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Abstract. A characterization of dynamically defined zeta functions is
presented. It comprises a list of axioms, natural extension of the one
which characterizes topological degree, and a uniqueness theorem. Lef-
schetz zeta function is the main (and proved unique) example of such
zeta functions. Another interpretation of this function arises from the
notion of symmetric product from which some corollaries and applica-
tions are obtained.
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1. Introduction

Solving equations or counting the number of zeros of a function has been
one of the major tasks of mathematics since its very beginning. In various
settings, this number only gains relevance when it is robust; i.e., it is not
affected by small perturbations of the map or equation. Clearly, the number
of zeros of f(x) = x2 + c is not robust as c goes through 0. Both solutions of
x2 + c = 0 for c < 0 collapse into one and then vanish as c goes positive. The
topological degree assigns multiplicities to each zero in a way that their sum
is preserved.

After the contribution of many of the most renowned mathematicians,
it was H. Hopf who settled the concept of topological degree, which he called
Brouwer–Kronecker degree as their works were crucial in the foundation of
this theory. Leray and Schauder extended the definition of degree from poly-
hedra to Banach spaces, Nagumo proposed an axiomatization together with
a uniqueness result which was proved independently by Führer [13] in the
Euclidean case and by Amann and Weiss [1] in a more general setting.
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There are natural restrictions on the maps with which a degree is as-
sociated. For example, the case in which a zero of a map is located on the
boundary of its domain cannot be handled properly. In Rd, admissible maps
f : U → Rd are those continuous maps defined in the closure of an open
subset U of Rd such that f−1(0) ∩ ∂U = ∅ and f−1(0) ∩ U is compact. The
axiomatization and uniqueness, stated in Subsection 3.4, show that the topo-
logical degree is characterized by the value given to the identity map, an
additivity property for disjoint domains and homotopy invariance.

The direct translation of the concept of degree to account for fixed
points is called fixed point index. The index of a map f is defined as the
degree of the map id − f . Given an open subset U of Rd and a continuous
map f : U → Rd, the fixed point index i(f, U) of f in U is an integer
which is well defined as long as Fix(f) ∩ U = Fix(f) ∩ U and this set is
compact. The index can be extended to Euclidean neighborhood retracts
(ENRs). The reader is referred to [6] for the definition and to [11, 16] for a
complete account on fixed point index. This invariant counts the number of
fixed points of f in U with multiplicity. It makes sense to look at the iterates
of f , denoted fn. The value i(fn, U) depends on the points periodic under f
and whose period is divisible by n. The sequence (i(fn, U))n≥1 is encoded in
the so-called Lefschetz or homological zeta function

exp

(∑
n≥1

i(fn, U)

n
· tn

)
.

Lefschetz–Hopf fixed point theorem, where applicable, guarantees this formal
power series to be rational. This is the case, for example, when U is a closed
manifold or a compact ENR. Rationality is a consequence of the fixed point
indices being homological invariants of f . Note however that if the index i(fn)
is replaced by the number #Fix(fn) of fixed points of fn, the resulting zeta
function, typically named after Artin and Mazur, is not rational in general
in the absence of hyperbolicity.

In this paper, an axiomatic characterization of the Lefschetz zeta func-
tion is given. Both the statement and the proof of the uniqueness go along
the lines of the aforementioned results for the topological degree. Let U be
an open subset of Rd and let f : U → Rd be continuous. The pair (f, U) is
admissible provided that, for every k ≥ 1, Fix(fk) ∩ U = Fix(fk) ∩ U and it
is compact. Denote by A(U) the set of all admissible pairs and by 1+ t ·Z [[t]]
the group of formal monic power series with integer coefficients. The main
result of the paper reads as follows.

Theorem 1.1. There exists just one function

Z : A(U) → 1 + t · Z [[t]]

which satisfies the following properties:
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(N) Normalization. The value for the constant map cp : U → Rd which sends
every point to p ∈ U is

Z(cp, U)(t) =
1

1− t
.

(M) Multiplicativity. Let (f, U) be an admissible pair and V,W disjoint open
subsets of U such that Per(f) ∩U = Per(f) ∩ (V ∪W ) and Per(f) ∩ V ,
Per(f) ∩W are invariant under f . Then,

Z(f, U) = Z
(
f|V , V

)
Z
(
f|W ,W

)
.

(H) Homotopy invariance. If {(ht, U)}1t=0 is an admissible homotopy, then

Z(h0, U) = Z(h1, U).

(I) Iteration. Let (f, U) be an admissible pair and assume that U is the dis-
joint union of k ≥ 1, U = U1 ∪ · · · ∪ Uk, such that

f
(
Per(f) ∩ Ui

)
⊂ Ui+1

(indices are taken mod k). Then

Z(f, U)(t) = Z
((

fk
)
|U1

, U1

) (
tk
)
.

The axioms are analogous to the ones of the topological degree except
for the last new one. It basically establishes how the power series integrates
the information of periodic orbits. A function satisfying (N), (M), (H) and (I)
is called a dynamical zeta function.

The nth symmetric product SPn(X) of a topological space X is the
quotient of Xn by the action of the Σn group of permutations of n elements.
The image of (x1, . . . , xn) under the projection map is the unordered n-tuple
[x1, . . . , xn]. A continuous map f : U ⊂ X → X induces a map

SPn(f) : SPn(U) → SPn(X)

which sends [x1, . . . , xn] to [f(x1), . . . , f(xn)]. Note that if x = fn(x) is a
periodic point, then [x, f(x), . . . , fn−1(x)] is a fixed point of SPn(f). Thus,
it is possible to study the periodic orbits of f using the maps SPn(f) instead
of fn.

The topological study of symmetric products and its mere description
was the subject of many articles mostly during the middle decades of last
century, see for instance [2, 5, 10, 19]. Topological properties are typically
inherited, for example SPn(X) is an ENR provided that X is also an ENR.
There are several papers in the literature where the authors (see [14, 20, 21,
24]) study a fixed point index in symmetric products but from the point of
view of multivalued maps, i.e., for maps F : X → SPn(X).

A fixed point index in hyperspaces which exploits the good local prop-
erties of the hyperspace of polyhedra (see [3, 4]) is introduced in [26]. In the
same direction, in [28], the author proposed a construction similar to ours
but working in the spaces Fn(X) of finite sets of X with at most n elements.
The main problem of that approach is the absence of an additivity property
which makes computations very difficult.
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For any admissible pair (f, U), the integer sequence(
i(SPn(f), SPn(U))

)
n≥1

is well defined. These indices fit in the preceding setting as follows.

Proposition 1.2. The function SP∞ : A(U) → 1 + t · Z [[t]] defined by

SP∞(f, U) = 1 +
∑
n≥1

i
(
SPn(f), SPn(U)

)
· tn

is a dynamical zeta function, i.e., it satisfies axioms (N), (M), (H) and (I)
in Theorem 1.1.

From the uniqueness property we recover a result of Dold [9]: SP∞ is
equal to the Lefschetz zeta function. The authors have learnt that a brief
sketch of an allegedly independent proof of this equality appeared in the
work of Salamon [27]. Besides, as a corollary, already included in Dold’s work,
a formula due to Macdonald [19] for the Euler characteristic of SPn(X) is
deduced.

The paper is organized as follows. Theorem 1.1 is proved in Section 2,
where the abstract notion of dynamical zeta function, a function satisfying
the axioms of Theorem 1.1, is introduced. Section 3 explores more properties
of this concept and relates it to the fixed point index by proving that the
Lefschetz zeta function satisfies the axioms. Symmetric products and their
corresponding zeta functions are the content of Section 4. Some corollaries of
the results are shown in Section 5 along with a digression concerning planar
dynamics. Finally, there is an appendix containing notation and basic results
of power series and combinatorics.

2. Uniqueness of the dynamical zeta function

2.1. Axioms

Given an open subset U of Rd and a map f : U → Rd, the pair (f, U) is called
admissible provided that, for every k ≥ 1, Fix(fk) ∩ U = Fix(fk) ∩ U and it
is compact. A continuous family of maps ht : U0 → Rd, t ∈ [0, 1], forms an
admissible homotopy {(ht, U)}1t=0 if∪

t∈[0,1]

{
(t, x) : x ∈ Fix

(
hk
t

)
∩ U

}

is compact and it is contained in [0, 1]× U for every k ≥ 1.
Notice that the previous definitions do not assume compactness of the

set of periodic points, denoted Per(f), within U . Merely compactness of
Fix(fk), for every k ≥ 1, or, equivalently, compactness of Perm(f), for every
m ≥ 1, is needed. Perm(f) denotes the set of periodic points whose period is
bounded by m. A similar remark applies to homotopies.

