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Abstract: Newmark displacement estimation is generally computed using empirical models. 

These models are estimated from large datasets that mainly comprise moderate -to-high 

magnitude events (Mw > 6.0). In this work, we study the performance of several of these 

models to study moderate-to-low magnitude scenarios. For this purpose, data from the Betic 

Cordillera, S Spain, with magnitudes ranging from Mw 3.5 to 6.3, were used to compare with 

model predictions. The results show that errors in the estimates depend on the magnitude of 

events or on the yielding acceleration considered to estimate the displacement. The 
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availability of an appropriate range of data (magnitude and yielding acceleration), when 

defining the regression model, may overcome the differences due to specific characteristics of 

the seismotectonic context of the area where data derives from. The results also show that 

performance of models including several ground motion predictors is better than those based 

on a single parameter, regardless of the combination these predictors. Furthermore, 

regression models with polynomial forms present a better performance than other functions 

based on the logarithm of these predictors. Finally, new specific models for the Betic Cordillera 

are proposed, especially suitable for low magnitude events (< 5.0) and low critical 

accelerations (< 0.1 g), based on simplified polynomial forms of models.  

 

Keywords: Earthquake-induced landslide, Newmark displacement, regression models, low 

magnitude, Betic cordillera. 

 

1. Introduction 

Earthquake frequently induce landslides. The displacement of unstable masses contributes 

to increasing the damage caused by ground shaking, being the cause of significant damage to 

lifelines and urban areas (Bird and Bommer, 2004). The fast development our societies 

experienced over the last decades has dramatically increased the number of elements exposed 

to risk.  

Likely, developing maps to predict the location of areas prone to experience such a 

phenomenon is the best way to cope with this problem, and then defining an appropriate land 

use planning. Among the available methodologies for the development of seismic-induced 

landslide hazard maps, the rigid-block methodology proposed by Newmark (1965), adapted to 

GIS environments (Jibson et al., 1998, 2000), has become the most widely used. Based on this 
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approach, potentially unstable materials may slide along a failure surface when the 

acceleration of ground motion overcomes a threshold value known as critical acceleration of 

slope (or yield acceleration, ky), and the block continues sliding up until the velocity of the 

ground motion becomes zero. Critical acceleration measures the slope material resistance to 

slide. The final computed displacement, also known as Newmark displacement (Dn), is 

commonly used as an index for depicting areas prone to experience earthquake-induced 

instability (Jibson and Michael, 2009; Rodríguez-Peces et al., 2011b, 2014). In general, it is 

accepted that instabilities occur more frequently when Dn > 1 cm (Bray, 2007).  

Newmark displacements have been computed by applying two approaches (Jibson et al., 

2000; Jibson, 2011). In the first approach, a set of accelerograms are chosen, and the 

displacements are calculated by double integration of acceleration each time it exceeds the 

critical acceleration under consideration. Based on this approach, assumptions on seismic 

characteristics of the scenario (the magnitude of the event, the source mechanism, range of 

distances, etc.) have to be done, making more difficult the development of hazard maps for 

areas where multiple scenarios are expected. The second approach uses regression models 

which are obtained from the regression of computed displacements for a wide variety of 

accelerograms, usually extensive databases of accelerograms, against a single ground motion 

predictor (scalar models, sensu Saygili and Rathje, 2008) or a number of them (vector models, 

sensu Saygili and Rathje, 2008). This last approach is the method most frequently applied in 

practice. Used predictors are usually the peak ground acceleration (PGA), the peak ground 

velocity (PGV) and/or the Arias Intensity (Ia).  

Several authors have proposed different regression models since Newmark (1965) 

proposed his pioneering method. These models can be divided into two different groups based 

on how displacements are calculated differentiating between rigid-block and flexible-block 

methods.  In the rigid-block methods, no deformation occurs within the potential ly unstable 
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mass, and its dynamic response is then neglected; likewise, as stated by Newmark (1965). 

Flexible-block methods consider the dynamic response of non-rigid masses when computing 

displacements. Flexible-block methods are useful to study deformable earth/waste potential 

sliding masses (Rathje and Bray, 1999, 2000; Bray and Travasarou, 2007; Bray et al., 2018; 

Jafarian et al., 2019). On the other hand, methods based on a rigid-block approach provide the 

best results to study shallow stiff slope failures such as rockfalls (Jibson, 2007, 2011; Saygili and 

Rathje, 2008; Bray et al., 2018; Yigit, 2020). This is precisely the most frequent type of failure 

induced by earthquakes (Keefer, 1984). In other cases, nested failure surfaces are considered 

for computing the rigid-block displacement (Leshchinsky, 2018). 

While focusing on the rigid-block regression analysis, some models were obtained from 

accelerograms recorded worldwide (Jibson, 2007; Saygili and Rathje, 2008; Rathje and Saygili, 

2009; Hsieh and Lee, 2011; Table 1) and others from regional or country-based data: China 

(Jia-Liang et al., 2018), Greece (Chousianitis et al., 2014), Iran (Rajabi et al., 2011), Italy 

(Romeo, 2000), Turkey (Bozbey and Gundogdu, 2011), among others. Evidently, regional or 

country models are the most suitable ones for the areas as determined by these authors 

because used data intrinsically include source and shaking characteristics (source models, 

anelastic attenuation, etc.) in such areas (Chousianitis et al., 2014). 

In a recent study, Du et al. (2018) considered up to 14 regression models, including both 

worldwide and regional-based models, to evaluate uncertainties in predictions of Dn related to 

the regression models. These authors considered three different scenarios, consisting of strike-

slip source events with moment magnitudes (Mw) of 7.5, 6.5 and 5.5, respectively. Then, they 

calculated Dn with each of the 14 regression models. Because each model was established 

from different strong ground motion databases and its functional form was also different, it 

was not surprising that Dn fluctuated depending on the model considered. Such variability 

showed that the standard deviation of Ln(Dn), with Dn in cm, predictions was higher for low 
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magnitude events than for moderate to high magnitude scenarios: 0.4-1.0 for Mw 7.5-6.5 vs. 

