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Abstract: Newmark displacement estimation is generally computed using empirical models.
These models are estimated from large datasets that mainly comprise moderate -to-high
magnitude events (Mw > 6.0). In this work, we study the performance of several of these
models to study moderate-to-low magnitude scenarios. For this purpose, data from the Betic
Cordillera, S Spain, with magnitudes ranging from Mw 3.5to 6.3, were used to compare with
model predictions. The results show thaterrorsin the estimates depend on the magnitude of

events or on the yielding acceleration considered to estimate the displacement. The



availability of an appropriate range of data (magnitude and yielding acceleration), when
definingthe regression model, may overcome the differences due to specific characteristics of
the seismotectonic context of the area where data derives from. The results also show that
performance of modelsincluding several ground motion predictors is better than those based
on a single parameter, regardless of the combination these predictors. Furthermore,
regression models with polynomial forms present a better performance than other functions
based on the logarithm of these predictors. Finally, new specific models for the Betic Cordillera
are proposed, especially suitable for low magnitude ever.. (< 5.0) and low critical

accelerations (< 0.1g), based on simplified polynomial form< ¢ ~odels.

Keywords: Earthquake-induced landslide, Newmar< dispracement, regression models, low

magnitude, Betic cordillera.

1. Introduction

Earthquake frequentlyind.ice .ondslides. The displacement of unstable masses contributes
to increasingthe damage c.''sed by ground shaking, being the cause of significant damage to
lifelines and urba’, ~re.~ (Bird and Bommer, 2004). The fast development our societies
experienced overthe last decades has dramatically increased the number of elements exposed

to risk.

Likely, developing maps to predict the location of areas prone to experience such a
phenomenonisthe best way to cope with this problem, and then definingan appropriate land
use planning. Among the available methodologies for the development of seismic-induced
landslide hazard maps, the rigid-block methodology proposed by Newmark (1965), adapted to

GIS environments (Jibson etal., 1998, 2000), has become the most widely used. Based on this



approach, potentially unstable materials may slide along a failure surface when the
acceleration of ground motion overcomes a threshold value known as critical acceleration of
slope (or yield acceleration, k,), and the block continues sliding up until the velocity of the
ground motion becomes zero. Critical acceleration measures the slope material resistance to
slide. The final computed displacement, also known as Newmark displacement (Dn), is
commonly used as an index for depicting areas prone to experience earthquake-induced
instability (Jibson and Michael, 2009; Rodriguez-Peces et al., 2011b, 2014). In general, it is

accepted that instabilities occur more frequently when Dn > 1 cr.\ 'Bray, 2007).

Newmark displacements have been computed by appl/ing two approaches (Jibson et al.,
2000; Jibson, 2011). In the first approach, a set of accelerograms are chosen, and the
displacements are calculated by double integration ~f « ~celeration each time it exceeds the
critical acceleration under consideration. Ba~e.' or. this approach, assumptions on seismic
characteristics of the scenario (the mag iitu.e of the event, the source mechanism, range of
distances, etc.) have to be done, man:ng more difficult the development of hazard maps for
areas where multiple scenarios are 2x)ected. The second approach uses regression models
which are obtained from the reg. ession of computed displacements for a wide variety of
accelerograms, usually ex.onsiv e databases of accelerograms, against a single ground motion
predictor (scalarm-:..'»ls, <=.1su Saygili and Rathje, 2008) or a number of them (vector models,
sensu Saygili and Rathje, 2008). This last approach is the method most frequently applied in
practice. Used predictors are usually the peak ground acceleration (PGA), the peak ground

velocity (PGV) and/or the Arias Intensity (/a).