The set of all admissible pairs (f, U) for a fixed open set U ⊂ Rd is
denoted A(U). A dynamical zeta function Z is a map

Z : A(U) → 1 + t · Z [[t]]
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which satisfies all four axioms in Theorem 1.1: (N) Normalization, (M) Mul-
tiplicativity, (H) Homotopy invariance and (I) Iteration.

Remark 2.1. The admissibility of (f, U) automatically implies that the pairs
(f|V , V ), (f|W ,W ) in axiom (M) and ((fk)|U1

, U1) in axiom (I) are admissible
as well.

Let us extract some information from the definition of Z. Since the pairs
(f, ∅) and (f, ∅) are admissible and their domains have empty intersection,
Multiplicativity (M) gives

Z(f, ∅) = Z(f, ∅)2,
hence Z(f, ∅) = 1. From this easy calculation we deduce an important prop-
erty:

(L) Localization. Assume that (f, U) is admissible and V is an open subset
of U which contains all periodic points of f . Then,

Z
(
f|V , V

)
= Z(f, U).

Proof of Localization. It is a direct application of (M) for W = ∅. �

Remark 2.2. It is evident from (M) that multiplicativity also holds if the
periodic point set is divided into finitely many invariant pieces.

2.1.1. n-admissibility. The notion of admissibility of pairs is probably too
restrictive for our goals. It is typically impracticable to control all periodic
orbits of a map. However, restrictions on Fix(f) or even on Pern(f) for large n
are possible to handle with. Thus, some kind of partial admissibility is needed.

Let n be a positive integer, U an open subset of Rd and f : U → Rd a
continuous map. The pair (f, U) is said to be n-admissible if

Fix
(
fk

)
∩ U = Fix

(
fk

)
∩ U

and it is compact for every 1 ≤ k ≤ n. Equivalently,

Pern(f) ∩ U = Pern(f) ∩ U

and it is compact. Similarly, a homotopy {(ht, U)}1t=0 is n-admissible if the
conditions for admissibility are fulfilled for every 1 ≤ k ≤ n or, likewise, all
pairs (ht, U) are n-admissible. The set of n-admissible pairs is denoted by
An(U).

It is convenient to explicitly state one very trivial remark concerning
the previous definition.

Lemma 2.3. A pair (resp., a homotopy) is admissible if and only if it is n-
admissible for every n ≥ 1.

The axiomatic definition of the dynamical zeta function can be extended
to n-admissible pairs. However, the price to be paid is that the formal power
series is defined only up to the term tn; that is, the subgroup 1+ tn+1 ·Z [[t]]
must be quotiented out. More precisely,

Zn : An(U) →
(
1 + t · Z [[t]]

)
/
(
1 + tn+1 · Z [[t]]

)
.
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The set of equivalence classes on the right inherits a group structure with
multiplication. The class to which z(t) belongs is denoted by z(t) mod tn+1.

Lemma 2.4. Two formal power series z, z′ are equal if and only if

z mod tn = z′ mod tn

for every n ≥ 1.

This simple fact will be constantly used throughout this work to obtain
the zeta function of an admissible pair (f, U) from the sequence of values
Zn(f, U).

For any positive integers k,m, n with n ≤ mk there is a well-defined
homomorphism

rkm,n : z(t) mod tm+1 �→ z
(
tk
)
mod tn+1 (2.1)

between the groups(
1 + t · Z [[t]]

)
/
(
1 + tm+1 · Z [[t]]

)
and

(
1 + t · Z [[t]]

)
/
(
1 + tn+1 · Z [[t]]

)
.

For the sake of completeness, we list the axioms which define the dy-
namical zeta function for n-admissible pairs.

(N)n Normalization. The value for the constant map cp : U → Rd which
sends every point to p ∈ U is

Zn(cp, U)(t) =
1

1− t
mod tn+1 = 1 + t+ · · ·+ tn mod tn+1.

(M)n Multiplicativity. Let (f, U) be an n-admissible pair and V,W disjoint
open subsets of U such that Pern(f) ∩ U = Pern(f) ∩ (V ∪ W ) and
Pern(f) ∩ V , Pern(f) ∩W are invariant under f . Then,

Zn(f, U) = Zn

(
f|V , V

)
Zn

(
f|W ,W

)
.

(H)n Homotopy invariance. If {(ht, U)}1t=0 is an n-admissible homotopy,
then

Zn(h0, U) = Zn(h1, U).

(I)n Iteration. Let (f, U) be an n-admissible pair and assume that U is the
disjoint union of k ≥ 1, U = U1 ∪ · · · ∪ Uk, such that

f
(
Pern(f) ∩ Ui

)
⊂ Ui+1

(indices are taken mod k). If m = ⌈n
k ⌉, then

Zn(f, U)(t) = Zm

((
fk

)
|U1

, U1

) (
tk
)
,

where the term on the right has to be understood as rkm,n(Zm((fk)|U1
, U1))

using the notation in (2.1). Note from the assumptions that ((fk)|U1
, U1) is

automatically m-admissible.

2.2. Computation for hyperbolic linear maps

Let us now compute the zeta function of hyperbolic linear maps directly from
the axioms. Since we have full control of the periodic point set, there is no
need to work with partial admissibility.
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2.2.1. One-dimensional maps. Let f(x) = ax + b, where a ̸= −1, 1. Assume
first that |a| < 1. Then, the homotopy

ht(x) = (1− t)ax+ b, 0 ≤ t ≤ 1,

is admissible and connects the map f to the constant map cb so

Z(f,R) (H)
= Z(cb,R)

(N)
=

1

1− t
.

Assume now that a > 1 and, after a change of coordinates, that b = 0.
Define g : R → R as f in (−∞, 1] and as the constant map with value a in
[1,+∞). Then,

Z(g,R) (L)
= Z

(
g,R \ {1}

)
(M)
= Z

(
f, (−∞, 1)

)
Z
(
ca, (1,+∞)

)
(L)
= Z(f,R)Z(ca,R).

On the other hand, one can check that the homotopy ht(x) = g(x) − ta is
admissible. Note further that h1 has no periodic points, hence we obtain

Z(g,R) (H)
= Z(h1,R)

(L)
= Z(h1, ∅) = 1.

Combining the two expressions yields

Z(f,R) =
(
Z(ca,R)

)−1 (N)
= 1− t.

Last, we examine the case a < −1. Assume again that b = 0 and define
g : R → R by

g(x) =




−a if x ≤ −1,

f(x) if −1 ≤ x ≤ 1,

a if x ≥ 1.

In terms of periodic points, g only has a fixed point at 0 and a 2-periodic
orbit {a,−a} outside [−1, 1]. Thus,

Z(g,R) (L)+(M)
= Z

(
g|V , V

)
Z
(
f, (−1, 1)

)
, (2.2)

where V = V − ∪ V + = (−∞,−1) ∪ (1,+∞). Note that

g2|V + : (1,+∞) → (1,+∞)

is equal to c−a restricted to V +, so we have

Z
(
g|V , V

)
(t)

(I)
= Z

(
g2V + , V +

)
(t2)

= Z
(
c−a, V

+
)
(t2)

(L)
= Z(c−a,R)(t2)

=
1

1− t2
.
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Now, define the homotopy ht(x) = (1− t)g(x) and check that {(ht,R)}1t=0 is
admissible. Indeed, Per(ht) = {0, (1− t)a,−(1− t)a}. Therefore, we obtain

Z(g,R) (H)
= Z(c0,R) =

1

1− t
.

Plugging these results into (2.2) we obtain

Z(f,R) (L)
= Z

(
f, (−1, 1)

)
=

1

1− t

(
1

1− t2

)−1

= 1 + t.

2.2.2. Higher dimensions. There is not a significant gap between R and Rd

for d ≥ 2. However, we will now deal with several eigenvalues and the com-
putations become a bit trickier. A d× d real matrix A is hyperbolic provided
σ(A) ∩ S1 = ∅, σ(A) denotes the set of eigenvalues of A with multiplicities.
Actually, a weaker hypothesis than hyperbolicity is required, we simply as-
sume that no eigenvalue of A is a root of unity. By abuse of notation, let
us use A : Rd → Rd to refer to the linear transformation defined by the
matrix A. Notice that Per(A) = {0}.

We will prove that the zeta function of A only depends on the numbers

σ− = #
{
σ(A) ∩ (−∞,−1)

}
mod2,

σ+ = #
{
σ(A) ∩ (1,+∞)

}
mod 2.

Thus, only four different behaviors for the zeta function appear, three of
which have already been found in dimension one.