1.2-1.7 for Mw 5.5. Such result was interpreted because most regression models were 

obtained with data from moderate-to-large magnitude (Mw > 6) earthquakes. Table 1 

compiles the characteristics of most regression models used by Du et al. (2018) and confirms 

that Hsieh and Lee (2011) did not use data from events with Mw < 5.5 when establishing their 

widely-used models. Such data were almost absent in the dataset used by Jibson (2007), and 

they were scarce in those used by Saygili and Rathje (2008). 

Recently, there is a renewed interest in the contribution of low-to-moderate earthquakes 

(Mw 4.0-5.5) in the seismic hazard computation (Nievas et al., 2020). Although seismic hazard 

is primarily controlled by events with higher magnitudes due to their severity and widespread 

damage, low-to-moderate events generate smaller damages but much more frequently. 

Hence, the population has to cope with these damages every year or every few years. 

The Betic Cordillera (S Spain) is an area characterized by low-to-moderate magnitude 

seismicity. Although high magnitude (Mw > 6.5) events have occurred in the past, their return 

period is very high (centuries). On the contrary, events with Mw in the range 4.0-5.5 are 

relatively frequent (IGN, 2019). In the last decades, several of these events have occurred (Fig. 

1) and triggered multiple shallow failures (disrupted landslides sensu Keefer, 1984) which 

affected road networks (Delgado et al., 2011, 2013, 2015; Alfaro et al., 2012). These 

infrastructures have proved to be especially vulnerable to seismically-induced landslides 

(Delgado et al., 2017). Similar results have been observed elsewhere (Martino et al., 2019). 

The Spanish government is confronting hazards related to seismic-induced landslides affecting 

road infrastructure in the Betic Cordillera, through a project (EPILATES) which aims at 

developing hazard maps along roads specifically for shallow failures based on the rigid-block 

method. This project has to evaluate both the most severe and most frequent seismic 

scenarios (Mw < 5.5).  The estimation of the Newmark displacement is a critical factor in 
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developing this project. Unfortunately, there is no explicitly established regression model for 

estimating Dn for this area. As a consequence, models obtained overseas have been used in 

the past (Rodríguez-Peces et al., 2011b, 2014). Nevertheless, the high standard deviations in 

displacement predictions observed by Du et al. (2018) for low-to-moderate magnitude events 

(Mw < 5.5) pose the issue of the utility of current relations in these  seismic scenarios. When 

preparing seismically-induced landslide hazard maps, it is imperative both to identify the 

threat in each point of the territory, and make a correct assignment to areas with/without risk 

(i.e., identifying areas where Dn > 1 cm from those where Dn is lower than this threshold 

value). However, given the high variability in the obtained results with presently available 

relationships for low-to-moderate magnitude scenarios, uncertainties about the correct 

assignment of the territory to its category (stable/unstable) are very high in such scenarios.  
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Figure 1. Map showing the location of stations of the Spanish Strong Ground Motion Network 

operated by the Spanish IGN. The map also shows the epicentral location of earthquakes 

known to have induced landslides for the period 1919 to 2019. 

 

In this work, we analyzed a set of 13 regression models to evaluate their usefulness for low 

magnitude scenarios in the Betic Cordillera. For this purpose, recorded accelerograms in this 

area are used to compute Newmark displacements. Obtained data are subsequently compared 

with predictions made by the selected models, and the residuals are analyzed to evaluate the 

performance of each model considered. Finally, we propose regression models for the Betic 

Cordillera based on the best performing regression forms in the comparative analysis and 

Newmark displacements computed from accelerograms recorded at different sites of this 

region. 

 

2. Data 

The Spanish Strong Ground Motion Network which has been in operation since 1993 is 

operated by the Instituto Geográfico Nacional (IGN). At present, it consists of 128 three 

components stations, located mainly in and around the Betic Cordillera (Fig. 1). In the period 

1993-2019, this network has registered up to 895 earthquakes, resulting in a database of 1879, 

3-component, strong ground motion records (5637 single component records). The magnitude 

of events ranges from 1.2 to 6.3.  

We have used the IGN database of records (up to October 2019), and among them, we 

have selected those meeting the following requirements: Mw ≥ 3.5 and PGA ≥ 0.02g (low 

magnitudes, usually in the mbLg scale, were transformed to Mw scale following the relations as 

proposed in the latest update of the Spanish seismic hazard map; CNIG, 2013). Additionally, 
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only free-field or ground floor records were considered. Events of magnitude < 3.5 sometimes 

produced records with PGA> 0.02 g, but they were discarded because their duration and 

frequency content hardly induce landslides. The minimum PGA considered is in agreement 

with minimum acceleration reported as the threshold value to induce shallow disrupted 

landslides (Jibson and Harp, 2012; Delgado et al., 2015). Taking into account these 

requirements, the resulting dataset included 87 single-component, horizontal records (Table 

2), 10.4% on type A, 63.2% on type B and 26.4 % on type C site conditions (following the 

categories defined in the EC8 building code), according to data supplied by IGN. 

These records were processed as follows: 

 Baseline correction and bandpass filtering (0.1-25 Hz). Done through SeismoSignal 

software (©SeismoSoft, 2016). 

 For each record, displacements were computed for both positive and negative polarities 

considering the largest value for the analysis (Saygili and Rathje, 2008). 

 Displacements computed from orthogonal components recorded at the same station were 

considered as separate data for the analysis (Saygili and Rathje, 2008). 