Several authors have proposed different regression models since Newmark (1965)
proposed his pioneering method. These models can be divided into two different groups based
on how displacements are calculated differentiating between rigid-block and flexible-block

methods. Inthe rigid-block methods, no deformation occurs within the potentially unstable



mass, and its dynamic response is then neglected; likewise, as stated by Newmark (1965).
Flexible-block methods consider the dynamic response of non-rigid masses when computing
displacements. Flexible-block methods are useful to study deformable earth/waste potential
sliding masses (Rathje and Bray, 1999, 2000; Bray and Travasarou, 2007; Bray et al., 2018;
Jafarian et al., 2019). On the otherhand, methods based on a rigid-block approach provide the
bestresults to study shallow stiff slope failures such as rockfalls (Jibson, 2007, 2011; Saygili and
Rathje, 2008; Bray et al., 2018; Yigit, 2020). This is precisely the most frequent type of failure
induced by earthquakes (Keefer, 1984). In other cases, nested faii. e surfaces are considered

for computing the rigid-block displacement (Leshchinsky, 2Ny,

While focusing on the rigid-block regression analv<is, -ome models were obtained from
accelerogramsrecorded worldwide (Jibson, 2007; Sayzil ~nd Rathje, 2008; Rathje and Saygili,
2009; Hsieh and Lee, 2011; Table 1) and others ‘ro'n regional or country-based data: China
(Jia-Liang et al., 2018), Greece (Chous ani'is et al., 2014), Iran (Rajabi et al., 2011), Italy
(Romeo, 2000), Turkey (Bozbey and C'indogdu, 2011), among others. Evidently, regional or
country models are the most suitat le ones for the areas as determined by these authors
because used data intrinsiceliy 1.~lude source and shaking characteristics (source models,

anelastic attenuation, etc.) in such areas (Chousianitis et al., 2014).

In a recent study, > et al. (2018) considered up to 14 regression models, including both
worldwide and regional-based models, to evaluate uncertainties in predictions of Dn related to
the regression models. These authors considered three different scenarios, consisting of strike-
slip source events with moment magnitudes (Mw) of 7.5, 6.5 and 5.5, respectively. Then, they
calculated Dn with each of the 14 regression models. Because each model was established
from different strong ground motion databases and its functional form was also different, it
was not surprising that Dn fluctuated depending on the model considered. Such variability

showed that the standard deviation of Ln(Dn), with Dn in cm, predictions was higher for low



magnitude events than for moderate to high magnitude scenarios: 0.4-1.0 for Mw 7.5-6.5 vs.
1.2-1.7 for Mw 5.5. Such result was interpreted because most regression models were
obtained with data from moderate-to-large magnitude (Mw > 6) earthquakes. Table 1
compiles the characteristics of most regression models used by Du et al. (2018) and confirms
that Hsieh and Lee (2011) did not use data from events with Mw < 5.5 when establishing their
widely-used models. Such data were almost absent in the dataset used by Jibson (2007), and

they were scarce in those used by Saygili and Rathje (2008).

Recently, thereisarenewedinterestinthe contribution of '_ -\ -moderate earthquakes
(Mw 4.0-5.5) in the seismichazard computation (Nievas et /., 2920). Although seismic hazard
is primarily controlled by events with higher magnitude< a. ~ to their severity and widespread
damage, low-to-moderate events generate smalle” a.mages but much more frequently.

Hence, the population has to cope with these d. na_ses every year or every few years.

The Betic Cordillera (S Spain) is an .~ :a characterized by low-to-moderate magnitude
seismicity. Although high magnitude /M. > 6.5) events have occurred in the past, their return
period is very high (centuries). .~ u.e contrary, events with Mw in the range 4.0-5.5 are
relatively frequent (IGN, 2019). '~ the last decades, several of these events have occurred (Fig.
1) and triggered multir!z si._dow failures (disrupted landslides sensu Keefer, 1984) which
affected road netwo.!'s (Delgado et al.,, 2011, 2013, 2015; Alfaro et al, 2012). These
infrastructures have proved to be especially vulnerable to seismically-induced landslides

(Delgado et al., 2017). Similar results have been observed elsewhere (Martino et al., 2019).