The first step is to prove that Z(A,Rd) only depends on the set of
eigenvalues of A. Henceforth we omit the domain from the notation of the
zeta function as long as it is clear from the context. Let JA = Q−1AQ be the
Jordan canonical form of A and P : [0, 1] → GL(d,R) such that P (0) = I
and P (1) = Q. Then, {

P (t)−1AP (t)
}1

t=0

is an admissible homotopy from A to JA. Denote by DA the matrix obtained
from JA after removing all of its 1’s. It is composed of nonzero 1 × 1 and
2× 2 blocks on the diagonal which correspond to real and complex eigenval-
ues of A, respectively. The convex combination (1 − t)JA + tDA defines an
admissible homotopy from JA to DA. Therefore, after admissible homotopies
we can suppose that A has the form of DA.

It is fairly straightforward to show, by moving eigenvalues along the real
line, that we can assume that any real eigenvalue of A belongs to {−2, 0, 2}.
Suppose now that λ0 is a nonreal eigenvalue of A, then so is λ̄0. There is a
path λ : [0, 1] → C connecting λ(0) = λ0 to λ(1) = 0 that avoids points of the
form e2πiα for α ∈ Q. Likewise, the path λ̄ connects λ̄0 to 0. Therefore, there
is a path of diagonal real matrices which defines an admissible homotopy that
makes the pair of eigenvalues {λ0, λ̄0} become the pair {0, 0}. This trick can
be used to cancel out every pair of nonreal eigenvalues and, furthermore, the
same procedure works for every pair of equal real eigenvalues as well. The
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final outcome is a matrix which has at most one eigenvalue in (−∞,−1), at
most one eigenvalue in (1,+∞) and no other nonzero eigenvalue.

Up to rearrangement of the columns, which can be simply done through
an admissible homotopy for the basis, for any fixed dimension d only four
different matrices appear and they correspond to the four possibilities

(σ−, σ+) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}.

Accordingly, denote the matrices by A(0,0), A(0,1), A(1,0), A(1,1). Note that
A(0,0) corresponds to the constant linear map so by property (N) we have that

Z
(
A(0,0)

)
=

1

1− t
.

The behavior of the next two matrices A(0,1) and A(1,0) is genuinely 1-
dimensional as they only have one nonzero eigenvalue. Indeed, adding the
constant map in the extra dimensions of the maps of homotopies defined in
Subsection 2.2.1 for the cases a > 1 and a < −1 suffices to compute the zeta
function of A(0,1) and A(1,0), respectively. It follows that

Z
(
A(0,1)

)
= 1− t and Z

(
A(1,0)

)
= 1 + t.

It remains to address the case (σ−, σ+) = (1, 1), which corresponds to a
true 2-dimensional setting. The admissible homotopy suggested in Figure 1
serves this purpose. Arrows are placed to describe the action of the map,
bearing in mind that it also involves a reflection in the horizontal axis. We
start with a diffeomorphism in R2 whose dynamics is described on the left
of the figure. It has only two periodic points, which are both fixed, and the
dynamics around them are, up to translation, equal to A(1,0) and A(1,1), re-
spectively. The homotopy collapses both fixed points into one (middle figure)
and then removes it (right figure). After suitably applying properties (L),
(M) and (H) we obtain

Z
(
A(1,0)

)
Z
(
A(1,1)

)
= 1 =⇒ Z

(
A(1,1)

)
=

1

1 + t
.

Again, this computation can be extended to arbitrary d > 2 by putting the
constant map in the extra dimensions.

⇒ ⇒

Figure 1. Description of the admissible homotopy intro-
duced to compute Z(A(1,1)).
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2.2.3. n-admissibility and hyperbolicity. The linear map A is n-admissible
if and only if Pern(A) = {0} or, equivalently, if no root of A, viewed as a
matrix, is a root of unity of order no greater than n. The homotopies used in
Subsection 2.2.2 are n-admissible as long as the original map is n-admissible.
Consequently, the zeta functions for these linear maps depend on the spec-
trum of A in the same fashion as in Subsection 2.2.2 with the exception that
they are just defined up to the term tn.

For example, consider the map f(x) = −x + b. Since −1 is a 2nd root
of unity, the zeta function of f is defined only modulo t2. It is easy to check
that the first homotopy in Subsection 2.2.1 is 1-admissible and we conclude
by property (H) that

Z1(f,R) =
1

1− t
mod t2 = 1 + t mod t2.

2.3. Linearization

Our task is now to prove that the linear approximation is enough to compute
the zeta function locally.

Proposition 2.5 (Linearization). Let f : V → Rd be a C1 map and p a fixed
point of f . Assume that V ∩Pern(f) = {p} and Dfp, the differential of f at p,
does not have eigenvalues of the form e2πiα for α = r/q with gcd(r, q) = 1
and q ≤ n. Then,

Zn(f, V ) = Zn

(
Dfp,Rd

)
.

Consequently, if V ∩ Pern(f) = {p} for every n ≥ 1 and σ(Dfp) does not
contain roots of unity, then

Z(f, V ) = Z
(
Dfp,Rd

)
.

Proof. For simplicity, assume that p is the origin and denote A = Dfp. We
will prove that the segment homotopy between f and A is n-admissible in a
neighborhood of p. There is a map ϕ : V → Rd such that f(x) = Ax+ ϕ(x)
for every x ∈ V and

lim
x→0

ϕ(x)

∥x∥
= 0.

Define

ht(x) = Ax+ tϕ(x) = (1− t)Ax+ tf(x) for t ∈ [0, 1].

By hypothesis, there exists ϵ > 0 such that ∥(I − A)x∥ > ϵ∥x∥ for ev-
ery x. On the other hand, there exists W , a neighborhood of p, such that

∥ϕ(x)∥ ≤ ϵ

2
∥x∥ for every x ∈ W.

Thus, if x ∈ W , we obtain

∥x− ht(x)∥ = ∥(I −A)x+ tϕ(x)∥ ≥
���ϵx− t

ϵ

2
x
��� >

ϵ

2
∥x∥.

In particular, p is the only fixed point of ht inW , so {(ht,W )} is 1-admissible.
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Similar estimates for iterates of f and A are needed to prove the propo-
sition. Take ϵ′ > 0 so that ∥(I − Ak)x∥ > ϵ′∥x∥ for every x and 1 ≤ k ≤ n.
Define ψ1(t, x) = tϕ(x) and then recursively

ψk(t, x) = Aψk−1(t, x) + tϕ
(
hk−1
t (x)

)

up to k = n so that they satisfy

hk
t (x) = Akx+ ψk(t, x).

Again, we have that

lim
x→0

ψk(t, x)

∥x∥
= 0

uniformly in t. Thus, there exists a neighborhood W ′ of p such that

∥ψk(t, x)∥ ≤ ϵ′

2
∥x∥

in W ′ for every t ∈ [0, 1] and 1 ≤ k ≤ n. Then,

��x− hk
t (x)

�� =
��(I −Ak

)
x+ tψk(t, x)

�� ≥
����ϵ′x− t

ϵ′

2
x

���� >
ϵ′

2
∥x∥.

This means that {(ht,W
′)} is an n-admissible homotopy and, consequently,

Zn(f, V )
(L)
= Zn(f,W

′)
(H)
= Zn(A,W

′)
(L)
= Zn

(
Dfp,Rd

)
. �

2.4. General computation and uniqueness

Theorem 1.1 is a direct consequence of the following proposition which uses
the language of partial admissibility.

Proposition 2.6. For any n ≥ 1, there exists just one function

Zn : An(U) → 1 + t · Z [[t]] mod 1 + tn+1 · Z [[t]]

which satisfies axioms (N)n, (M)n, (H)n and (I)n.

Let f : U → Rd be n-admissible. The strategy to compute Zn(f, U) is
to obtain g connected to f by an n-admissible homotopy. The periodic point
set of g will satisfy nice transversality properties so that the work carried out
in the previous subsections will be sufficient to compute Zn(g, U).

Denote by E the space of continuous maps from U to Rd with the C0-
topology. Fix V ⊂ U , open neighborhood of Pern(f).

Lemma 2.7.

(i) There exists a convex neighborhood KV of f in E such that Pern(g) ⊂ V
for every g ∈ KV .

(ii) For any m ≥ 1, in any neighborhood of f in E, there is a C0-dense
set Dm,V ⊂ E of maps such that for any g ∈ Dm,V and for every
p ∈ Fix(gm), g is C1 at p and

det
(
I −Dgm(x)

)
̸= 0.

Proof. Item (i) is straightforward and (ii) is a consequence of the Transver-
sality Theorem (see [23, 25]). �



700	 Blanco Gómez, Hernández-Corbato, Ruiz del Portal	 JFPTA12 Blanco Gómez, Hernández-Corbato, Ruiz del Portal

Take m = (n!)2 and take a map g ∈ KV ∩ Dm,V . By convexity, g is
connected to f via an n-admissible homotopy so Zn(f, U) = Zn(g, U).

