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Critical behavior in the site-diluted three-dimensional three-state Potts model
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We have studied numerically the effect of quenched site dilution on a weak first-order phase transition in
three dimensions. We have simulated the site diluted three-states Potts model studying in detail the second-
order region of its phase diagram. We have found that:thexponent is compatible with the one of the
three-dimensional diluted Ising model, whereas thexponent is definitely different.

[. INTRODUCTION site percolation in three dimensiofghich has been studied
in the literature, e.g. in Ref.)3the universality class of the
The effect of impurities on the critical behavior of a pure tricritical point (conjectured in Ref. land the universality
material is an important issue, since frequently real systemelass that controls the critical behavior in the line between
cannot be considered as pure. Nowadays the effect of diluthe tricritical point and the percolation point.
tion (disorder coupled to the energy dengityn second-order In this paper we will restrict ourselves to the study of the
phase transitions is well understood. The phase transitiosecond-order line. The three-state Potts model is a good
keeps being second order, and the eventual modification athoice since it presents a weak first-order transition in the
the universality class is governed by the specific heat diverpure version. In addition, the puge=3 Potts model shows
gence, as stated by the Harris criterfoliVhen the pure some experimental realizations appearing in very distant
model shows a first-order phase transition the situation ifields. We can cite the deconfining phase transition in
more complicated. However, in two dimensions there is a seuenched quantum chromodynamics or some systems in
of important results, both numerical and analytical. For in-condensed matter physics. For instance, a cubic ferromagnet
stance, Aizenman and Weéhshowed rigorously that when with three easy axes of magnetization when a magnetic field
introducing disorder, its conjugated density becomes a corin the diagonal of the cubic lattice is turned @ng., DyAl),
tinuous function of the thermodynamic parameters. structural phase transitiong.g., SrTiQ), and some fluid
In three dimensions the scenario is different. Let us brieflymixtures of five(suitably chosencomponents.
describe a plausible phase diagram in the temperature— Although an experimental realization of the site diluted
concentration planeT(p) of a Potts spin system. The pure Potts model is not yet know(disorder tends to couple with
model undergoes a first-order phase transition, at a criticathe order parameter rather than with the engrgfenever it
temperatureT(p=1), separating the paramagnetic high-will appear it will be interesting to have clear theoretical
temperature phase from the low temperature ordered oneredictions at hand.
This first-order transition can be, in principle, continued in- The techniques used in this paper are well suited for
side the T,p) plane, where the critical temperatufe(p) second-order transitions, but they should be modified in the
will lower for smaller p. The latent-heat for the first-order concentration range for which the phase transition is first
phase transition will decrease until the tricritical point. At order. Nevertheless, the three state Potts model is difficult to
this point the model suffers a second-order phase transitiostudy in this region, since an asymptotic behavior is only
that continuegbelonging to another universality classtii  reached with very large lattices. Work is in progfess
the T(po) =0 percolation limit. We remark that this phase study this region in a five-state Potts that presents, without
diagram would present three different universality classesdilution, a very stronger transition.
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II. THE MODEL AND OBSERVABLES W_Wz
We have studied the three-dimensional site diluted three- 2 (IM]?)2 ’ &)
state Potts model, whose Hamiltonian defined on a cubic
lattice with volumeV=L3 is (M3)
Ga=—r, (4)
O TR
. —
and periodic boundary conditions are applied. In 89.z;'s =2- {MI% , (5)
are complex roots ofz’=1, and €’s are uncorrelated (IM|?)2

guenched random variables, which are 1 with probabyity _ .
and 0 with probability - p. The Boltzmann weight is pro- 94 Peing the standard Binder cumulags, measures whether
portional to expt- 8H). the susceptlblllty is or not a self-averaging quantity, ayad' .

We have used clusters algorithms in order to update thQaS_ been introduced since the thre_e-states Potts model is in-
system. In a diluted system, the set of occupied sites cak@fiant under a global transformation of tg group. The
present regions that are lightly connected to the percolatingther cumulantsg, andg,, are also trivially invariant since
cluster. These regions are very difficult to equilibrate justVe have used the modulus of the complex magnetization in
with a single-cluster algorithh.We have found that a their construction. , ,
single-cluster algorithm combined with a heat bath sweep We have used a quotient meth’cfdlp order to compute
per measure is efficient for large concentrations. Howeverth€ critical exponents. We recall _brleflxxthe basis of this
for small concentrationsp< 0.6) the previous method is not Method. LetO be a quantity diverging as " (t being the
efficient enough due to the presence of intermediate-sizeffduced temperaturén the thermodynamical limit. We can
clusters, and we have used the Swendsen-Wang algdtithm?rite the dependence @ on L andt in the following way:

We have simulated gt=1.0, 0.9, 0.8, 0.7, 0.6, 0.5006, &(LLY)
and 0.4005 aB=0.5505, 0.6117, 0.690, 0.803, 0.969, 1.247, O(L,t)=L%"" :
and 1.855, respectively, in latticés=8,16,32, and 64. We L
will refer in the rest of the paper to the dilutiops=0.4005 where G is a (smooth scaling function and € w) is the
and 0.5006 asp=0.4 and 0.5, respectively. Fop  biggest nonpositive eigenvalue of the Renormalization
=0.8,0.7,0.4 we have also run in=128 lattices. We have Group transformatiorithe corrections-to-scaling expongnt
performedN,;=200 nearly independent measures in everyThe definition of the correlation length on a finite box,
single disorder realization. Fgr<0.8 the number of these &(L,t), that we use is the second momentum bhe.