The Spanish government is confronting hazards related to seismic-induced landslides affecting
road infrastructure in the Betic Cordillera, through a project (EPILATES) which aims at
developing hazard maps along roads specifically for shallow failures based on the rigid-block
method. This project has to evaluate both the most severe and most frequent seismic

scenarios (Mw < 5.5). The estimation of the Newmark displacement is a critical factor in
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developingthis project. Unfortunately, thereis no explicitly established regression model for
estimating Dn for this area. As a consequence, models obtained overseas have been used in
the past (Rodriguez-Peces et al., 2011b, 2014). Nevertheless, the high standard deviations in
displacement predictions observed by Du et al. (2018) for low-to-moderate magnitude events
(Mw < 5.5) pose the issue of the utility of current relations in these seismic scenarios. When
preparing seismically-induced landslide hazard maps, it is imperative both to identify the
threatin each point of the territory, and make a correct assignment to areas with/without risk
(i.e., identifying areas where Dn > 1 cm from those where Dn i_ lower than this threshold
value). However, given the high variability in the obtained re_*''s with presently available
relationships for low-to-moderate magnitude scenar.s, uncertainties about the correct

assignment of the territory to its category (stable/uns*able) are very high in such scenarios.

o Spanish Strong Ground
Motion Network

Event magnitude (M,, m,,,)

* 20 -4.0
* 40 -45 =
* 45 -50

% 50-55




Figure 1. Map showingthe location of stations of the Spanish Strong Ground Motion Network
operated by the Spanish IGN. The map also shows the epicentral location of earthquakes

known to have induced landslides for the period 1919 to 2019.

In this work, we analyzed aset of 13 regression models to evaluate theirusefulness for low
magnitude scenarios in the Betic Cordillera. For this purpose, recorded accelerograms in this
area are used to compute Newmark displacements. Obtained da*a are subsequently compared
with predictions made by the selected models, and the residuz:s o "2 analyzed to evaluate the
performance of each model considered. Finally, we propcse re gression models for the Betic
Cordillera based on the best performing regression /. m. in the comparative analysis and
Newmark displacements computed from acceleros.ams recorded at different sites of this

region.

2. Data

The Spanish Strong Grou* d Motion Network which has been in operation since 1993 is
operated by the Institutc Gengrafico Nacional (IGN). At present, it consists of 128 three
componentsstatio’.., lo.~*:d mainly in and around the Betic Cordillera (Fig. 1). In the period
1993-2019, this network hasregistered upto 895 earthquakes, resultingin a database of 1879,
3-component, strong ground motion records (5637 single componentrecords). The magnitude

of events ranges from 1.2to0 6.3.

We have used the IGN database of records (up to October 2019), and among them, we
have selected those meeting the following requirements: Mw > 3.5 and PGA > 0.02g (low
magnitudes, usually in the my;scale, were transformed to Mw scale following the relations as

proposed in the latest update of the Spanish seismic hazard map; CNIG, 2013). Additionally,



only free-field or ground floor records were considered. Events of magnitude < 3.5 sometimes
produced records with PGA> 0.02 g, but they were discarded because their duration and
frequency content hardly induce landslides. The minimum PGA considered is in agreement
with minimum acceleration reported as the threshold value to induce shallow disrupted
landslides (Jibson and Harp, 2012; Delgado et al, 2015). Taking into account these
requirements, the resulting dataset included 87 single-component, horizontal records (Table
2), 10.4% on type A, 63.2% on type B and 26.4 % on type C site conditions (following the

categories defined in the EC8 building code), according to data su,~olied by IGN.

These records were processed as follows:

Baseline correction and bandpass filtering (0.+-27 hz). Done through SeismoSignal

software (©SeismoSoft, 2016).

e Foreachrecord, displacements were conuteu for both positive and negative polarities
considering the largest value for the cralysis (Saygili and Rathje, 2008).

e Displacements computed from orthc ~onalcomponents recorded at the same station were
considered as separate data (.~ ti.e analysis (Saygili and Rathje, 2008).

e Rigidblockdisplacementsv.=re computed for k, values of 0.02, 0.03, 0.04, 0.05, 0.06, 0.08,

0.1, 0.125, 0.15, 0.2. 2?5 .nd 0.3 g.

Specific software was coded for automatically computing displacements. Critical
acceleration values were chosen taking into consideration that values greaterthan 0.1 g are

not frequently recorded during earthquakes with Mw <5.0.

