducing the ITP tool: a tutorial. Journal of Universal Computer
Science, 12(11):1618–1650, 2006. Programming and Languages. Special Issue with Extended Versions of
Selected Papers from PROLE 2005: The Fifth Spanish Conference on Programming and Languages.

[9] L. A. Dennis, G. Collins, M. Norrish, R. J. Boulton, K. Slind, and T. F. Melham. The PROSPER toolkit.
International Journal on Software Tools for Technology Transfer (STTT), 4(2):189–210, 2002.

[10] R. Diaconescu. Institution-Independent Model Theory. Birkhäuser Basel, 2008.

[11] L. Dixon and J. D. Fleuriot. Higher order rippling in IsaPlanner. In K. Slind, A. Bunker, and G. Gopalakrish-
nan, editors, Proceedings of the 17th International Conference on Theorem Proving in Higher Order Logics,
TPHOLs 2004, volume 3223 of Lecture Notes in Computer Science, pages 83–98. Springer, 2004.

43

[12] F. Durán, S. Lucas, and J. Meseguer. MTT: The Maude Termination Tool (system description). In A. Ar-
mando, P. Baumgartner, and G. Dowek, editors, Proceedings of the 4th International Joint Conference on
Automated Reasoning, IJCAR 2008, Sydney, Australia, August 12-15, volume 5195 of Lecture Notes in
Computer Science, pages 313–319. Springer, 2008.

[13] F. Durán and J. Meseguer. A Church-Rosser checker tool for conditional order-sorted equational Maude
specifications. In Proceedings of the 8th International Workshop on Rewriting Logic and its Applications,
WRLA 2010, volume 6381 of Lecture Notes in Computer Science, pages 69–85, 2010.

[14] N. Een and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella, editors, Theory
and Applications of Satisfiability Testing, 6th International Conference, SAT 2003, Selected Revised Papers,
volume 2919 of Lecture Notes in Computer Science, pages 502–518. Springer, 2004.

[15] A. Fuchs. Darwin: A Theorem Prover for the Model Evolution Calculus. Master’s thesis, University of
Koblenz-Landau, 2004.

[16] K. Futatsugi and R. Diaconescu. CafeOBJ Report. World Scientific, AMAST Series, 1998.

[17] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for specification and programming.
Journal of the Association for Computing Machinery, 39:95–146, 1992.

[18] M. Kohlhase. OMDoc: An infrastructure for OpenMath content dictionary information. Bulletin of the
ACM Special Interest Group on Symbolic and Automated Mathematics (SIGSAM), 34(2):43–48, 2000.

[19] M. Kühl. Integrating Maude into Hets. Master’s thesis, Universität Bremen, 2010.

[20] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science,
96(1):73–155, 1992.

[21] J. Meseguer. Membership algebra as a logical framework for equational specification. In F. Parisi-Presicce,
editor, Recent Trends in Algebraic Development Techniques, 12th International Workshop, WADT’97, Tar-
quinia, Italy, June 3–7, 1997, Selected Papers, volume 1376 of Lecture Notes in Computer Science, pages
18–61. Springer, 1998.

[22] M. W. Moskewicz and C. F. Madigan. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th
Design Automation Conference, pages 530–535. ACM Press, 2001.

[23] T. Mossakowski. Relating Casl with other specification languages: the institution level. Theoretical Com-
puter Science, 286(2):367–475, 2002.

[24] T. Mossakowski. Heterogeneous specification and the heterogeneous tool set. Technical report, Universität
Bremen, 2005. Habilitation thesis.

[25] T. Mossakowski, S. Autexier, and D. Hutter. Development graphs - proof management for structured speci-
fications. Journal of Logic and Algebraic Programming, special issue on Algebraic Specification and Develop-
ment Techniques, 67(1-2):114–145, 2006.

[26] T. Mossakowski, C. Maeder, M. Codescu, and D. Lücke. Hets user guide – Version 0.97 –, January 2011.

[27] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In O. Grumberg and M. Huth,
editors, Proceedings of the 13th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS 2007, volume 4424 of Lecture Notes in Computer Science, pages 519–522.
Springer, 2007.

[28] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In B. Beckert, editor, VERIFY
2007, 4th International Verification Workshop, volume 259 of CEUR Workshop Proceedings, pages 119–135,
2007.

[29] P. Mosses, editor. Casl Reference Manual, volume 2960 of Lecture Notes in Computer Science. Springer,
2004.

[30] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic, volume
2283 of Lecture Notes in Computer Science. Springer, 2002.

[31] M. Norrish and K. Slind. The HOL system tutorial, September 2010.

[32] B. C. Pierce. Basic Category Theory for Computer Scientists. The MIT Press, 1991.

[33] H. Reichel. Initial Computability, Algebraic Specifications, and Partial Algebras. Oxford University Press,
1987.

[34] A. Tarlecki. Institutions: An abstract framework for formal specifications. In E. Astesiano, H.-J. Kreowski,
and B. Krieg-Brückner, editors, Algebraic Foundations of Systems Specifications, pages 105–130. Springer,
1999.

[35] D. Tsarkov, A. Riazanov, S. Bechhofer, and I. Horrocks. Using Vampire to reason with OWL. In S. A.
McIlraith, D. Plexousakis, and F. van Harmelen, editors, Proceedings of the 3rd International Semantic Web
Conference, ISWC 2004, volume 3298 of Lecture Notes in Computer Science, pages 471–485. Springer, 2004.

[36] P. Viry. Equational rules for rewriting logic. Theoretical Computer Science, 285(2):487–517, 2002.

[37] C. Weidenbach, D. Dimova, A. Fietzke, R. Kumar, M. Suda, and P. Wischnewski. SPASS version 3.5. In
R. A. Schmidt, editor, Proceedings of the 22nd International Conference on Automated Deduction, CADE
2009, volume 5663 of Lecture Notes in Artificial Intelligence, pages 140–145. Springer, 2009.

44

	Introduction
	Rewriting logic and Maude
	Membership equational logic
	Maude functional modules
	Rewriting logic
	Maude system modules
	Advanced features
	Module operations
	Theories
	Views
	Parameterized modules

	Hets
	Relating the Maude and Casl logics
	Maude
	Casl
	Encoding Maude into Casl

	Building development graphs
	Creating the development graph
	Modules
	Module expressions
	Importations
	Views
	An example of development graph

	Normalization of free definition links

	An example: Reversing lists
	An easier proof: Revisiting our initial example

	Implementation
	Abstract syntax
	Maude parsing
	Logic
	Signature
	Sentences
	Morphisms

	Development graph
	Comorphism
	Freeness constraints

	Concluding remarks and future work

