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Critical behavior in the site-diluted three-dimensional three-state Potts model
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We have studied numerically the effect of quenched site dilution on a weak first-order phase transition in
three dimensions. We have simulated the site diluted three-states Potts model studying in detail the second-
order region of its phase diagram. We have found that then exponent is compatible with the one of the
three-dimensional diluted Ising model, whereas theh exponent is definitely different.
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I. INTRODUCTION

The effect of impurities on the critical behavior of a pu
material is an important issue, since frequently real syste
cannot be considered as pure. Nowadays the effect of d
tion ~disorder coupled to the energy density! on second-order
phase transitions is well understood. The phase trans
keeps being second order, and the eventual modificatio
the universality class is governed by the specific heat div
gence, as stated by the Harris criterion.1 When the pure
model shows a first-order phase transition the situation
more complicated. However, in two dimensions there is a
of important results, both numerical and analytical. For
stance, Aizenman and Wehr2 showed rigorously that when
introducing disorder, its conjugated density becomes a c
tinuous function of the thermodynamic parameters.

In three dimensions the scenario is different. Let us brie
describe a plausible phase diagram in the temperatu
concentration plane (T,p) of a Potts spin system. The pur
model undergoes a first-order phase transition, at a crit
temperatureTc(p51), separating the paramagnetic hig
temperature phase from the low temperature ordered
This first-order transition can be, in principle, continued
side the (T,p) plane, where the critical temperatureTc(p)
will lower for smaller p. The latent-heat for the first-orde
phase transition will decrease until the tricritical point.
this point the model suffers a second-order phase trans
that continues~belonging to another universality class! until
the Tc(pc)50 percolation limit. We remark that this phas
diagram would present three different universality class
PRB 610163-1829/2000/61~5!/3215~4!/$15.00
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site percolation in three dimensions~which has been studied
in the literature, e.g. in Ref. 3!, the universality class of the
tricritical point ~conjectured in Ref. 4! and the universality
class that controls the critical behavior in the line betwe
the tricritical point and the percolation point.

In this paper we will restrict ourselves to the study of t
second-order line. The three-state Potts model is a g
choice since it presents a weak first-order transition in
pure version. In addition, the pureq53 Potts model shows
some experimental realizations appearing in very dist
fields. We can cite the deconfining phase transition
quenched quantum chromodynamics or some system
condensed matter physics. For instance, a cubic ferroma
with three easy axes of magnetization when a magnetic fi
in the diagonal of the cubic lattice is turned on~e.g., DyAl2),
structural phase transitions~e.g., SrTiO3), and some fluid
mixtures of five~suitably chosen! components.5

Although an experimental realization of the site dilut
Potts model is not yet known~disorder tends to couple with
the order parameter rather than with the energy!, whenever it
will appear it will be interesting to have clear theoretic
predictions at hand.

The techniques used in this paper are well suited
second-order transitions, but they should be modified in
concentration range for which the phase transition is fi
order. Nevertheless, the three state Potts model is difficu
study in this region, since an asymptotic behavior is o
reached with very large lattices. Work is in progress6 to
study this region in a five-state Potts that presents, with
dilution, a very stronger transition.
3215 ©2000 The American Physical Society
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II. THE MODEL AND OBSERVABLES

We have studied the three-dimensional site diluted thr
state Potts model, whose Hamiltonian defined on a cu
lattice with volumeV5L3 is

H5ReF (
^ i , j &

e ie j zi zj* G , ~1!

and periodic boundary conditions are applied. In Eq.~1! zi ’s
are complex roots ofz351, and e i ’s are uncorrelated
quenched random variables, which are 1 with probabilityp,
and 0 with probability 12p. The Boltzmann weight is pro
portional to exp(2bH).

We have used clusters algorithms in order to update
system. In a diluted system, the set of occupied sites
present regions that are lightly connected to the percola
cluster. These regions are very difficult to equilibrate ju
with a single-cluster algorithm.7 We have found that a
single-cluster algorithm combined with a heat bath swe
per measure is efficient for large concentrations. Howe
for small concentrations (p,0.6) the previous method is no
efficient enough due to the presence of intermediate-s
clusters, and we have used the Swendsen-Wang algorith8

We have simulated atp51.0, 0.9, 0.8, 0.7, 0.6, 0.5006
and 0.4005 atb50.5505, 0.6117, 0.690, 0.803, 0.969, 1.24
and 1.855, respectively, in latticesL58,16,32, and 64. We
will refer in the rest of the paper to the dilutionsp50.4005
and 0.5006 asp50.4 and 0.5, respectively. Forp
50.8,0.7,0.4 we have also run inL5128 lattices. We have
performedNI5200 nearly independent measures in ev
single disorder realization. Forp<0.8 the number of these
realizations has beenNS510000, except forp50.8, L
5128, where we have fixedNS51000. In thep50.9 case
we have measured in 2000 different disorder realizatio
The total amount of CPU time has been the equivalent of
years of 200 MHz Pentium-Pro processor. For small d
tions we have performed the usualb extrapolation,9 while
for p,0.6 we used ap extrapolation method.10 Let us recall
that when planning a disordered model simulation, o
should balance two competing effects. First, to minimize s
tistical errors, it is better to work in aNI!NS regime. On the
other hand, ifNI is too small, the usual calculation ofb
derivatives and extrapolations is biased. We follow the sa
procedure of Ref. 11 to eliminate the bias. With our simu
tion strategy (NI!NS), it is crucial to check that the system
is sufficiently thermalized while taking measures. In order
ensure this, we have systematically compared the res
coming from hot and cold starts: half of our statistics for t
largest lattices have been obtained with hot starts, while
other half comes from cold starts.