 Rigid block displacements were computed for ky values of 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 

0.1, 0.125, 0.15, 0.2, 0.25 and 0.3 g.  

 

Specific software was coded for automatically computing displacements. Critical 

acceleration values were chosen taking into consideration that values greater than 0.1 g are 

not frequently recorded during earthquakes with Mw < 5.0.  

After processing, the resulting database is characterized by PGA values lying in a range 

between 0.02 - 0.39 g, PGV values in a range between 0.35 - 33.15 cm/s, and Ia horizontal 

values in a range between 0.07 - 52.80 cm/s. A total of 242 Dn values were computed from this 

database of accelerograms. Displacements vary from almost zero (10-6) up to 26 cm (Fig. 2).  
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Figure 2. Distribution of seismic data used in our analysis as a function of magnitude and 

epicentral distance, and ground motion parameters. 

 

 

3. Analysis 

3.1. Regression models 

We have selected 13 regression models in our research (Table 1). These models present a 

wide variety of functional forms to compute Newmark displacements, including three different 

parameters for measuring the severity of ground motion when estimating Dn: PGA, PGV and 

Ia. For some models, earthquake magnitude together with the PGA add up as ground motion 

predictors.  

Many of these models (9) were obtained from worldwide data and, consequently, include 

data from different geodynamic contexts. These models were obtained from extensive 

databases; however, few data from earthquakes in the range of magnitudes of interest for this 

study (Mw < 5.5) were used. Additionally, most of the critical accelerations considered in 
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establishing these models were high (0.2 g and higher), greater than accelerations usually  

recorded during low-to-moderate magnitude scenarios. 

The remaining models were established from regional or country-based data (China, 

Greece, Iran and Italy). Including such models help us to monitor their usefulness, given the 

similarities in the geodynamic context (Italy) or in the range of magnitudes from the data used 

in establishing those models (Greece and Iran). The China model (Jia-Liang et al., 2018) was 

used as an example of a model obtained with data from a single event of very different 

magnitude (Mw 7.9) in a geodynamic context that is somewhat different to that existing in the 

Betic Cordillera. 

Two of these models (J07_1 and SR08_1) use the PGA as a predictor of ground motion 

severity. Their functional forms are very different from each other. Other two models use the 

magnitude in addition to PGA (J07_2 and RS09). Once again, their respective functional forms 

are very different. Up to five models consider the Ia to quantify ground motion severity. 

Models J07_3 and Ra11 share the functional form for the equation while the others (HL11, 

CH14 and JL18) use different combinations of Ia and ky to define the model. Other three 

models combine PGA and Ia to characterize the ground shaking level (R00, J07_4 and SR08_2). 

Models R00 and J07_4 have the same functional form, different from the SR08_2 model. 

Finally, there is only a single model that uses PGA and PGV to predict Dn (SR08_3). 

In our analysis, we analyze the residuals obtained by using the regression models to 

predict Dn in the Betic Cordillera and compare them with observations computed as described 

in the previous section. PGA, PGV and Ia values compiled for the 87 records considered in this 

study were used to compute Dn according to each model. Residuals are defined as the 

difference between “log10(Dnobserved) – log10(Dnpredicted)”. 

 

3.2. Residuals versus ground motion predictor 
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Figures 3 and 4 present plots with the residuals obtained from each model; Table 3 shows 

some statistics of them. Two parameters have been considered to control the performance of 

each model: the root mean square of errors (RMSE) and the efficiency coefficient (E). 

Chousianitis et al. (2014) already used the aforementioned coefficient to evaluate the quality 

of their models . Numerically, it is equal to: 

    
∑(     

 ) 

∑(    ̅ )
  

In this formula, yi is the experimental observations (Dn computed from accelerograms),  ̅  the 

mean value of observations, and   
  the corresponding value predicted by the model. This 

coefficient quantifies the better functioning of the model regarding the average as the 

predictor of the variable. It is a negative value if its performance is worse than average, and a 

positive value if better than average (Chousianitis et al., 2014). 
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Figure 3. Residuals (and their relative frequency) obtained with regression models that use 

PGA, PGA and PGV, or PGA and magnitude as ground motion predictors. See Table 1 for more 

data about these models. 
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Figure 4. Residuals (and their relative frequency) obtained with regression models that use Ia 

or PGA and Ia as ground motion predictors. See Table 1 for more data about these models. 

 

The scalar models, which are those based on the PGA as an estimator of ground 

motion (J07_1 and SR08_1), show very similar results. They greatly overestimate Dn (Fig. 3) , 

and the corresponding statistics show a low performance for these models: RMSE is high and E 
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is low (Table 3). Because equations of both models are quite different from each other (Table 

1), such low performance cannot be attributed to deficiencies in the form of the model to 

reflect the complexity of ground motion. When magnitude is added to these models (J07_2 

and RS09 models), the results show a noticeable increase in their performance. Residuals 

consequently decrease less than a half, and efficiency increase above 0.8 (previous values are 

around 0.2).  

The results obtained with models based on Ia show very high variability, from 

moderate to deficient performance (Fig. 4 and Table 3). Models J07_3 and RA11 share the 

functional form of the model (they include terms with log10(Ia) and log10(ky)), but the latter 

model gives slightly better statistics (lower RMSE and higher E, Table 3). Distribution of 

residuals (Fig. 4) shows that J07_3 underestimates Dn, while RA11 shows a bipolar behavior: 

an overestimation for low Dn values and an underestimation for high Dn values. 

Models HL11 and JL18 share a functional form of the model. Additionally, they differ 

from the previous ones including a term with ky (instead of its logarithm, as in J07_3 and RA11) 

and another term with ky multiplying the log10(Ia). The statistics of these models are the worst 

obtained in the analysis (Table 3). They tend to overestimate Dn (Fig. 4), although the behavior 

of the JL18 model is a bit more erratic, showing a high dispersion of residuals , so we do not 

consider this model in our research given its deficient performance. 