Note that

Pern(g) ⊂ Fix(gm)

and if x is a k-periodic point of g for 1 ≤ k ≤ n, the spectrum of Dgk(x) does
not contain any root of unity of order smaller or equal to n. In particular,
periodic points of g of period at most n are isolated and they satisfy the
hypothesis of Proposition 2.5. Choose, for every periodic orbit o ⊂ Pern(g),
a small neighborhood Uo ⊂ U of the orbit such that Uo ∩ Uo′ = ∅ for o ̸= o′

and Uo is composed of as many components as the period of o. Multiplicativity
gives

Zn(g, U) =
∏

Zn(g, Uo),

where the product runs over all periodic orbits in Pern(g). Using (I) and
Proposition 2.5,

Zn(g, Uo)(t) = Zm

(
gk, U0

o

)(
tk
)
= Zm

(
Dgk,Rd

)(
tk
)
,

where k is the period of o, m = ⌈n
k ⌉, U

0
o is one connected component of Uo

and equalities are understood as in axiom (I)n. The computation of Zn(g, U),
and hence of Zn(f, U), is concluded using the results of Subsection 2.2.

The choice of g is irrelevant in the previous computation provided that
the ascribed values Zn(f, U) satisfy (H)n. Indeed, assume that g0, g1 are
two C1 maps whose periodic points of period at most n are isolated and
satisfy the hypothesis of the Linearization Proposition 2.5 so that it is easy to
compute its zeta function as was previously done. Additionally, suppose they
are connected to f via n-admissible homotopies. If we concatenate the two
homotopies we obtain an n-admissible homotopy from g0 to g1. Axiom (H)n
ensures that Zn(g0, U) = Zn(g1, U) and uniqueness in Proposition 2.6 follows.

In Section 3 it is proved that the Lefschetz zeta function is a dynamical
zeta function and, in particular, it yields the required function Zn when
truncating the series to order n. This concludes existence and completes the
proof of Proposition 2.6 and thus of Theorem 1.1.

The previous proof involves an indirect argument which uses the known
existence of a dynamical zeta function, Lefschetz zeta function. Nonetheless, a
direct argument concluding the existence of Zn from previous considerations
is feasible but beyond the scope of this article. A sketch of it would be as
follows.

• Modify Lemma 2.7 to work with smooth g0 and g1.
• Prove that the homotopy {gt} between g0 and g1 can be chosen smooth

and satisfying strong transversality conditions which imply that peri-
odic points (up to period n) continue except in the event of specific
bifurcations. These bifurcations consist of two periodic points of the
same period collapsing and then disappearing and take place in a 1-
dimensional submanifold.

• Check that the points occurring in the bifurcation are of types (0, 0)
and (0, 1) or (1, 0) and (1, 1) (see Subsection 2.2.2) so that there is no
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change in the zeta function. Conclude that the approximation scheme
defines Zn(f, U) unambiguously.

The second point seems the most delicate one as it would need jet
transversality (cf. [23, Proposition 9.34]) and arguments close to the ones in
the proof of Kupka–Smale theorem. Check [23, 25] and references therein for
more information.

2.5. Extra dimensions

In the case the map is the product of two maps f × g and the second factor
is just a constant map, the zeta function only depends on Z(f). Indeed, for
hyperbolic linear maps adding a trivial factor makes no impact in the zeta
function because all new eigenvalues are 0. Since the computation of the zeta
function ultimately boils down to that of hyperbolic maps, we conclude that
this observation is true in full generality.

Proposition 2.8. Let (f, U) be an n-admissible pair and U ′ an open subset

of Rd′
which contains 0. Define f̄ : U ×U ′ → Rd×Rd′

by f̄(x, y) = (f(x), 0).
Then, (f̄ , U × U ′) is n-admissible and

Zn

(
f̄ , U × U ′) = Zn(f, U).

Consequently, if (f, U) is admissible, so is (f̄ , U × U ′) and

Z
(
f̄ , U × U ′) = Z(f, U).

2.6. Generalized homotopy

Proposition 2.9. Let V be an open subset of [0, 1]×U and {(ht, Vt)}1t=0 a con-
tinuous family of maps, Vt = V ∩ ({t}×U), such that (ht, Vt) is n-admissible
for every 0 ≤ t ≤ 1. Then,

Zn(h0, V0) = Zn(h1, V1).

In this case, we say that {(ht, Vt)}1t=0 is a generalized n-admissible homotopy.
An analogous statement holds for (total) admissibility.

Proof. By connectedness, we only need to show that Zn(ht, Vt) is locally
constant. Fix t0 ∈ [0, 1] and take a compact set {t0} × K ⊂ Vt0 containing
Pern(ht0) in its interior. If ϵ > 0 is small enough, [t0− ϵ, t0+ ϵ]×K ⊂ V and,
furthermore, [t0−ϵ, t0+ϵ]×W ⊂ V for an open neighborhood W of K as well.
Additionally, we can assume that Pern(ht) ⊂ {t} ×W for every |t− t0| ≤ ϵ.
Using localization and homotopy invariance properties we obtain

Zn

(
ht0−ϵ, Vt0−ϵ

)
= Zn

(
ht0−ϵ, {t0 − ϵ} ×W

)

= Zn

(
ht0+ϵ, {t0 + ϵ} ×W

)

= Zn

(
ht0+ϵ, Vt0+ϵ

)
. �
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Table 1

(σ−, σ+) Z(f) Z1(f) Z(f2) Z1(f
2)

(0, 0) 1/(1− t) = (1− t)−1 1 + t mod t2 (1− t)−1 1 + t mod t2

(0, 1) 1− t = (1− t) 1− t mod t2 (1− t) 1− t mod t2

(1, 0) 1 + t = (1− t)−1(1− t2) 1 + t mod t2 (1− t) 1− t mod t2

(1, 1) 1/(1 + t) = (1− t)(1− t2)−1 1− t mod t2 (1− t)−1 1 + t mod t2

3. Around the zeta function

3.1. Characterization through iterates

Proposition 3.1. The sequence (Z1(f
k, U))k≥1 completely determines Z(f, U)

and vice versa.

Proof. Assume first that U is a small neighborhood of a hyperbolic fixed
point p. By Linearization Proposition 2.5 we can assume that f is a lin-
ear map. In Subsection 2.2.2 we showed that there are merely four cases to
consider, associated with the possible values of the pair (σ−, σ+). Recall that
σ−(σ+) is the parity of the number of real eigenvalues ofDfp smaller than −1
(greater than 1). The results are displayed in Table 1.

In this case, the zeta functions of the iterates of the map satisfy

Z(fk) =



Z(f) if k is odd,

Z(f2) if k is even.

Note that the four possible values of Z(f) are in one-to-one correspondence
with the four values of the pair (Z1(f),Z1(f

2)).
Next, assume that Per(f) = Fix(f) is finite and every fixed point is hy-

perbolic. Then, the zeta function of f can be computed using multiplicativity.
Denote by a(0,0), a(0,1), a(1,0), a(1,1) the amount of fixed points of each of the

four types determined by (σ−, σ+). Then, Table 1 yields

Z(f) = (1− t)−a1(1− t2)−b1 , Z(f2) = (1− t)−a1−2b1 ,

where

a1 = a(0,0) − a(0,1) + a(1,0) − a(1,1), b1 = −a(1,0) + a(1,1).

Again,

Z(fk) =




Z(f) if k is odd,

Z(f2) if k is even.

Identical results hold if we impose Pern(f) = Fix(f) and replace Z by Zn.
An additional bit of attention is required to analyze the case of hy-

perbolic periodic orbits of period m > 1. Define the numbers am(0,0), a
m
(0,1),

am(1,0), a
m
(1,1) as the amount of m-periodic orbits for which the pair (σ−, σ+)
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is associated with Dfm
p , p being any point in the orbit. If

am = am(0,0) − am(0,1) + am(1,0) − am(1,1),

bm = −am(1,0) + am(1,1),

d = gcd(k,m),

then

Z
(
fk

)
=




(
1− tm/d

)−dam
(
1− t2m/d

)−dbm
if k/d is odd,

(
1− tm/d

)−d(am+2bm)
if k/d is even.

(3.1)

Consequently, the linear term of Z(fk) vanishes except for the case d = m,
that is m|k, so

Z1

(
fk

)
=




1 + dam t mod t2 if m|k and k/m is odd,

1 + d(am + 2bm)t mod t2 if m|k and k/m is even,

1 mod t2 otherwise.

(3.2)

In particular,

Z(f) = (1− tm)−dam(1− t2m)−dbm

and the zeta function is determined by the integers am, bm, which in turn can
be obtained from Z1(f

m), Z1(f
2m).