Regarding the observables, in addition to the energy
have measured the complex magnetization and the~real! sus-
ceptibility as

M5(
i

e izi , x5
1

V
^uM u2&. ~2!

We have denoted witĥ(•••)& the thermodynamical averag
with fixed disorder and with(•••) the average over the dis
order.

The formulas for the cumulants read
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g25
^uM u2&22^uM u2&2

^uM u2&2
, ~3!

g35
^M3&

^uM u2&3/2
, ~4!

g4522
^uM u4&

^uM u2&2
, ~5!

g4 being the standard Binder cumulant,g2 measures whethe
the susceptibility is or not a self-averaging quantity, andg3
has been introduced since the three-states Potts model
variant under a global transformation of theZ3 group. The
other cumulants,g2 andg4, are also trivially invariant since
we have used the modulus of the complex magnetizatio
their construction.

We have used a quotient method,12 in order to compute
the critical exponents. We recall briefly the basis of th
method. LetO be a quantity diverging ast2xO (t being the
reduced temperature! in the thermodynamical limit. We can
write the dependence ofO on L and t in the following way:

O~L,t !5LxO /nFGOS j~L,t !

L D1O~L2v!G , ~6!

whereGO is a ~smooth! scaling function and (2v) is the
biggest nonpositive eigenvalue of the Renormalizat
Group transformation~the corrections-to-scaling exponent!.
The definition of the correlation length on a finite bo
j(L,t), that we use is the second momentum one.13

The main formula of the quotient method is

QOuQj5s5
O~sL,t !

O~L,t !
5sxO /n1O~L2v!, ~7!

e.g., we compute the quotient betweenO(sL,t) andO(L,t)
at the reduced temperature,t, in which j(sL,t)/j(L,t)5s.
As particular cases of interest we cite the susceptibility,x,
and theb derivative of the correlation length,]bj, whose
associated exponents are

x]bj511n, xx5~22h!n, ~8!

respectively.
A clean measure of scale invariance is provided

(j/L)uQj5s . Let us recall thatj/L is a monotonically grow-
ing function of the inverse temperature. In the ordered ph
it grows asLd/2, while in the disordered phase decreases w
growing lattice size. Therefore, for any pair of lattice size
there is a crossing temperature whereQj52. In a second-
order transition,j/L at the crossing point should tend to
nonvanishing universal value. For a first-order transition,
crossing temperatures tend to the transition point butj/L at
the crossing diverges due to the coexistence of ordered
disordered phases.

We finally analyze the quotient of the cumulantsg2 , g3,
or g4 at two different lattices,L and sL, computed at the
temperature whereQj5s. Notice that for a second-orde
phase transition the asymptotic limit (L→`) of these quo-
tients is 1 corrected by terms likeL2v @see Eq.~7!#.

The quotient method, Eq.~7!, has several interesting fea
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tures. First, we profit of the large statistical correlation b
tweenQO andQj . Next, one does not need a previous es
mate of the infinite volume critical point. Finally, it allows
simple control of the scaling corrections. All of this mak
the method specially efficient for the measures of anoma
dimensions.

III. NUMERICAL RESULTS

Our scope is now to compute the critical exponents in
region in which the transition is clearly second order, i.e.,
study of the universality class between the tricritical and p
colation limits. The first stage is to determine where
asymptotic second-order behavior has been reached with
tice sizes up toL5128.

In Fig. 1 we show the value ofj/L, at the points for
which Qj52 for the different (L,2L) lattice pairs and as
functions of L2v. We have used forv the corresponding
value of the site diluted Ising model.14 For p<0.7 we find
that j/L seems to tend to a dilution-independent value. N
tice the clear divergence forp51, where the transition is
known to be first order. Forp50.9 we find a similar trend
that for the pure case, while forp50.8 we find a transien
behavior: for small latticesj/L grows, while in the larges
lattices it seems to approach the universal value. We
guess from this figure that thev value cannot be much large
than 0.4.