The best performance for the Ia-based models is found in the CH14 model. It reduces 

RMSE to at least 50% concerning other Ia-based models, and increases the efficiency 

coefficient a minimum of 50%, although a trend to overestimate displacements when Dn is 

very low is recognizable (Fig. 4).  

Regarding vector models, PGA-Ia models show high variability (Table 3). The R00 

model shows poor performance, overestimating Dn in all ranges of values, and such 

overestimation is significant (one log10 unit, similar to that observed for J07_1 and SR08_1 
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models). The other two models of this type show a better performance, especially the SR08_2 

one. 

Finally, there is only one model that uses both PGA and PGV as ground motion 

predictors. The statistics are the strongest of all (Table 3) with small residuals RMSE values and 

a very high efficient value. The residual distribution reveals a normal distribution around zero 

with very narrow tails (Fig. 3). 

 

3.3. Residuals versus magnitude of events 

The next step is to study the performance of each model depending on the magnitude 

of the event. We believe this is of particular significance, given that most common seismic 

scenarios correspond to low magnitude events (Mw ≤ 5.0). For this purpose, computed 

displacements were grouped by magnitude, and RMSE was computed separately for each 

range of magnitude. Groups were of 0.5 units of magnitude (starting at 3.5). 

Figure 5 shows the results of this analysis and it clearly reflects that RMSE is not evenly 

distributed with magnitude for all models. Starting with the scalar models based on worldwide 

data (PGA: J07_1 & SR08-1; Ia: J07_3 & HL11), they show the same relative behavior: RMSE is 

maximum for data with very low magnitudes; furthermore, it tends to be gradually reduced as 

magnitude becomes higher. RMSE is greater than 1 when M ≤ 5.0 (5.5 for some models) and 

goes below such threshold only when M > 6.0. On the contrary, regional scalar models 

(including data on low magnitude events in their determination) do not show such magnitude 

to be dependent on RMSE behavior.  It is therefore essential to provide data of all magnitudes 

of interest when developing a regression model.  

Results obtained with scalar models based in PGA, including the magnitude (models 

J07_2 and RS09; Fig. 5) seem to be very useful. They were acquired from the same dataset as 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

the scalar models, that is, without data from earthquakes with M < 5.0, though they do not 

show such clear magnitude-dependent behavior.  

 

 

Figure 5. Variation of RMSE as a function of magnitude. Continuous lines depict models based 

on worldwide data. Dashed lines depict models based on regional data. See Table 1 for specific 

characteristics of each model. 

 

Vector models (PGA-Ia or PGA-PGV) show a better performance than scalar models, 

and no evident relation exists among magnitude and RMSE. The findings demonstrate the poor 

efficiency of the R00 model (from Italy) to match the Betic Cordillera data once again.  
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3.4. Residuals versus critical acceleration 

The final step in our analysis consisted of verifying the response of the models for low 

values of the critical acceleration. When they were established, although some models 

included low values of critical acceleration (Table 1), most data corresponded to critical 

accelerations that are out of the range of recorded accelerations for moderate to low 

magnitudes (ky> 0.1 g). As in the previous section, the residuals have been grouped as a 

function of the critical acceleration considered when computing displacements. Because there 

are few displacements for critical accelerations greater than 0.1 g (only 14 values), they were 

grouped into a single category. The results are shown in Figure 6. 

Scalar models show different behavior depending on the parameter considered 

quantifying ground motion (PGA vs. Ia). Those based on PGA show that for very low critical 

acceleration values RMSE is higher, and it stabilizes when ky > 0.05 g. By comparison, Ia-based 

models display more complex behavior so that no specific pattern may be identified to this 

respect. Nevertheless, regional-based data models typically perform better than worldwide 

models. 
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Figure 6. Variation of RMSE as a function of critical acceleration. Continuous lines depict 

models based on worldwide data. Dashed lines depict models based on regional data. See 

Table 1 for specific characteristics of each model. 

 

Vector models once again perform better than scalar models. It is true not only for RMSE’s 

absolute value but also for its variability as a ky function (RMSE displays lower variance than 

scalar models).  

 

4. Discussion 

The evaluation of Newmark displacements is a basic requirement for the development of 

hazard maps of seismically-induced landslides. There are currently several models available for 

forecasting displacements. These are focused on a wide variety of predictors of ground 

motion, datasets for model development, and model functional forms.  
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Scalar models based on a single ground motion predictor were commonly used, as these 

predictors are typically the result of seismic hazard studies (expected PGA or Ia in a certain 

return period) and can be easily implemented (through regression models) to create 

seismically-induced landslide hazard maps. However, the analysis presented in the previous 

sections shows that present scalar models have several limitations. 

In the case of models based on the PGA as a predictor, the obtained results using data 

provided by the Betic Cordillera (Figs. 5 and 6) suggest that such models should be used only in 

the range of the magnitudes or critical accelerations from which they were established, 

because the resulting average residuals are greater than 1.0. From Figure 3, the displacements 

predicted systematically overestimate the real ones. It may contribute to an unnecessary 

overestimation of real hazard values, and maps elaborated based on these models can 

erroneously restrict the use of the land when applied to low-to-moderate magnitude 

scenarios. 

Models that include the magnitude of events in addition to PGA show a better 

performance (Figs. 5 and 6). Residuals are significantly smaller, and the aforementioned 

tendency to overestimate displacements is now corrected (Fig. 4). Perhaps, this could be the 

best way to continue using the PGA as a predictor of ground motion severity. 