After processing, the resulting database is characterized by PGA values lying in a range
between 0.02 - 0.39 g, PGV values in a range between 0.35 - 33.15 cm/s, and /a horizontal
valuesina range between 0.07 - 52.80 cm/s. Atotal of 242 Dn values were computed from this

database of accelerograms. Displacements vary from almost zero (10°) up to 26 cm (Fig. 2).
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Figure 2. Distribution of seismic data used in our an.'vsis as a function of magnitude and

epicentral distance, and ground motion parame*~.rs

3. Analysis

3.1. Regression models

We have select~d 1> resression models in our research (Table 1). These models present a
wide variety of functic =4l forms to compute Newmark displacements, including three different
parameters for measuring the severity of ground motion when estimating Dn: PGA, PGV and
la. For some models, earthquake magnitude together with the PGA add up as ground motion

predictors.

Many of these models (9) were obtained from worldwide dataand, consequently, include
data from different geodynamic contexts. These models were obtained from extensive
databases; however, few datafrom earthquakesin the range of magnitudes of interest for this

study (Mw < 5.5) were used. Additionally, most of the critical accelerations considered in



establishing these models were high (0.2 g and higher), greater than accelerations usually

recorded during low-to-moderate magnitude scenarios.

The remaining models were established from regional or country-based data (China,
Greece, Iran and Italy). Including such models help us to monitor their usefulness, given the
similaritiesin the geodynamic context (Italy) orin the range of magnitudes from the data used
in establishing those models (Greece and Iran). The China model (Jia-Liang et al., 2018) was
used as an example of a model obtained with data from a single event of very different
magnitude (Mw 7.9) in a geodynamic context thatis somewhat Aifte, ~ntto that existing in the

Betic Cordillera.

Two of these models (J07_1 and SR08_1) use th= ,"3A as a predictor of ground motion
severity. Theirfunctional forms are very different fre n each other. Other two models use the
magnitude in additionto PGA (J07_2 and RS0?.. Oi..e again, their respective functional forms
are very different. Up to five models convider the la to quantify ground motion severity.
Models JO7_3 and Rall share the func.'onal form for the equation while the others (HL11,
CH14 and JL18) use different cc.. hii.utions of /a and k, to define the model. Other three
models combine PGA and la tu ~haracterize the ground shaking level (R00, JO7_4 and SR08_2).
Models ROO and J07_4 kave *ae same functional form, different from the SRO8_2 model.

Finally, there is oniy a ~ingle model that uses PGA and PGV to predict Dn (SRO8_3).

In our analysis, we analyze the residuals obtained by using the regression models to
predict Dn in the Betic Cordilleraand compare them with observations computed as described
inthe previoussection. PGA, PGV and la values compiled for the 87 records considered in this
study were used to compute Dn according to each model. Residuals are defined as the

difference between “logio(Dnobserved) = 10810(DNpredicted)”-

3.2. Residuals versus ground motion predictor



Figures 3 and 4 present plots with the residuals obtained from each model; Table 3 shows
some statistics of them. Two parameters have been considered to control the performance of
each model: the root mean square of errors (RMSE) and the efficiency coefficient (E).
Chousianitis et al. (2014) already used the aforementioned coefficient to evaluate the quality

of their models . Numerically, it is equal to:

4 (i —y)?
E=1 X —yi)?

In this formula, y;is the experimental observations (Dn computea 1. "m accelerograms), y; the
mean value of observations, and y;" the corresponding ve'== .. edicted by the model. This
coefficient quantifies the better functioning of the . ndel regarding the average as the
predictorofthe variable. It isa negative value if its pei’~r.nance is worse than average, and a

positive value if better than average (Chousian ti. e al., 2014).
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Figure 3. Residuals (and their relative frequency) obtained with regression models that use

PGA, PGA and PGV, or PGA and magnitude as ground motion predictors. See Table 1 for more

data about these models.
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Figure 4. Residuals (and theirrelative frequency) obtained with regression models that use /a

or PGA and la as ground motion predictors. See Table 1 for more data about these models.

