International Journal of Analysis and Applications

Regularity and Paracompactness in Fuzzy Topological Spaces Francisco Gallego Lupiáñez*

Dpt. Mathematics, Universidad Complutense, Madrid (Spain)

*Corresponding author: fg | lupianez@mat.ucm.es

ABSTRACT. In this paper we obtain two characterizations of regular fuzzy topological spaces using Luo's and Abd El-Monsef and others' paracompact fuzzy topological spaces.

1. Introduction

In this paper we obtain two characterizations of fuzzy regularity as a fuzzy covering property. Indeed, we show that one can characterize fuzzy regularity as a paracompact-type fuzzy property in Luo's and Abd El-Monsef and others' both senses.

2. Definitions and Main Results

Definition 1 [1] Let μ be a set in a fts (X,τ) and let $r \in (0,1]$, $s \in [0,1)$; we define

$$\mu_{[r]} = \chi_{\{x \in X: \mu(x) \ge r\}}$$

$$\mu_{(s)} = \chi_{\{x \in X: \mu(x) > s\}}$$

$$\mu_{< r>} = r \mu_{[r]}$$

Definition 2 [1] Let \mathscr{A} be a family of sets and μ be a set in a fts (X,τ) . We say that \mathscr{A} is locally finite (resp. *-locally finite) in μ for each point e in μ , there exists $v \in Q(e)$ such that v

Received: Nov. 22, 2022.

2020 Mathematics Subject Classification. 03E72, 54A40.

Key words and phrases, topology; fuzzy sets; separation properties; covering properties fuzzy paracompactness.

is quasi-coincident (resp. intersects) with at most a finite number of sets of $\mathscr A$; we often omit the word "in μ " when $\mu = X$.

Definition 3 [1] A family of sets \mathscr{A} is called a Q-cover of a set μ if for each $x \in supp(\mu)$, there exist a $v \in \mathscr{A}$ such that v and μ are quasi-coincident at x. Let $r \in (0,1]$. \mathscr{A} is called a r-Q cover of μ if \mathscr{A} is a Q-cover of $\mu_{(r)}$.

Definition 4 [1] Let $r \in (0,1]$, μ be a set in a fts (X,τ) . We say that μ is r-paracompact (resp. r^* -paracompact) if for each r-open Q-cover of μ there exists an open refinement of it which is both locally finite (resp.*-locally finite) in μ and a r-Q-cover of μ . The fuzzy set μ is called S-paracompact (resp. S*-paracompact) if for every $r \in (0,1]$, μ is r-paracompact (resp. r^* -paracompact).

Definition 5 [2] A family of fuzzy sets \mathscr{U} is called an L-cover of a fuzzy set μ if $\bigvee_{v \in \mathscr{V}} v \geqq \mu$. Definition 6 [2] Let μ be a fuzzy set in a fts (X,τ) . We say that μ is fuzzy paracompact (resp. *-fuzzy paracompact) if for each open L-cover \mathscr{B} of μ and for each $\xi \in (0,1]$, there exists an open refinement \mathscr{B}^* of \mathscr{B} which is both locally finite (resp. *-locally finite) in μ and L-cover of $\mu - \xi$. We say that a fts (X,τ) is fuzzy paracompact (resp. *-fuzzy paracompact) if each constant set in X is fuzzy paracompact (resp. *-fuzzy paracompact).

Theorem 1 Let (X,τ) a fuzzy Hausdorff fts (in any of Wuyts and Lowen's definitions that are good extensions of Hausdorffness). Then (X,τ) is fuzzy regular if and only if for each $r \in (0,1]$, for each r-open Q-cover of (X,τ) and for each fuzzy point x_{λ} of X there exists an open refinement of it which is both *-locally finite in x_{λ} and a r-Q-cover of (X,τ) .

Proof (\Rightarrow) For each $r \in (0,1]$, let \mathscr{U} be a r-open Q-cover of (X,τ) , and x_λ be a fuzzy point of X. Then, we have that the family of crisp sets $\{U_{(1-r)}|\ U \in \mathscr{U}\}$, is an open cover of $(X,[\tau])$, which is Hausdorff and regular ([3], [4]). Then ([5], [6], [7]), it has an open refinement $\mathscr{V}_{\chi} \subset [\tau]$

which is a cover of X, and is locally finite in x. For each $V \in \mathcal{V}_X$ we have an $U_V \in \mathcal{U}$ with $V \subset (U_V)_{(1-r)}$.