Models based in the Ia as predictor also show clear limitations. This parameter has been 

usually considered a better estimator of ground shaking severity than PGA in seismically-

induced landslide studies because the whole accelerogram and range of frequencies are 

considered for its computation, taking into account both the duration and frequency content 

of the record (Wilson and Keefer, 1985; Keefer and Wilson, 1989). In contrast, PGA only 

considers a single point in the accelerogram (that of maximum amplitude), in most cases 

related to high frequencies. Consequently, PGA may be controlled by high-frequency pulses of 

short duration and may not properly reflect the frequency content and the duration of the 
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ground shaking (Harp and Wilson, 1995). Du et al. (2018) pointed out another important 

limitation of models based on PGA: it may be indistinguishable from the PGA of a high 

magnitude event in the far-field from that of a low-to-moderate magnitude in the near field. 

However, the frequency content and duration differ significantly between both scenarios  and 

the consequences on the stability of slopes could be quite different. 

Even though the Ia is considered more robust to quantify the severity of ground shaking, 

displacements predicted by models based on this parameter show greater variability than PGA 

models. In some cases, they overestimate displacements; in others, the opposite occurs. It is 

remarkable that regional models (Ra11 and CH14, but not JL18) typically display lower 

residuals than models obtained using comprehensive data (J07_3, HL11) , initially with utility 

restricted to the areas where they were developed. In addition to the observed differences 

given the origin of the used data in designing the models, there are also significant variations 

in the range of values used when establishing the models. In essence, regional models consider 

data from moderate-to-low magnitude events, and low values for the critical acceleration 

(although HL11 model also considered low values of critical acceleration). Model JL18 shows 

the worst results when predicting our data, with very high residuals that show very high 

variability. Interestingly, this model was derived from a particular scenario: data from a single 

high magnitude event (Mw 7.9) and very high critical accelerations (ky> 0.2 g). These conditions 

are distinctly different from those observed in the study area, where no data are available for 

events with Mw > 6.3, and displacements for critical accelerations above 0.2 g are very scarce 

in the dataset. Once again, these findings seem to point out that working with models 

established from an appropriate range of data (of M, of ky) is vital, perhaps more critical than 

utilizing models derived from only the same geodynamic background as the area being 

studied. These results (Figs. 5, 6 and 8) also seem to point out that functional forms of 

relationships based on AI are forecasting significantly worse than those based on other ground 

motion predictors. New functional forms ought to be developed for this purpose. Maybe, the 
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use of extensive datasets and data-driven machine learning techniques could help to improve 

these relationships. 

Vector models are considered more robust to predict Newmark displacements (Saygili and 

Rathje, 2008; Rathje and Saygili, 2009). Having a second parameter to explain the severity of 

ground shaking allows the elimination of the observed indetermination, such as while dealing 

with PGA based models (Du et al., 2018). The obtained results generally show an increase of 

performance with respect to scalar models (lower RMSE and higher efficiency coefficient, see 

Table 3). Even though there is a general improvement in predictions, this does not apply for all 

models in the same way. Differences could not be attributable to the predictors but to the 

functional form of models. Thus, distribution of real vs. predicted displacements with model s 

R00 and J07_4 (PGA-Ia), show a distribution similar to a hyperbola, showing a trend to an 

important overestimation for small/large displacements (Fig. 4). In these two cases, the 

functional forms of the models were highly sensitive to small changes in the predictors, and a 

slight increase in them would lead to a notable change in the predicted displacements (large 

values). On the contrary, some kind of saturation of the model exists in the low range of 

predictor’s values, and predicted displacements start to be very similar, departing from real 

values (and overestimating them). Differences between these R00 and J04_7 models come 

from the fact that R00 model predicts larger displacements (Fig. 4).  

Model R00 was of especial interest for this research. It was established with data from 

Italy, an area which is commonly considered to have a similar geodynamic framework to that 

found in the Betic Cordillera. Several ground motion prediction equations developed based on 

Italian data were used for hazard studies in Spain (i.e., Peláez et al., 2005, Rodríguez-Peces et 

al., 2011a). Nevertheless, the overestimation of displacements, especially for the larger ones, 

prevents its use in the Betic cordillera because it can lead to a significant overestimation of 

hazard. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

For the remaining vector models, the distribution of residuals shows that they can predict 

displacements very close to the obtained ones. Most of the residuals (>40%) are less than 0.25 

log10 units. That implies that differences are under a factor of 2 (for example, differences were 

above 10 times the reported values for PGA models). Model SR08_2 considers just the same 

predictors as R00 and J07_4 models but it fits better here (Fig. 4), showing a quasi-lineal 

relation between observed and predicted displacements. Statistics of control of this model are 

also significantly better than J07_4 model. Moreover, Model SR08_3 uses PGA and PGV as 

predictors. Displacements predicted based on this model could be considered the best of all 

considered in our analysis (Table 3, Figs. 3 – 5). These two models share the same polynomial 

functional form to forecast displacements. The RS09 model (PGA-M) provides a similar 

functional form, which also shows a lineal relationship between real and predicted 

displacements. 

 

5. Proposal of regression models for the Betic Cordillera 

Regression models used in our research have shown wide variability in performance to 

predict Newmark displacements in the Betic Cordillera, using the available data from low-to-

moderate magnitude earthquakes. It is remarkable to point out the low performance of scalar 

models among the presented results regardless of the predictor considered. Thus, RMSE is 

very high for low critical accelerations (ky< 0.05 g) and low magnitude (Mw < 5.0) in the PGA-

based models. Similarly, Ia-based models show a noticeable irregular but high RMSE.  

Displacement data provided by earthquakes occurred the Betic Cordillera have been used 

to develop models valid for this area. In light of the presented results, it seems that polynomial 

models work better than other functional forms in this area. Then, only polynomial functional 

models were considered for the PGA model as well as a functional form similar to that of CH14 
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(Chousianitis et al., 2014), which has been the Ia-model that better performed in our study. 