In the general case, recall Subsection 2.4, the task is reduced to examine
the case in which f has finitely many hyperbolic periodic orbits of period m,
for each m ≥ 1. Multiplicativity yields that Z(f) is a product of factors
described in (3.1),

Z(f) =
∏
m≥1

(1− tm)−am(1− t2m)−bm .

Thus, the exponent of each factor (1− tl) is −al if l is odd and −(al +2bl/2)
if l is even. If we denote this exponent by el, we observe that the sequence
(el)l≥1 uniquely determines Z(f) and vice versa.

Similarly, Z1(f
k) is a product of factors described in (3.2). Note that in

a product of elements of (1 + t ·Z [[t]])/(1 + t2 ·Z [[t]]) the linear coefficient is
the sum of the linear coefficients of each of the factors. Therefore, we obtain
that

Z1(f
k) = 1 +

(∑
m|k

mam +
∑
2m|k

2mbm

)
t = 1 +

(∑
l|k

lel

)
t.

Consequently, the sequence (Z1(f
k))k≥1 can be obtained from (el)l≥1 and vice

versa using the Möbius inversion formula. This completes the proof. �

Remark 3.2. The previous proof shows that there is a correspondence between
(Z1(f

k, U))nk=1 and Zn(f, U) via the first n terms of (el)l≥1.
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3.2. Commutativity

Proposition 3.3. Let U ⊂ Rd, U ′ ⊂ Rd′
be open sets and let f : U → Rd′

,
g : U ′ → Rd be continuous maps. Then, the composite maps

gf : V = U ∩ f−1(U ′) → Rd, fg : V ′ = U ′ ∩ g−1(U) → Rd′

have homeomorphic periodic point sets of any period. Therefore, (gf, V ) is
n-admissible if and only if (fg, V ′) is n-admissible. Furthermore, if both are
n-admissible, then

Zn(gf, V ) = Zn(fg, V
′).

Consequently, if both pairs are admissible, then Z(gf, V ) = Z(fg, V ′).

Proof. If x is a periodic point of gf of period k, then (gf)k(x) = x, so

f(x) = f(gf)k(x) = (fg)kf(x)

and hence f(x) is k-periodic under fg. Conversely, if y is a periodic point of fg
of period k, then so is the point g(y) under the map gf and the first statement
follows.

In order to address the question about zeta functions, consider the map
F0 : U × U ′ → Rd → Rd′

defined by

F0(x, y) =
(
(gf)m−1g(y), f(x)

)
.

Fix m ≤ n and consider the homotopy

ht(x, y) =
(
t(gf)m(x) + (1− t)(gf)m−1g(y), f(x)

)
, 0 ≤ t ≤ 1.

Thus, if ht(x, y) = (x, y), then

y = f(x), x = t(gf)m(x) + (1− t)g
(
(fg)m−1f(x)

)
= (gf)m(x),

so we have
Fix(ht) =

{(
x, f(x)

)
: x ∈ Fix

(
(gf)m

)}
.

If we assume that ((gf), V ) is n-admissible, then Fix(ht) is compact and the
homotopy {(ht, U × U ′)} is 1-admissible. Next, consider the homotopy

h′
t : U × Rd′

→ Rd × Rd′

defined by

h′
t(x, y) =

(
(gf)m(x), (1− t)f(x)

)
, 0 ≤ t ≤ 1.

Note that the restriction of h′
0 to U × U ′ is h1. Now,

Fix(h′
t) =

{(
x, tf(x)

)
: x ∈ Fix

(
(gf)m

)}

is again compact and so {h′
t} is 1-admissible. By concatenating both homo-

topies, we obtain a 1-admissible homotopy from F0 to the map

F1(x, y) =
(
(gf)m(x), 0

)
.

We can then use the invariance under homotopies and Proposition 2.8 to
conclude that

Z1(F0, U × U ′) = Z1(h1, U × U ′) = Z1

(
h′
0, U × Rd′)

= Z1

(
F1, U × Rd′)

= Z1

(
(gf)m, V

)
.
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Using the homotopy h′′
t (x, y) = ((gf)m−1g(y), (1 − t)f(x) + t(gf)m(y)) and

going through similar steps we can prove that

Z1

(
F0, U × U ′) = Z1

(
(fg)m, U ′).

Therefore, we have that

Z1

(
(gf)m, V

)
= Z1

(
(fg)m, V ′) for every 1 ≤ m ≤ n.

From Remark 3.2 it follows that Zn(gf, V ) = Zn(fg, V
′). �

3.3. Extension to ENR

The commutativity property proved in Proposition 3.3 allows to extend the
zeta function to maps defined in an ENR in an identical fashion as it is done
for the fixed point index (cf. Dold [6]).

Definition 3.4. A topological space Y is an ENR (Euclidean neighborhood
retract) if there exists an open subset U of a Euclidean space Rn and maps
ι : Y → U , r : U → Y such that rι = idY .

The notion of admissibility extends similarly to this setting in an obvious
way.

Definition 3.5. Let (f, V ) be an n-admissible pair, where V is an open subset
of an ENR Y and f : V → Y . Let U be an open subset of Rn and ι : Y → U ,
r : U → Y maps such that rι = idY . The zeta function of (f, V ) is defined as
Zn(f, V ) = Zn(ιfr, U). Analogously, Z(f, V ) is defined as Z(ιfr, U) provided
that (f, V ) is admissible.

It is straightforward to check the correctness of the definition. Firstly,
notice that the pair (g = ιfr, U) is n-admissible. Indeed, a homeomorphism
between Fix(fk) and Fix(gk) and its inverse is given by r and ι. The in-
dependence of the definition from U, r, ι follows from the commutativity: if
ι′ : Y → U ′ and r′ : U ′ → Y ′ also satisfy r′ι′ = idY , then the maps

ιr′ : U ′ → U and ι′fr : r−1(V ) ⊂ U → U ′

are defined in open subsets of Euclidean spaces and by Proposition 3.3 the
zeta functions of their two composites are equal. Note finally that

(ιr′)(ι′fr) = ιfr and (ι′fr)(ιr′) = ι′fr′.

3.4. Linear term and the fixed point index

Axiomatization of the topological degree was ultimately accomplished by
Amann and Weiss [1]. In the Euclidean case, the Amann and Weiss the-
orem on the uniqueness of the degree had been independently proved by
Führer [13].

Theorem 3.6 (Amann–Weiss, Führer). There exists a unique map deg satis-
fying the following axioms:

• Normalization. deg(idU , U) = 1 for any open U ⊂ Rd containing the
origin.
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• Additivity. For every pair of disjoint open U1, U2 subsets of U ⊂ Rd and
f : U → Rd such that 0 /∈ f(U \ (U1 ∪ U2)),

deg(f, U) = deg
(
f|U1

, U1

)
+ deg

(
f|U2

, U2

)
.

• Homotopy invariance. If {ht : U → Rd}1t=0 is a homotopy such that
f−1(0) ∩ ∂U = ∅, then

deg(h0, U) = deg(h1, U).

Recall that the fixed point index i(f, U) of a map f in U is defined as
the degree of id− f in U . Note that i(f, U) is well defined as long as so is the
degree and this is, in turn, equivalent to the pair (f, U) being 1-admissible.

For any 1-admissible pair, denote by z1(f, U) the linear coefficient of
the series Z1(f, U). It is straightforward to check that z1(id− f, U) satisfies
topological degree axioms, thus

z1(id− f, U) = deg(f, U).

Consequently, z1(f, U) is the fixed point index of f in U .
The Lefschetz zeta function is defined for an admissible pair (f, U) as

exp

(∑
n≥1

i(fn, U)

n
· tn

)
.

Previous considerations imply that it satisfies axioms (N), (M) and (H) of
Theorem 1.1.

Lemma 3.7. The Lefschetz zeta function satisfies axiom (I).

Proof. By the localization property,

i(fn, U) =
k∑

j=1

i
(
fn, Uj

)

and all the indices are zero unless n = mk, for some integer m ≥ 1. For any
j = 1, . . . , k, splitting fmk = f j−1 ◦ fmk−j+1, the commutativity of the fixed
point index implies

i
(
fmk, U1

)
= i

(
f j−1 ◦ fmk−j+1, U1

)
= i

(
fmk−j+1 ◦ f j−1, Uj

)
= i

(
fmk, Uj

)
.

As a consequence,

∑
n≥1

i(fn, U)

n
· tn =

∑
m≥1

i
(
fmk, U

)
mk

· tmk

=
∑
m≥1

k · i
(
fmk, U1

)
mk

· tmk

=
∑
m≥1

i
((
fk

)m
, U1

)
m

·
(
tk
)m

. �

In sum, we have proved the following result.
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Theorem 3.8. The Lefschetz zeta function is the only dynamical zeta function.