Let $\mathscr{W}_{\chi} = \{\chi_{V} \wedge U_{V} \mid V \in \mathscr{V}_{\chi}\}$. Then, $\mathscr{W}_{\chi} \subset \tau$, is both an open refinement of \mathscr{U} and a r-Q -cover of (X,τ) , and also is *-locally finite in x_{λ} , indeed, because \mathscr{V}_{χ} is locally finite in x, we have an open neigborhood G of x that G intersects with only finite number of members of \mathscr{V}_{χ} . Then $\chi_{G} \in Q(x_{\lambda})$ intersects with only a finite number of members of \mathscr{W}_{χ} .

 $(\Leftarrow) \text{ Let } \mathscr{U} \subset [\tau] \text{ be an open cover of } (X,[\tau]) \text{; then } \left\{\chi_{U} \mid U \in \mathscr{U}\right\} \text{ is an open Q-cover of } 1_{X}, \text{ and, for each } x \in X, \text{ it has an open refinement } \mathscr{V}_{X_{r}} \text{ which is a Q-cover of } 1_{X} \text{ and also locally finite in } x_{1-r}. \text{ Let } \mathscr{W} = \left\{V_{(1-r)} \mid V \in \mathscr{V}_{X_{r}}\right\}; \text{ then } \mathscr{W} \subset [\tau] \text{ is both a refinement of } \mathscr{U} \text{ and a cover of } (X,[\tau]). \text{ Also, } \mathscr{W} \text{ is locally finite in } x. \text{ Indeed: we take } O_{1} \in Q(\mathbf{X}_{1-r}) \text{ such that } O_{1}, \text{ is quasi-coincident with only a finite number of members } V_{1},...,V_{n}, \text{ of } \mathscr{V}_{X_{r}}. \text{ Let } \mathscr{O} = (O_{1})_{(r)}, \text{ then } x \in O \in [\tau]. \text{ For each } \mathbf{V} \in \mathscr{V}_{X_{r}}, \text{ if } O \wedge V_{(1-r)} \neq \varnothing, \text{ we have a crisp point } y \in X, \text{ such that } O_{1}(y) > r, V(y) > 1-r, O_{1}(y) + V(y) > 1, \text{ then } O_{1}qV \text{ and } V \in \{V_{1},...,V_{n}\}. \text{ Hence the neighborhood } O \text{ of } x \text{ intersects with only a finite number of members } (V_{1})_{(1-r)},...,(V_{n})_{(1-r)} \in \mathscr{W}.$

Theorem 2. Let (X,τ) be a fuzzy Hausdorff fts (in any of Wuyts and Lowen's definitions that are good extensions of Hausdorffness [3]). Then (X,τ) is fuzzy regular if and only if for each $r \in I$, and for each open L-cover $\mathscr B$ of r, for each $\xi \in (0,1]$, and for each fuzzy point x_λ of X, there exists an open refinement $\mathscr B^*$ of it which is both *-locally finite in x_λ and L-cover of $r - \xi$.

Proof (\Rightarrow) For each $r \in I$, and for each open L-cover $\mathscr B$ of r, for each $\xi \in (0,1]$, and for each fuzzy point x_λ of X, we have that the family of crisp sets $\mathscr U = \{G^{-1}((r-\xi,1]) | G \in \mathscr B\} \subset [\tau]$ is an open cover of $(X,[\tau])$ which is Hausdorff and regular ([3, 4]). Then ([5],[6],[7]), it has an open refinement $\mathscr U_x^* \subset [\tau]$ which is a cover of X and is locally finite in x. For each $V \in \mathscr U_x^*$, there

exists $G_V^{-1}((r-\xi,1])\in \mathcal{U}$, such that $V\subset G_V^{-1}((r-\xi,1])$. So $\mathscr{B}^*=\left\{\chi_V\wedge G_V|V\in \mathscr{U}_x^*\right\}\subset \tau$ is refinement of \mathscr{B} . Then, there exists $V\in \mathscr{U}_x^*$ such that $x\in V$ and $G_V(x)>r-\xi$. So, $(\chi_V\wedge G_V)(x)\geq r-\xi$, and $V\left\{\chi_V\wedge G_V|V\in \mathscr{U}_x^*\right\}\geq r-\xi$. Since \mathscr{U}_x^* is locally finite in x, there exists $A\in [\tau]$ with $x\in A$, such that intersects with at most a finite number of members of \mathscr{U}_x^* . Then, there exists $\chi_A\in \tau$ such that $\chi_\lambda q\chi_A$ and χ_A intersects with a finite number of fuzzy sets of \mathscr{B}^* .