Additionally, polynomial models based in PGA-M, PGA-Ia and PGA-PGV also have been tested. 

Data include the displacements computed as described in section 2. Since most data 

correspond to low values of critical acceleration (0.02 and 0.03 g; Fig. 2), we have used a 

weighted regression procedure to avoid an excessive influence of these data in the resulting 

models. For this purpose, data were binned into 8 categories as a function of critical 

accelerations (ky = 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, and a final category that includes 

those data with Ky> 0.1 g). Each category was weighted by 1/8, and weight of individual datum 

within each category was set to ‘(1/8)/number of data in the bin’. The analysis was conducted 

using the Statgraphics software (©Statpoint Technologies, 2019). 

For each considered regression model, results showed that P-values for the calculated 

coefficients of the term ky/PGA in all polynomic models were always greater than 0.05. 

Therefore, that terms are not statistically significant at the 95.0% or higher conf idence levels. 

Similar result is observed with the term log10(Ia)*log10(ky) in the model that uses Ia as predictor 

of ground motion. Consequently, we have removed them in the corresponding models. This 

may be due to the limited amount of available data for the analysis. Presumably, as more data 

becomes available, the coefficients for those terms may become statistically more significant 

and the models will retain these terms. 

 Once removed, data were fitted with the new functional forms.  The corresponding 

models are presented in Table 4. Residuals obtained for each model are shown in Figures 7 and 

8. The resulting models are usually characterized by high values of the correlation coefficient 

(ρ2), above 0.85, and low standard deviations (between 0.3 and 0.5) . It is remarkable the good 

quality of the model that uses PGA and PGV: ρ2 = 0.94, standard deviation = 0.35 and residuals 

of almost 70% of data are lower than 0.25 log10 units (Fig. 7). Because these models were 

obtained from a dataset that includes the range of accelerations of interest for low-to-
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moderate magnitude earthquakes, RMSE do not shows any dependence of ky. This is especially 

remarkable in the case of the PGA-model, where currently available models show a strong 

relation of RMSE with ky (Fig. 8).  
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Figure 7. Residuals (and their relative frequency) obtained with regression models obtained for 

the Betic Cordillera. See Table 4 for more data about the models. 

 

Yet again, the model that uses Ia as ground motion predictor shows the worst statistics 

(Table 4), being ρ2 = 0.67 and the standard deviation is as high as 0.8. Figure 7 shows that only 

20% of data show residuals below 0.25 log10 units. Distribution of data vs. predicted values of 

displacement shows the same hyperbolic shape (although less pronounced) already observed 

in other models based on this parameter. This may imply a possible deficiency of the 

functional form of these models. 

 

 

Figure 8. Variation of RMSE as a function of critical acceleration in the models obtained for the 

Betic Cordillera (blue lines). See Tables 1 and 4 for more details concerning regression models. 
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These results (Figs. 5, 6 and 8) seem to point out that functional forms of relations based on Ia 

are working worse than those based on other ground motion predictors. New functional forms 

should be considered for this purpose. Perhaps, the use of extensive datasets and data-driven 

machine learning techniques may help to improve these relations. 

 

6. Conclusions 

The use of regression models to estimate Newmark displacements is a standard procedure 

when estimating seismically-induced landslide hazard maps. At present, most available models 

have been obtained from data recorded during earthquakes of moderate -to-high magnitude 

(Mw > 6.5). However, many areas in the world are affected by moderate-to-low magnitude 

earthquakes. Thus, the reliability of existing models is not assured for these areas. In our study, 

an analysis of the behavior of some of these regression models was conducted by comparison 

with data from the Betic Cordillera (S Spain). The aim has been to evaluate their usefulness to 

predict reliable values of Newmark displacements for moderate-to-low magnitude scenarios.  

The results have shown that the performance of scalar models is low. A general trend to 

overestimate displacements is detected in models that use  the PGA as ground motion 

predictor, while the behavior is irregular in Ia-based models. In both cases, errors in 

displacement forecasting increase, considering lower magnitudes (Mw < 4.5-5.0) or lower 

critical acceleration scenarios (ky< 0.05 g). Regional regression models, based on low 

magnitude and low critical accelerations, give more significant results than worldwide ones. It 

seems that it is imperative to have an appropriate range of data (both for Mw and ky) to 

establish the regression models since they may overcome differences due to the geodynamic 

context of the area where data come from. 
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Vector models show a better performance regardless of the combination of ground 

motion predictors considered in the model. The inclusion of a second ground motion 

parameter allows a better characterization of ground motion severity and the extrapolation of 

existing models is possible (even though they did not include Mw or ky found in moderate-to-

low seismic scenarios).  

The functional form of regression models displays some control over the quality of the 

results obtained in this study. Polynomial forms exhibit better behavior than other forms 

based on the logarithm of ground motion predictors. It becomes especially relevant when Ia is 

considered as a predictor from which no polynomial model  exists, and the accuracy of 

predictions is lower than in PGA or PGA-PGV dependent models. New functional forms should 

be considered for this ground motion predictor. New studies are needed on this topic. Perhaps 

the usage of very large datasets and data-driven machine learning techniques may be of great 

benefit. 

Finally, we propose new models for the Betic Cordillera. They have been developed using 

polynomial functional forms, and are capable of reducing the residuals in all situations with 

regard to currently available models. They are especially suitable for low magnitude events 

(Mw < 5.0) and low critical accelerations (ky< 0.1 g). 
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Figure caption 

 

Figure 1. Map showing the location of stations of the Spanish Strong Ground Motion Network 

operated by the Spanish IGN. The map also shows the epicentral location of earthquakes 

known to have induced landslides for the period 1919 to 2019. 

 

Figure 2. Distribution of seismic data used in our analysis as a function of magnitude and 

epicentral distance, and ground motion parameters. 