4. Symmetric products

4.1. Definition

Given a space X and n ≥ 1, the nth (or n-fold) symmetric product (or
power) of X, denoted by SPn(X), is the quotient of Xn by the action of the
symmetric group Σn that permutes the factors. The projection of a point
(x1, . . . , xn) ∈ Xn is denoted by [x1, . . . , xn] ∈ SPn(X).

Choosing a basepoint x0 ∈ X, there are natural embeddings

SPn(X) �→ SPn+1(X)

given by

[x1, . . . , xn] �→ [x0, x1, . . . , xn].

The infinite symmetric product SP(X) is defined as the direct limit of
(
SPn(X)

)
n≥1

equipped with these inclusions.
There are several works in the literature proving that the topology of X

determines that of SPn(X) and SP(X). For instance, Macdonald [19] com-
puted the Euler characteristic of SPn(X) in terms of the Euler characteristic
of X and then Dold [5] proved that the homology groups of SPn(X) only
depend on the groups Hq(X) for every CW-complex X. Later, Dold and
Thom [10] discovered that the homotopy groups of SP(X) are isomorphic to
the integral homology groups of X.

Example 4.1 (Liao [18]). The nth symmetric product of R2 has a very simple
description. Indeed, after identifying R2 to C, the points in SPn(C) can be
thought of as sets of roots of monic degree-n polynomials with coefficients
in C. This correspondence defines a homeomorphism between SPn(C) and
Cn ∼= R2n. This argument also serves to identify SP2(R) to the space of
monic degree-2 polynomials with real coefficients and real roots and thus to
{(b, c) : b2 ≥ 4c} ⊂ R2. However, it is probably easier to visualize SPn(R) as
the subset of Rn whose coordinates are in increasing order:

{(x1, . . . , xn) : x1 ≤ · · · ≤ xn}.

The following lemma will be useful in what follows.

Lemma 4.2 (Additivity for symmetric products). SPn(X ⊔Y ) is homeomor-
phic to

SPn(X) ⊔
(
SPn−1(X)× SP1(Y )

)
⊔ · · · ⊔

(
SP1(X)× SPn−1(Y )

)
⊔ SPn(Y ).

Proof. The homeomorphism α :
⊔n

j=0 SPj(X)× SPn−j(Y ) → SPn(X ⊔ Y ) is
defined by

α
([
x1, . . . , xj

]
,
[
y1, . . . , yn−j

])
=

[
x1, . . . , xj , y1, . . . , yn−j

]
. �
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4.2. Fixed point index

Let X be an ENR, U ⊂ X an open set and f : U → X a continuous map
such that Pern(f) is compact for some n ∈ N. Our map f induces canonically
another continuous map SPn(f) : SPn(U) → SPn(X) by the formula

SPn(f)
(
[x1, x2, . . . , xn]

)
=

[
f(x1), f(x2), . . . , f(xn)

]
.

Floyd [12] proved that the nth symmetric product of an ANR (absolute
neighborhood retract) is also an ANR, see also Jaworowski [15]. ENRs are
characterized by being separable metric finite-dimensional locally compact
ANRs; see [7, 11]. Since all these properties are inherited by nth symmetric
products, we conclude that SPn(X) is an ENR.

Recall from [6, 11, 16] that the definition of the fixed point index in
ENRs is

i(f, V ) = i(ιfr, U),

where we have employed the same notation as in Definition 3.5. The fixed
point index of SPn(f) in SPn(U), denoted by i(SPn(f), SPn(U)) ∈ Z, is well
defined provided that the set of fixed points of SPn(f) is compact in SPn(U),
which is guaranteed if Pern(f) is compact.

Most of the classical properties of the fixed point index extend in a
trivial fashion to the world of symmetric products. Only the analogue of the
additivity property is not trivial and needs a proof.

Proposition 4.3 (Multiplicativity). Let X be an ENR. Let (f, U) be an n-
admissible pair and U1, U2 disjoint open subsets of U such that

Pern(f) ∩ U = Pern(f) ∩ (U1 ∪ U2)

and Pern(f) ∩ U1, Pern(f) ∩ U2 are invariant under f . Then,

i
(
SPn(f), SPn(U)

)
=

n∑
j=0

i
(
SPj(f), SPj(U1)

)
· i
(
SPn−j(f), SPn−j(U2)

)
.

Proof. Firstly, observe that a fixed point of SPn(f) is an element of SPn(U)
composed of periodic orbits of f whose period cannot be greater than n.
Therefore, all fixed points of SPn(f) lie in SPn(U1 ⊔ U2) and the excision
property of the fixed point index yields

i
(
SPn(f), SPn(U)

)
= i

(
SPn(f), SPn(U1 ⊔ U2)

)
.

Lemma 4.2 provides a suitable decomposition of SPn(U1⊔U2). The map
SPn(f) acts on each of the terms SPj(U1)×SPn−j(U2) as the product of the
maps SPj(f) : SPj(U1) → SPj(X) and SPn−j(f) : SPn−j(U2) → SPn−j(X).
Using the additivity and multiplicativity properties of the fixed point index
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we obtain

i
(
SPn(f), SPn(U1 ⊔ U2)

)

=
n∑

j=0

i
(
SPj(f)× SPn−j(f), SPj(U1)× SPn−j(U2)

)

=

n∑
j=0

i
(
SPj(f), SPj(U1)

)
· i
(
SPn−j(f), SPn−j(U2)

)
. �

4.3. Zeta function of symmetric products

Given an open subset U of an ENR X and a map f : U → X such that (f, U)
is admissible, the sequence of indices (i(SPn(f), SPn(U)))n is well defined.
Its generating function is

SP∞(f, U) = 1 +
∑
n≥1

i
(
SPn(f), SPn(U)

)
· tn.

The purpose of this subsection is to show that SP∞ is a dynamical zeta
function, i.e., it satisfies axioms (N), (M), (H) and (I) in Theorem 1.1.

The following lemma can be deduced from the definition of index in Rd.

Lemma 4.4. Let V be an open subset of an ENR Y and let cq : V → Y be the
constant map which maps every point to q ∈ V . Then i(cq, V ) = 1.

Applying this lemma to V = SPn(U), Y = SPn(X) and q=[p, . . . , p] ∈ V
we obtain

i
(
SPn(cp), SPn(U)

)
= 1,

SP∞(cp, U) = 1 + t+ t2 + · · · = 1

1− t
,

so the normalization property (N) holds.
The multiplicativity property (M) is a direct consequence of Proposi-

tion 4.3. Indeed, the coefficient of tn in the product SP∞(f, V ) · SP∞(f,W )
is equal to

n∑
j≥0

i
(
SPj(f), SPj(V )

)
· i
(
SPn−j(f), SPn−j(W )

)
= i

(
SPn(f), V ⊔W

)
.

Homotopy invariance (H) follows easily from the same property for the
fixed point index, so it is only left to prove property (I).

Proposition 4.5 (Iteration). Let (f, U) be an admissible pair and assume
that U is the disjoint union of k ≥ 1, U = U1 ∪ · · · ∪ Uk, such that

f
(
Per(f) ∩ Ui

)
⊂ Ui+1

(indices are taken mod k). Then

SP∞(f, U)(t) = SP∞

((
fk

)
|U1

, U1

) (
tk
)
.
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Proof. We have to show that

i
(
SPkm(f), SPkm(U)

)
= i

(
SPm

((
fk

)
U1

)
, SPm(U1)

)

for every m ∈ N. We can assume that X ⊂ Rd, SPm(X) ⊂ Rq and the set
Perkm(f) is finite.

Using the excision property of the fixed point index, we have

i
(
SPkm(f), SPkm(U)

)
= i

(
SPkm(f), S

)
,

where S is an open set homeomorphic to SPm(U1) × · · · × SPm(Uk). The
result follows from the following claim.

Claim. Let V ⊂ Rq be an open set and (g, V ) an admissible pair and assume
that V is the disjoint union of k ≥ 1, V = V1 ∪ · · · ∪ Vk, such that

g
(
Per(g) ∩ Vi

)
⊂ Vi+1

(indices are taken mod k). Let G : V1 × V2 × · · · × Vk → Rq × Rq × · · · × Rq

be the map defined as G(x1, x2, . . . , xk) = (g(xk), g(x1), g(x2), . . . , g(xk−1)).
Then

i
(
G,V1 × V2 × · · · × Vk

)
= i

(
gk, V1

)
.

Proof of the Claim. Indeed, consider the projection

π1 : V1 × V2 × · · · × Vk → V1

and introduce a map s : V1 → V1 × V2 × · · · × Vk defined as

s(x1) =
(
x1, g(x1), g

2(x1), . . . , g
k−1(x1)

)
.

By the commutativity property of the fixed point index, we have

i
(
gk, V1

)
= i

(
π1 ◦G ◦ s, V1

)
= i

(
G ◦ s ◦ π1, V1 × V2 × · · · × Vk

)
.