Another interesting quantity is the cumulantg3 ~lower

FIG. 1. The ratioj/L and the cumulantg3 when j(2L,t)
52j(L,t) as a function ofL20.4 for different values of the concen
tration p.
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part of Fig. 1!. In this case we see a different scaling beha
ior por p50.9 andp50.8 up to the studied lattice sizes. W
also guess that thev value cannot be much larger than 0.
We have next considered the quotients of the different
mulantsgi at the points whereQj52. We recall that these
quantities should go to 1 asL tends to infinity in a second
order phase transition. We present our results in Fig. 2.
concentrationsp50.9 and p50.8 we do not find an
asymptotic behavior. Forp50.7, the behavior is not yet mo
notonous. Only forp50.4, 0.5, and 0.6 it seems that th
asymptotic behavior is reached. Unfortunately, a reliable
timate of v cannot be obtained but our results point to
value near 0.4. Moreover, the higher-order scaling corr
tions are rather strong for these quantities. Finally, let
remark that the corrections to scaling and statistical err
are much larger forg2 andg4 than forg3. Therefore, for the
study the second-order region, we conclude that only fop
<0.6 an asymptotic scaling behavior for the considered
tice sizes has been found.

We report the results for the critical exponents as fu
tions of p andL in Tables I and II. We have applied Eq.~7!
with s52 to ]bj for computingn and tox for extractingh.
We can observe that the asymptotic behavior of these e
mates forp>0.7 is not clear.

However, we have been able to extrapolate~using a 1/L
law! the apparent critical exponentsn(L) and h(L) for p
50.4, 0.5, and 0.6 to the infinite volume limit. We hav
obtained:

FIG. 2. Quotients of the cumulantsg2 , g3, and g4 ~filled
squares, open squares, and open circles, respectively! as a function
of L20.4. Notice the differenty scale in thep50.9 case.
TABLE I. Apparent critical exponentn, obtained fromQ]bj measured whereQj52 for all the concen-
trations studied.

L p50.9 p50.8 p50.7 p50.6 p50.5 p50.4

8 0.571~4! 0.633~3! 0.662~4! 0.685~3! 0.706~4! 0.738~5!

16 0.592~7! 0.659~3! 0.686~3! 0.692~3! 0.698~4! 0.711~5!

32 0.664~12! 0.700~4! 0.695~4! 0.688~4! 0.694~4! 0.696~4!

64 0.711~13! 0.707~4! 0.692~4!
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TABLE II. Apparent critical exponenth, computed usingQx , for all the considered concentrations.

L p50.9 p50.8 p50.7 p50.6 p50.5 p50.4

8 0.048~2! 0.057~2! 0.065~2! 0.0745~15! 0.079~4! 0.072~4!

16 0.036~4! 0.045~2! 0.068~2! 0.0773~14! 0.079~2! 0.077~3!

32 20.029(9) 0.050~3! 0.074~3! 0.077~2! 0.079~2! 0.077~3!

64 0.064~6! 0.071~3! 0.080~3!
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n50.690~5!, h50.078~4!. ~9!

We can compare this estimate for the critical exponents w
that of the three-dimensional diluted Ising model:n
50.684(5) andh50.037(5).14 It is clear that the Potts value
for n agrees in the error bars with the Ising’s value, but, o
the contrary theh-values are definitively different.

From the extrapolation of the apparent critical exponen
we can guess thatv51 for the leading scaling-corrections
term could be a reasonable choice in this case. We recall t
we have found av'0.4 value for the cumulants. A possible
explanation of this contradiction could be that for the obser
ables used for computing the critical exponents the leadi
term (v'0.4) vanishes. In any case we should remark th
we have no precise control over the scaling corrections u
like, for example, in the investigation of the three dimen
sional site diluted Ising model.14 Fortunately, the scaling cor-
rections for the critical exponents are rather small. Thus, it
not essential in this model to perform an infinite-volume ex
trapolation of our estimates. This is in marked contrast wi
the Ising case, where the extrapolation procedure was cruc
to correctly compute the critical exponents.

IV. CONCLUSIONS

We have numerically studied the three-dimensional s
diluted three-state Potts model. The phase diagram in
h
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temperature-concentration plane consists of a ferromagn
cally ordered phase separated from a paramagnetic, h
temperature one. Between both regions there is a critical l
which is~weakly! first order in the limit of pure samples. Fo
small concentrations, a clear second-order behavior is fou
while the region withp*0.9 shows a different behavior
probably corresponding to a crossover, more difficult to a
lyze.

We have found that the exponents are dilution indep
dent, and that they show a very mild evolution with the la
tice size. That is why a sound estimate of the critical exp
nents can be given, in spite of the fact that we have b
unable to measure the scaling-corrections exponentv. This
is in marked contrast with the situation in the site-dilut
Ising model, where the scaling-corrections are severe buv
can be obtained with a 15% accuracy.
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Sudupe, G. Parisi, and J.J. Ruiz-Lorenzo, J. Phys. A32, 1
~1999!.

4J. Cardy and J.L. Jacobsen, Phys. Rev. Lett.79, 4063~1997!; J.
Cardy, cond-mat/9806355~unpublished!.

5F.Y. Wu, Rev. Mod. Phys.54, 235 ~1982!.
6H.G. Ballesteros, L.A. Ferna´ndez, V. Martı´n-Mayor, A. Muñoz
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