 

Figure 3. Residuals (and their relative frequency) obtained with regression models that use 

PGA, PGA and PGV, or PGA and magnitude as ground motion predictors. See Table 1 for more 

data about these models. 

 

Figure 4. Residuals (and their relative frequency) obtained with regression models that use Ia 

or PGA and Ia as ground motion predictors. See Table 1 for more data about these models. 

 

Figure 5. Variation of RMSE as a function of magnitude. Continuous lines depict models based 

on worldwide data. Dashed lines depict models based on regional data. See Table 1 for specific 

characteristics of each model. 

 

Figure 6. Variation of RMSE as a function of critical acceleration. Continuous lines depict 

models based on worldwide data. Dashed lines depict models based on regional data. See 

Table 1 for specific characteristics of each model. 

 

Figure 7. Residuals (and their relative frequency) obtained with regression models obtained for 

the Betic Cordillera. See Table 4 for more data about the models.  

 

Figure 8. Variation of RMSE as a function of critical acceleration in the models obtained for the 

Betic Cordillera (blue lines). See Tables 1 and 4 for more details concerning regression models.  

 

 

Table caption 

 

Table 1. List of regression models for estimating Newmark displacement (Dn) used in the 

analysis.PGA: Peak ground acceleration (in g’s); PGV: Peak ground velocity (in cm/s); Ia: Arias 

intensity (in m/s); M: Moment magnitude; ky: Critical acceleration of slope (in g’s). NA: Not 

available. 
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Table 2. List of earthquakes and strong ground motion records used in the analysis. Data from 

IGN (available at https://www.ign.es/web/ign/portal/sis-catalogo-acelerogramas). 

 

Table 3. Statistics of the residuals (log10(Dnobserved) – log10(Dnpredicted)) resulting with different 

regression model (see Table 1). RMSE: Root Mean Square Error; E: Efficiency coefficient. 

 

Table 4. Regression models developed for estimating Newmark displacements in the Betic 

Cordillera. 
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Table 1. List of regression models for estimating Newmark displacement (Dn)  used in the 

analysis. PGA: Peak ground acceleration (in g’s); PGV: Peak ground velocity (in cm/s); Ia: Arias 

intensity (in m/s); M: Moment magnitude; ky: Critical acceleration of slope (in g’s). NA: Not 

available. 

Predictor 
Code 

(Reference) 
log10 Dn (Dn in cm) σ ρ2 

Num. 
EQs 

Magnitude 
range 

Num. 
Records 

Num. EQs 
(M < 5.5) 

Num. 

Records 
(M < 5.5) 

ky values 
fitted 

Data source 

PGA& Ia 
R00 
(Romeo, 2000) 

                (
  

   
)            (

  

   
) 0.365 0.89 17 4.6 – 6.8 190 8 31 Variable* Italy 

PGA 
J07_1 
(Jibson, 2007) 

                (  
  

   
)           (

  

   
)  0.510 0.84 30 5.3 – 7.6 2770 1 2 

0.05, 0.1, 
0.2, 0.3 & 
0.4 

Worldwide 

PGA& M 
J07_2 
(Jibson, 2007) 

       

          (  
  

   
)           (

  

   
) 

        

0.454 0.87        

Ia 
J07_3 
(Jibson, 2007) 

                 (  )           (  ) 0.656 0.71        

PGA& Ia 
J07_4 
(Jibson, 2007) 

                (  )           (
  

   
) 0.616 0.75        

PGA 
SR08_1 
(Saygili & 
Rathje, 2008) 

      [         (
  

   
)      (

  

   
)
 

 

     (
  

   
)
 

      (
  

   
)
 

       (   )]  
1.13 NA 54 5.0 – 7.9 2383 NA** NA** 

0.05, 0.1, 
0.2 & 0.3 

Worldwide 
(PEER 
database) 

PGA& Ia 

SR08_2 

(Saygili & 
Rathje, 2008) 

      [         (
  

   
)      (

  

   
)
 

 

     (
  

   
)
 

      (
  

   
)
 

       (   ) 

      (  )]  

0.46 + 
0.56(ky/PGA) 

NA        

PGA&PG
V 

SR08_3 
(Saygili & 
Rathje, 2008) 

      [          (
  

   
)      (

  

   
)
 

 

     (
  

   
)
 

     (
  

   
)
 

       (   ) 

      (   )]  

0.41 + 
0.52(ky/PGA) 

NA        

PGA& M 
RS09 
(Rathje & 
Saygili, 2009) 

      [         (
  

   
)      (

  

   
)
 

 

     (
  

   
)
 

      (
  

   
)
 

       (   ) 

    (   )]  

0.732 + 
0.789(ky/PGA) – 
0.539(ky/PGA) 

NA 54 5.0 – 7.9 2383 NA NA 
0.05, 0.1, 
0.2 & 0.3 

Worldwide 
(PEER 
database) 

Ia 
HL11 
(Hsieh & Lee, 
2011) 

     
          (  )                     (  )  

0.259 0.89 6 6.7 – 7.6 1343 0 0 

0.01, 0.02 
& 0.05 to 
0.4 step 
0.05 

Worldwide 

Ia 
Ra11 
(Rajabi et al., 
2011) 

                 (  )           (  ) 0.358 NA 80 3.6 - 7 108 NA NA 
0.02, 0.05, 
0.1, 0.2, 0.3 
& 0.4 

Iran 

Ia 
CH14 
(Chousianitis 
et al., 2014) 

                 (  )           (  )  

         (  )      (  )  
0.231 0.95 98 3.2 – 6.7 205 66 108 

0.02, 0.05, 
0.1 & 0.2 

Greece 

Ia 
JL18 
(Jia-Liang et 
al., 2018) 

                (  )           

             (  )  
0.148 0.92 1 7.9 33 0 0 > 0.2 

Wenchuan 
EQ (China) 

*Displacements were computed, for each accelerogram, by setting the ratio k y/PGA instead of 

fixing the value of ky. 