Go

, (6)

)+O(L“’)

realizations has beeiNg=10000, except forp=0.8, L The main formula of the quotient method is

=128, where we have fixeBlg=1000. In thep=0.9 case O(sL

we have measured in 2000 different disorder realizations. _ (sL,t) =gy (L 7
QO|Q§=S O(L t) S ( )1 ( )

The total amount of CPU time has been the equivalent of 16

years of 200 MHz Pentium-Pro processor. F_or sma_ll dilu-e.g_’ we compute the quotient betweBgsL,t) and O(L,t)
tions we have performed the usu@lextrapolatior?, while at the reduced temperaturi,in which &(sL,t)/&(L,t)=s.

for p<0.6 we used @ extrapolation methodf Let us recall  5¢ particular cases of interest we cite the susceptibility,

that when planning a dis_ordered model simu_la_tio_n, oN&nd theg derivative of the correlation lengthizé, whose
should balance two competing effects. First, to minimize staz;, ¢ ciated exponents are

tistical errors, it is better to work in i, <<Ng regime. On the
other hand, ifN, is too small, the usual calculation ¢ xdﬁ§=1+ v, X,=(2=n)v, (8)
derivatives and extrapolations is biased. We follow the same .
procedure of Ref. 11 to eliminate the bias. With our simu|a_respect|vely. . . : .
tion strategy N;<Ny), it is crucial to check that the system A clean measure of scale nvariance 1s provided by
is sufficiently thermalized while taking measures. In order to{é/L)lo,=s- Let us recall that/L is a monotonically grow-
ensure this, we have systematically compared the resuli§d function of the inverse temperature. In the ordered phase
coming from hot and cold starts: half of our statistics for theit grows asL%? while in the disordered phase decreases with
largest lattices have been obtained with hot starts, while thgrowing lattice size. Therefore, for any pair of lattice sizes,
other half comes from cold starts. there is a crossing temperature wh&e=2. In a second-
Regarding the observables, in addition to the energy wé@rder transition£/L at the crossing point should tend to a
have measured the complex magnetization andréad sus-  nonvanishing universal value. For a first-order transition, the
ceptibility as crossing temperatures tend to the transition pointddltat
the crossing diverges due to the coexistence of ordered and
_S 1 disordered phases.
M= — €iZin XT V<|M| ) 2) We finally analyze the quotient of the cumulagts, g3,
or g, at two different latticesL and sL, computed at the
We have denoted witf(- - -)) the thermodynamical average temperature wher®,=s. Notice that for a second-order
with fixed disorder and witl{- - -) the average over the dis- phase transition the asymptotic limit {-=) of these quo-
order. tients is 1 corrected by terms like™ ® [see Eq.(7)].
The formulas for the cumulants read The quotient method, Eq7), has several interesting fea-
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FIG. 1. The ratio&/L and the cumulang; when &(2L,t) FIG. 2. Quotients of the cumulantg,, g3, and g, (filled
=2¢(L,t) as a function oL~ for different values of the concen- squares, open squares, and open circles, respegtagly function
tration p. of L~ %4 Notice the differeny scale in thep=0.9 case.

tures. First, we profit of the large statistical correlation be-!Dart of Fig. 3. In this case we see a different scaling behav-

tweenQo andQ;. Next, one does not need a previous estj.ior por p=0.9 andp=0.8 up to the studied lattice sizes. We
mate of the infinite volume critical point. Finally, it allows a &S0 guess that the value cannot be much larger than 0.4.
simple control of the scaling corrections. All of this makes e have next considered the quotients of the different cu-