Restricted to a small neighborhood of Per(g), the homotopy

Ht

(
x1, x2, . . . , xk

)

=
(
g
(
txk + (1− t)gk−1(x1)

)
, g(x1),

g
(
tx2 + (1− t)g(x1)

)
, . . . , g

(
txk−1 + (1− t)gk−2(x1)

))

is well defined and connects G ◦ s ◦ π1 to G. Moreover,

Fix(Ht) = s
(
Fix

(
gk

)
∩ V1

)

is a compact set contained in the interior of the domain of Ht, so

i
(
G,V1 × V2 × · · · × Vk

)
= i

(
G ◦ s ◦ π1, V1 × V2 × · · · × Vk

)

= i
(
gk, V1

)
. �

In summation, SP∞ satisfies all four axioms (N), (M), (H) and (I), so
the proof of Proposition 1.2 is concluded. The next corollary then follows
from the uniqueness of dynamical zeta functions proved in Theorem 1.1.
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Corollary 4.6 (Dold [9]). SP∞(f, U) is equal to the Lefschetz zeta function
for every admissible pair (f, U) ∈ A(U),

1 +
∑
n≥1

i
(
SPn(f), SPn(U)

)
· tn = exp

(
i(fn, U)

n
· tn

)
.

5. Applications

5.1. Euler characteristic of symmetric products

The formula discovered by Macdonald for the generating function of the Euler
characteristics of symmetric products is easily obtained from Corollary 4.6.

Corollary 5.1 (Macdonald [19]). Let X be a compact ENR. Then,

1 +
∑
n≥1

χ
(
SPn(X)

)
tn = (1− t)−χ(X).

Proof. It suffices to set f equal to the identity map in Corollary 4.6 and note
that by the Lefschetz–Hopf theorem,

χ
(
SPn(X)

)
= Λ

(
SPn(f), SPn(X)

)
= i

(
SPn(f), SPn(X)

)
,

i
(
fn, X

)
= i(f,X) = Λ(f,X) = χ(X). �

5.2. Relationship between fixed point indices

The formula in Corollary 4.6 allows to obtain the sequences (i(fn, U))n and
(i(SPn(f), SPn(U)))n from one another. More precisely, Lemma A.3, ex-
tracted from [29, Chapter 5], yields the following proposition. Notation is
taken from the appendix.

Proposition 5.2. If

i = (in)n =
(
i(fn, U)

)
n
, s = (sn)n =

(
i
(
SPn(f), SPn(U)

))
n
,

then

sn =
∑
C∈Cn

π(i, C)

π(C) · |C|!
, in =

∑
C∈Cn

(−1)|C|+1π(s, C)

|C|
.

Setting s0 = 1, i0 = 0, for n ≥ 0

(n+ 1)sn+1 =
n∑

j=0

sn−j ij+1

or, equivalently,

in+1 = (n+ 1)sn+1 −
n−1∑
j=0

sn−j ij+1.

Proof. The first part is given by Lemma A.3 and the second part can be de-
duced from the first one or simply by differentiating the formula in Corol-
lary 4.6. �
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Analogous versions of these results for partially admissible pairs hold as
well.

5.3. Dold congruences

Since the arguments used in Section 3 are very close to the ones contained
in [8], it is natural to obtain as a corollary of our work the main result in that
article, the so-called Dold congruences. These relations were already present
in the end of the proof of Proposition 3.1, but we give a direct proof here.

Theorem 5.3 (Dold [8]). Let (f, U) be an admissible pair. There exists integers
{ak}k≥1 such that, for every n ≥ 1,

i
(
fn, U

)
=

∑
k|n

kak.

Proof. By Lemma A.2, there are integers (ak)k≥1 such that

SP∞(f, U) =
∏
k≥1

(
1− tk

)−ak = exp

(∑
k≥1

ak
∑
m≥1

tmk

m

)
.

This series is also equal to the Lefschetz zeta function so, after taking loga-
rithms, the coefficient of the term tn on both sides is

i
(
fn, U

)
n

=
∑
k≥1

ak
1

n/k
⇐⇒ i

(
fn, U

)
=

∑
k≥1

kak. �

5.4. Consequences of the Hopf lemma

A nonzero fixed point index is an indicator of the existence of a fixed point.
Clearly, the converse statement is not true because there exist fixed points
with zero index. For instance, the origin under the map f(x) = x + x2.
However, a small perturbation of the previous dynamics makes it fixed point
free. Let us introduce the following definition.

Definition 5.4. Let V be an open subset of a topological space X and let
f : U → X be a map with an isolated fixed point p. Then, p is called
avoidable if for every neighborhood W of p in U there exists a homotopy
{ft : U → X}1t=0 such that f0 = f , ft = f outside W and Fix(f1) ∩W = ∅.

A classical argument in degree theory which dates back to H. Hopf shows
that every fixed point with zero index in a manifold X is avoidable (check
Hopf’s lemma in [16] for the details). Recall that the index i(f, p) of a map f
at a fixed point p can be defined as i(f, U) for U an open neighborhood of p
such that Fix(f) ∩ U = {p}.

As a starting example consider a repelling fixed point of a 1-dimensional
map. Our considerations being local and purely topological, we may assume
that the fixed point is 0 ∈ R and the map is f(x) = 2x. Clearly, this fixed
point is not avoidable, indeed, it has index −1. Now, let us look at the 2nd
symmetric product and the induced map SP2(f) : SP2(R) → SP2(R) defined
by SP2(f)[x, y] = [2x, 2y]. The “double point” [0, 0] is evidently fixed under
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SP2(f). Surprisingly, [0, 0] is avoidable. Indeed, for any ϵ > 0 define the
homotopy

Ft : [x, y] �→ [2x− λt, 2y + λt],

where λ = λ([x, y]) = max{ϵ − |x| − |y|, 0}. A straightforward computation
shows that none of the maps Ft have fixed points for t > 0.

Suppose now that the origin is an attracting fixed point of f : R → R.
It then follows that i(fn, 0) = 1 for every n ≥ 1. Corollary 4.6 yields

i
(
SPn(f), [0, . . . , 0]

)
= 1.

Note that [0, . . . , 0] is an isolated fixed point of SPn(f). In particular, [0, 0]
is no longer avoidable.

Proposition 5.5. Let f : R → R be a map for which 0 is an isolated fixed point.
The following statements are equivalent:

• 0 is not an attractor for f ;
• [0, 0] is avoidable for SP2(f);
• (0, 0) is an avoidable fixed point of

G :
{
(b, c) : b2 ≥ 4c

}
→

{
(b, c) : b2 ≥ 4c

}

defined by

G(−α1 − α2, α1α2) =
(
− f(α1)− f(α2), f(α1)f(α2)

)
.

Proof. The third point is equivalent to the second one in view of Example 4.1.
For the other equivalence, note that if 0 is neither attracting nor repelling,
then its index is 0. Thus, 0 is avoidable for f and, as a consequence, [0, 0] and
(0, 0) are also avoidable for SP2(f) and G, respectively. �

The fact that SPn(R2) is homeomorphic to R2n (Example 4.1) implies
that the nth symmetric products of surfaces are 2n-dimensional manifolds.
Hopf’s lemma may then be used to conclude the avoidability of index-0 fixed
points in SPn(M) for any surface M .

Fixed point indices of maps on surfaces have been extensively studied.
Let f be an orientation-preserving homeomorphism on a surface and p an
isolated fixed point. As a culmination of partial results obtained by several
authors, Le Calvez [17] proved a formula for i(fn, p) which reads as follows:

Z(f, p) = exp


∑

n≥1

i(fn, p)

n
· tn


 =

1

1− t
(1− tq)r,

where Z(f, p) is called a Lefschetz zeta function at p. Notice that Z(f, p) is a
polynomial if and only if r is positive. In such a case, its degree is rq − 1.
Interestingly, it is known that if {p} is locally maximal and neither an at-
tractor nor a repeller, then r is always positive. Furthermore, this is also the
case when f is area preserving and the sequence (i(fn, p))n is not a constant
equal to 1.

Under the previous assumptions, [p, . . . , p] is fixed under SPn(f). By
Corollary 4.6, i(SPn(f), [p, . . . , p]) = 0 provided that r is positive and n ≥ rq.
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Since the symmetric product of a surface is a manifold, Hopf’s lemma can
be used to conclude that [p, . . . , p] is an avoidable fixed point of SPn(f). The
number rq can be thought of as a lower bound on the number of unstable
branches of the local dynamics of f around p. In the next paragraphs, we
give, in a toy case, an explicit description of a homotopy removing the fixed
point which uses the unstable branches in a crucial way.