**Figure 3 of Saygili and Rathje (2008) plots accelerograms versus distance and magnitude of 

events. Some accelerograms were used in the range Mw 5.0-5.5 but the overlap of symbols 

prevents estimating the number of them or the percentage with respect to total data used in 

the analysis. 
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Table 2. List of earthquakes and strong ground motion records used in the analysis. Data from 

IGN (available at https://www.ign.es/web/ign/portal/sis-catalogo-acelerogramas). 

Date Time Lat. Lon. Depth (km) Mw 
Num. 

Records 

23/12/1993 14:22:35 36.78 -2.9367 8 5.0 2 
04/01/1994 8:03:15 36.5717 -2.815 2 4.9 3 

19/04/1994 23:51:59 37.3083 -1.9467 5 3.6 1 
17/03/1995 14:04:14 37.175 -3.7733 2 3.9 3 
09/01/1996 7:36:59 37.055 -3.92 2 3.8 2 
28/12/1996 7:30:37 37.1617 -3.7167 1 4.1 7 

24/02/1997 7:09:51 37.02 -3.835 6 4.3 6 
18/11/1998 23:18:11 36.9678 -3.7792 3 3.8 4 
02/02/1999 13:45:17 38.0963 -1.5014 1 4.7 2 

10/09/2003 20:22:47 37.1189 -3.7966 3 3.6 2 
29/01/2005 7:41:32 37.8535 -1.7555 11 4.8 2 
04/01/2007 23:32:32 37.2008 -3.7447 - 3.8 3 
30/06/2007 3:53:45 37.0784 -5.3732 8 4.4 1 

06/02/2008 17:53:00 36.8928 -2.1944 10 4.3 2 
21/07/2008 2:30:03 39.013 -0.433 - 3.6 2 
02/10/2008 4:02:53 37.0442 -5.4112 8 4.7 2 
05/11/2009 5:39:55 37.0517 -3.8217 10 3.9 6 

11/05/2011 15:05:13 37.7196 -1.7076 2 4.5 2 
11/05/2011 16:47:26 37.7175 -1.7114 4 5.1 8 
11/05/2011 20:37:45 37.7308 -1.7012 4 3.9 2 

26/02/2012 15:31:35 37.0618 -3.8963 2 3.5 4 
05/02/2013 21:23:48 38.0399 -3.2755 3 3.7 2 
05/02/2013 21:24:12 38.0476 -3.2651 - 3.9 2 
23/11/2015 8:02:11 36.8027 -3.1812 7 3.8 2 

25/01/2016 4:22:01 35.6004 -3.8056 12 6.3 2 
31/01/2016 16:25:27 36.5694 -3.0897 - 4.5 2 
22/02/2016 3:46:03 35.6344 -3.6097 12 5.1 2 

12/03/2016 15:04:07 35.5668 -3.5971 22 4.8 2 
15/03/2016 4:40:40 35.6226 -3.6483 11 5.2 1 
03/05/2016 11:56:38 37.7181 -1.5876 - 3.7 1 
02/03/2018 19:08:22 37.981 -1.4223 12 3.9 2 

13/12/2018 7:58:27 37.6749 -1.7424 1 3.5 1 
25/10/2019 9:35:48 36.9835 -5.2931 - 4.5 2 
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Table 3. Statistics of the residuals (log10(Dnobserved) – log10(Dnpredicted)) resulting with different 

regression model (see Table 1). RMSE: Root Mean Square Error; E: Efficiency coefficient. 

Predictor Regression model RMSE E 
PGA J07_1 1.266 0.203 

 SR08_1 1.249 0.223 

PGA& M J07_2 0.550 0.850 
 RS09 0.495 0.878 

Ia J07_3 1.215 0.265 
 HL11 1.531 -0.166 
 RA11 1.031 0.471 
 CH14 0.882 0.613 
 JL18 1.944 -0.880 

PGA& Ia R00 1.451 -0.047 
 J07_4 0.733 0.733 
 SR08_2 0.474 0.888 

PGA&PGV SR08_3 0.421 0.912 
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Table 4. Regression models developed for estimating Newmark displacements in the Betic 

Cordillera. 

Predictor 
Primary 
type of 
Equation 

Equation for log10 Dn (Dn in cm) Σ ρ2 E 

PGA SR08_1 
      (      )        (      )(

  

   
)
 

        (      ) (
  

   
)
 

 

       (      )(
  

   
)
 

       (      )      (   )  
0.537 0.85 0.88 

PGA & M RS09 
       (      )        (      )(

  

   
)
 

        (      )(
  

   
)
 

 

       (      )(
  

   
)
 

       (      )     (   )       (      )    
0.438 0.90 0.91 

Ia CH14        (      )       (      )     (  )      (      )     (  )  0.806 0.67 0.68 

PGA & Ia SR08_2 

      (      )        (      )(
  

   
)
 

        (      ) (
  

   
)
 

 

       (      ) (
  

   
)
 

       (      )      (   ) 

      (      )      (  )  

0.406 0.92 0.92 

PGA & 
PGV 

SR08_3 

      (      )        (      )(
  

   
)
 

        (      )(
  

   
)
 

 

       (      )(
  

   
)
 

       (      )     (   ) 

      (      )      (   )  

0.351 0.94 0.94 
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Highlights: 

 Performance of existing models in low-to-moderate magnitude scenarios is evaluated. 

 Scalar models show magnitude and critical acceleration dependent behavior. 

 Best performance is found with polynomial vectorial models.  

 Models for the Betic Cordillera are proposed. 
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