the method specially efficient for the measures of anomalougiulantsg; at the points wher®@,=2. We recall that these
dimensions. quantities should go to 1 dstends to infinity in a second-
order phase transition. We present our results in Fig. 2. At
concentrationsp=0.9 and p=0.8 we do not find an
asymptotic behavior. Fgg= 0.7, the behavior is not yet mo-
Our scope is now to compute the critical exponents in thenotonous. Only forp=0.4, 0.5, and 0.6 it seems that the
region in which the transition is clearly second order, i.e., theasymptotic behavior is reached. Unfortunately, a reliable es-
study of the universality class between the tricritical and pertimate of w cannot be obtained but our results point to a
colation limits. The first stage is to determine where anvalue near 0.4. Moreover, the higher-order scaling correc-
asymptotic second-order behavior has been reached with lafons are rather strong for these quantities. Finally, let us
tice sizes up td.=128. remark that the corrections to scaling and statistical errors
In Fig. 1 we show the value of/L, at the points for are much larger fog, andg, than forg;. Therefore, for the
which Q=2 for the different (,2L) lattice pairs and as study the second-order region, we conclude that onlypfor
functions of L™ “. We have used fow the corresponding <0.6 an asymptotic scaling behavior for the considered lat-
value of the site diluted Ising mod&.For p<0.7 we find tice sizes has been found.
that ¢/L seems to tend to a dilution-independent value. No- We report the results for the critical exponents as func-
tice the clear divergence fgu=1, where the transition is tions ofp andL in Tables | and Il. We have applied E()
known to be first order. Fop=0.9 we find a similar trend with s=2 to dz¢ for computingr and toy for extracting».
that for the pure case, while fqg=0.8 we find a transient We can observe that the asymptotic behavior of these esti-
behavior: for small latticeg/L grows, while in the largest mates forp=0.7 is not clear.
lattices it seems to approach the universal value. We also However, we have been able to extrapolatsing a 1L
guess from this figure that the value cannot be much larger law) the apparent critical exponentgL) and n(L) for p
than 0.4. =0.4, 0.5, and 0.6 to the infinite volume limit. We have
Another interesting quantity is the cumulagi (lower  obtained:

IIl. NUMERICAL RESULTS

TABLE |. Apparent critical exponent, obtained fromQ%é measured wher@,=2 for all the concen-
trations studied.

L p=0.9 p=0.8 p=0.7 p=0.6 p=0.5 p=0.4

8 0.5714) 0.6333) 0.6644) 0.6853) 0.7064) 0.7385)
16 0.5927) 0.6593) 0.6863) 0.6923) 0.6984) 0.7115)
32 0.66412) 0.70Q4) 0.6954) 0.6884) 0.6944) 0.6964)

64 0.71113 0.7074) 0.6924)
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TABLE II. Apparent critical exponenty, computed usin@, , for all the considered concentrations.

L p=0.9 p=0.8 p=0.7 p=0.6 p=0.5 p=0.4
8 0.0482) 0.0572) 0.0652) 0.074515) 0.0794) 0.0724)
16 0.0364) 0.0452) 0.0682) 0.077314) 0.0792) 0.07713)
32 —0.029(9) 0.05(B) 0.0743) 0.07712) 0.0792) 0.07713)
64 0.0646) 0.0713) 0.08Q3)
v=0.6905), 7=0.0784). 9) temperature-concentration plane consists of a ferromagneti-

. ) N _cally ordered phase separated from a paramagnetic, high-
We can compare this estimate for the critical exponents withemperature one. Between both regions there is a critical line,
that of the three-dimensional diluted Ising modek  \hich is(weakly) first order in the limit of pure samples. For
=0.684(5) andy=0.0375)." It is clear that the Potts value small concentrations, a clear second-order behavior is found,
for v agrees in the error bars with the Ising’s value, but, onyhijle the region withp=0.9 shows a different behavior,
the contrary thep-values are definitively different. probably corresponding to a crossover, more difficult to ana-
From the extrapolation of the apparent critical exponentgyze.

we can guess thab=1 for the leading scaling-corrections ~ \we have found that the exponents are dilution indepen-
term could be a reasonable choice in this case. We recall thgent, and that they show a very mild evolution with the lat-

we have found a»~0.4 value for the cumulants. A possible tice size. That is why a sound estimate of the critical expo-
explanation of this contradiction could be that for the observnents can be given, in spite of the fact that we have been
ables used for computing the critical exponents the leadinginable to measure the scaling-corrections exponerihis
term (w~0.4) vanishes. In any case we should remark thais in marked contrast with the situation in the site-diluted

we have no precise control over the scaling corrections untsing model, where the scaling-corrections are severewbut
like, for example, in the investigation of the three dimen-can be obtained with a 15% accuracy.

sional site diluted Ising modéf. Fortunately, the scaling cor-
rections for the critical exponents are rather small. Thus, it is
not essential in this model to perform an infinite-volume ex-
trapolation of our estimates. This is in marked contrast with
the Ising case, where the extrapolation procedure was crucial We gratefully acknowledge discussions with D. Belanger,
to correctly compute the critical exponents. J. Cardy and H. Rieger. We are grateful for partial financial
support from CICyT(AEN97-1708 and AEN97-1693The
computations have been carried out using the RTNN ma-
chines (Universidad de Zaragoza and Universidad Com-

We have numerically studied the three-dimensional siteplutense de Madridand the ORIGIN2000 at the Centro de
diluted three-state Potts model. The phase diagram in th8upercomputacio ComplutenséCSO.
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