Let Y = R1 ∪R2 ∪R3 be the union of three infinite sticks or half-lines
with a common endpoint p. Assume that p is a global repeller for f : Y → Y .
A standard computation shows that, regardless how f permutes the sticks,
the zeta function of f at p is a polynomial of degree 2, hence

i
(
SP3(f), [p, p, p]

)
= 0

and [p, p, p] is avoidable. For simplicity, in the following we assume that f
does not interchange the sticks.

Consider three particles moving freely within Y subject to two types of
external forces: particle-center and particle-particle. A constant force, inde-
pendent of the distance, of magnitude ϵ repels every particle from p, center
of Y . There is another repelling force of much greater magnitudeMϵ, M ≫ 1,
acting between every pair of particles only when they are placed in the same
stick. Two particles may occupy the same position. The forces generate a mo-
tion in the three-particle system. For the evolution to be completely specified,
the behavior of the particles as they go through p must also be prescribed.
A particle located at p is set to enter an empty stick. The same rule is ap-
plied if there are two or three particles at p, each of them enters a different
empty stick. In the particular case there is just one particle at p and two
empty sticks, the particle is frozen and does neither interact with the others
nor with the center until another particle arrives at p. This bizarre behavior
is imposed just to preserve symmetry. Note, incidentally, that the evolution
always forces the particles eventually lie in different sticks.

The set of possible positions of the particles can be identified to SP3(Y ).
Denote by ϕϵ the time-1 map of the flow generated in SP3(Y ). Trivially,
ϕ0 = id and the sum of the distances from each of the three points of an
element of SP3(Y ) to p increases under the action of ϕϵ, for any ϵ > 0. The
maps SP3(f)ϵ = SP3(f) ◦ ϕϵ, 0 ≤ ϵ ≤ 1, define a homotopy composed of
fixed-point-free maps except from the starting map SP3(f)0 = SP3(f). This
shows that [p, p, p] is avoidable. The construction can be made local just
by imposing the involved forces only apply in a neighborhood of p and can
also be extended to systems with more particles by suitably prescribing the
behavior at p. The language used to articulate this example is fortuitously
related to the “charged” particles used by McDuff in a paper on configuration
spaces [22].

Figure 2 shows the portrait of a typical dynamics around a locally fixed
point p of a planar homeomorphism g with three unstable branches for which
{p} is locally maximal. For simplicity, suppose the picture extends similarly
to R2 and identify the union of the three unstable branches with p to the
set Y . The map g leaves Y invariant, denote f = g|Y . The plane deformation
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retracts to Y via maps

rt : R2 → R2

such that r0 = id and rt(x) is independent of t and belongs to Y if and only
if t ≥ dist(x, Y ). Define r(x) = rt(x) for large t. Then, for any ϵ ≥ 0, we can
define maps SP3(g)ϵ : SP3(R2) → SP3(R2) by

SP3(g)ϵ
(
[x1, x2, x3]

)
=

{
SP3(g)

([
rϵ(x1), rϵ(x2), rϵ(x3)

])
if d ≥ ϵ,

SP3(f)ϵ−d

([
r(x1), r(x2), r(x3)

])
otherwise,

where d = maxi dist(xi, Y ). Again all maps SP3(g)ϵ are fixed point free for
ϵ > 0. This homotopy shows how the “triple point” [p, p, p] vanishes without
leaving trace in the set of fixed points, hence proving it is avoidable.

p

Figure 2. Dynamics conjugate to z �→ z + z̄ 4 around the
origin. The fixed point is locally maximal and has three un-
stable branches (painted heavier).

Remind that similar constructions can just be done for the nth symmet-
ric product as long as n exceeds the number of local unstable branches at the
fixed point p. Note that in our previous example any n-tuple contains a point
sliding away from p through every unstable branch. The index computation
suggests this property is matched by every such homotopy.

Appendix A. Formal power series

Given a commutative ring with unity R, the ring of formal power series with
coefficients in R, denoted R [[t]], is defined as the set of series

a(t) =
∑
n≥0

ant
n,

where an ∈ R equipped with the operations

(a+ b)(t) :=
∑
n≥0

(
an + bn

)
tn, (a · b)(t) =

∑
n≥0

(
n∑

i=0

aibn−i

)
tn.

An alternative definition involves the ring of polynomials R [t] with coef-
ficients in R and the sequence of ideals tn ·R [t]. Then R [[t]] can be identified
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with the inverse limit of the sequence of rings (R [t]/(tn ·R [t]))n≥1 connected
with the morphisms given by the natural projections.

The set 1+ t ·R [[t]] of series whose independent term is equal to 1 forms
a subgroup of R [[t]] with multiplication: it is closed under multiplication
and the inverse of an element 1 +

∑
n≥1 ant

n is the series
∑

n≥0 bnt
n whose

coefficients are defined inductively by

b0 = 1, bn = −
n∑

i=1

aibn−i.

Evidently, 1 + tn ·R [[t]] is a subgroup of 1 + t ·R [[t]] for any n ≥ 1.

The zeta function of an admissible pair (f, U) is an element of the group
1+ t ·Z [[t]]. In a cumbersome way, it can be viewed as an inverse sequence in

lim←−
(
1 + t · Z [[t]]

)
/
(
1 + tn+1 · Z [[t]]

)
.

The nth element of this sequence being the zeta function defined up to mul-
tiples of tn+1, that is exactly the zeta function Zn(f, U) of (f, U) viewed as
an n-admissible pair.

Assume henceforth that R = Q a field. We may define the following
maps:

exp : t ·Q [[t]] → 1 + t ·Q [[t]], exp(x) = 1 + x+
x2

2!
+

x3

3!
+ · · · ,

log : 1 + t ·Q [[t]] → t ·Q [[t]], log(1− x) = −x− x2

2
− x3

3
− · · · .

(A.1)

Lemma A.1. The maps exp, log are mutually inverse isomorphisms between
the groups (t ·Q [[t]],+) and (1 + t ·Q [[t]], ·).

These maps are now used to define exponentiation to arbitrary formal
power series in the group (1 + t · Q [[t]], ·). Given 1 − x ∈ 1 + t · Q [[t]] and
y ∈ Q [[t]], define

(1− x)y := exp
(
y log(1− x)

)
.

However, we are interested only in the case where y is a rational number. The
definitions of exp and log ensure that the exponentiation satisfies the usual
properties.

Lemma A.2. Any element of 1+ t ·Q [[t]] is equal to the product of factors of
type (1 − tn) raised to the power of a rational number. This factorization is
unique. Furthermore, all the exponents are integers if and only if the series
has integral coefficients.

Proof. The sequence (log(1 − tn))n≥1 forms a basis of the free Q-module
t · Q [[t]]. Thus, given any element 1 − x ∈ 1 + t · Q [[t]], there exists unique
rational numbers qn such that

log(1− x) =
∑
n≥1

qn log(1− tn)
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or, in other words,

1− x =
∏
n≥1

(1− tn)qn .

For the last statement, assume that amtm is the smallest nonzero monomial
of x (m ≥ 1). If we set y(t) = 1/(1 − tm)am = 1 + amtm + O(t2m), then all
the coefficients of order 1 to m of (1− x) · y vanish. Thus, qm = am ∈ Z and
the argument can be carried on by induction on m. �

For a positive integer n ≥ 1, denote by Cn the set of compositions of n.
Recall that a composition C of n is an ordered set of positive integers such
that their sum is n. The size of C = {c1, . . . , ck} will be denoted by |C| = k
and the product of its elements by π(C) = c1 · · · · · ck. Given a composition C
and a sequence a = (an)n, we define

π(a,C) =

|C|∏
j=1

acj .

In our setting, it is simpler to work with compositions than with partitions,
which do not take into account the order of its elements. The following lemma
(cf. [29, Chapter 5]) is a consequence of the power series expansions (A.1) of
exp(x) and log(x).

Lemma A.3. Let (in)n be a sequence of rational numbers and

z(t) =
∑
n≥1

in
n

tn.

Then, the coefficient of tn of the formal power series exp(z(t)) is

∑
C∈Cn

π(i, C)

π(C) · |C|!
.

Conversely, let (sn)n be a sequence of rational numbers and

y(t) = 1 +
∑
n≥1

snt
n.

Then, the coefficient of tn of the formal power series log(y(t)) is

∑
C∈Cn

(−1)|C|+1π(s, C)

|C|
.
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Plaza de Ciencias 3
Madrid
Spain
e-mail: eduardo.blanco.gomez@gmail.com

Luis Hernández-Corbato
IMPA, Estrada dona Castorina 110
Rio de Janeiro
Brazil
e-mail: luishcorbato@mat.ucm.es, lcorbato@impa.br

Francisco R. Ruiz del Portal
Facultad de Matemáticas UCM
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