 $(\Leftarrow) \text{ Let } \mathscr{U} \subset [\tau] \text{ be an open cover of } X \text{ and } x \in X \text{ , then } \mathscr{B} = \{\chi_U \mid U \in \mathscr{U}\} \text{ is an open } L$ -cover of (X,τ) and for each, $r \in I$ is $\bigvee \{\chi_U \mid U \in \mathscr{U}\} \geq r$. For each $\xi \in (0,1]$, there exists an open refinement \mathscr{B}^* of \mathscr{B} which is both locally finite in x_λ and L-cover of $r-\xi$. This implies that $\bigvee \{G \mid G \in \mathscr{B}\} \geq r - \xi_1$ for all $\xi_1 > \xi$. Let $\mathscr{U}^* = \left\{G^{-1}((r-\xi,1]) \mid G \in \mathscr{B}^*\right\}$, then $\mathscr{U}^* \subset [\tau]$ is an open refinement of \mathscr{U} (indeed, for each $G^{-1}((r-\xi,1]) \in \mathscr{U}^*$ there exists $V_G \in \mathscr{U}$ such that $G^{-1}((r-\xi,1]) \subset V_G$). Since $\bigvee \{G \mid G \in \mathscr{B}^*\} \geq r - \xi_1$, then \mathscr{U}^* is an open refinement of \mathscr{U} . And, since $x \in X$ there exists $A \in Q(x_\lambda)$ which intersects with only $G_1,...,G_n \in \mathscr{B}^*$. Since $A(x) + \lambda > 1$, we have $A(x) > 1 - \lambda$, then $x \in A^{-1}((1-\lambda,1]) \in [\tau]$.

If $A^{-1}((1-\lambda,1])\cap G^{-1}((r-\xi,1])\neq\varnothing$, there exists some point z, such that $A(z)>1-\lambda$ and $G(z)>r-\xi$, so $A\wedge G\neq\varnothing$. Then, if the neigborhood $A^{-1}((1-\lambda,1])$ of x intersects with infinite members of \mathscr{U}^* , A intersects with infinite members of \mathscr{D}^* . Thus \mathscr{U}^* is locally finite in x.

This yields that the Hausdorff topological space $(X,[\tau])$ is regular ([5], [6], [7]) and (X,τ) is fuzzy regular ([4]).

3. Discussion

In this paper, fuzzy regularity is characterized as a fuzzy covering property. Future research could obtain characterization of other fuzzy separation properties as fuzzy covering properties.

Conflicts of Interest: The author declares that there are no conflicts of interest regarding the publication of this paper.

References

- [1] M.K. Luo, Paracompactness in Fuzzy Topological Spaces, J. Math. Anal. Appl. 130 (1988), 55–77. https://doi.org/10.1016/0022-247x(88)90386-1.
- [2] M.E.A. El-Monsef, F.M. Zeyada, S.N. El-Deeb, I.M. Hanafy, Good Extensions of Paracompactness, Math. Japonica. 37 (1992), 195-200.
- [3] P. Wuyts, R. Lowen, On Separation Axioms in Fuzzy Topological Spaces, Fuzzy Neighborhood Spaces, and Fuzzy Uniform Spaces, J. Math. Anal. Appl. 93 (1983), 27–41. https://doi.org/10.1016/0022-247x(83)90217-2.
- [4] Y.M. Liu, M.K. Luo, Fuzzy Topology, World Scientific Publishing, Singapore, 1997.
- [5] J. Abdelhay, Caracterizacao dos Espacos Topologicos Regulares e Normais por Meio de Coberturas, Gazeta de Matematica (Lisboa) 9 (1948), 8–9. (in Portuguese).
- [6] J.M. Boyte, Point (Countable) Paracompactness, J. Aust. Math. Soc. 15 (1973), 138–144. https://doi.org/10.1017/s144678870001288x.
- [7] J. Chew, Regularity as a Relaxation of Paracompactness, Amer. Math. Mon. 79 (1972), 630–632. https://doi.org/10.1080/00029890.1972.11993101.