The scalar models, which are those based on the PGA as an estimator of ground

motion (JO7_1 and SR08 1), show very similar results. They greatly overestimate Dn (Fig. 3),

and the corresponding statistics show alow performance for these models: RMSE is high and E



islow (Table 3). Because equations of both models are quite different from each other (Table
1), such low performance cannot be attributed to deficiencies in the form of the model to
reflect the complexity of ground motion. When magnitude is added to these models (J07_2
and RS09 models), the results show a noticeable increase in their performance. Residuals
consequently decrease less than a half, and efficiency increase above 0.8 (previous values are

around 0.2).

The results obtained with models based on /a show very high variability, from
moderate to deficient performance (Fig. 4 and Table 3). Mod~Is ;77_3 and RA11 share the
functional form of the model (they include terms with lo7,10\/7) and logio(k,)), but the latter
model gives slightly better statistics (lower RMSE ana “igher E, Table 3). Distribution of
residuals (Fig. 4) shows that J07_3 underestimates Dn, . ‘hile RA11 shows a bipolar behavior:

an overestimation for low Dn values and an unc < ces cimation for high Dn values.

Models HL11 and JL18 share a fu..~t"onal form of the model. Additionally, they differ
fromthe previousonesincludingaterm .‘ith k, (instead of its logarithm, as in JO7_3 and RA11)
and anotherterm with k, multipl,i>g...e logio(/a). The statistics of these models are the worst
obtainedinthe analysis (Table ?). Tney tend to overestimate Dn (Fig. 4), although the behavior
of the JL18 model is a bit n,~r2 erratic, showing a high dispersion of residuals, so we do not

consider this model i1, ~ur research given its deficient performance.

The best performance forthe /a-based models is found in the CH14 model. It reduces
RMSE to at least 50% concerning other la-based models, and increases the efficiency
coefficient a minimum of 50%, although a trend to overestimate displacements when Dn is

very low is recognizable (Fig. 4).

Regarding vector models, PGA-la models show high variability (Table 3). The R00
model shows poor performance, overestimating Dn in all ranges of values, and such

overestimation is significant (one logy, unit, similar to that observed for J07_1 and SR08_1



models). The othertwo models of this type show a better performance, especially the SR0O8_2

one.

Finally, there is only one model that uses both PGA and PGV as ground motion
predictors. The statistics are the strongest of all (Table 3) with small residuals RMSE values and
avery high efficientvalue. The residual distribution reveals a normal distribution around zero

with very narrow tails (Fig. 3).

3.3. Residuals versus magnitude of events

The nextstepisto studythe performance of each . ~odel depending on the magnitude
of the event. We believe this is of particular significa,. e, given that most common seismic
scenarios correspond to low magnitude ever.*< (Mw < 5.0). For this purpose, computed
displacements were grouped by magni.ude¢ , and RMSE was computed separately for each

range of magnitude. Groups were oi 2 5 units of magnitude (starting at 3.5).

Figure 5 shows theresult~ ~fi>';analysisandit clearly reflectsthat RMSE is not evenly
distributed with magnitudefo. all models. Starting with the scalar models based on worldwide
data (PGA: JO7_1 & SR08&-1; .~ J07_3 & HL11), they show the same relative behavior: RMSE is
maximum fordata wi.> very low magnitudes; furthermore, ittends to be gradually reduced as
magnitude becomes higher. RMSE is greater than 1 when M <5.0 (5.5 for some models) and
goes below such threshold only when M > 6.0. On the contrary, regional scalar models
(including dataon low magnitude eventsin theirdetermination) do not show such magnitude
to be dependent on RMSE behavior. Itis therefore essential to provide data of all magnitudes

of interest when developing a regression model.

Results obtained with scalar models based in PGA, including the magnitude (models

JO7_2 and RS09; Fig. 5) seem to be very useful. They were acquired from the same dataset as



the scalar models, that is, without data from earthquakes with M < 5.0, though they do not

show such clear magnitude-dependent behavior.
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Figure 5. Variation of RMSE a. = tunction of magnitude. Continuous lines depict models based
on worldwidedata. Dasnea 'ines depict models based on regional data. See Table 1forspecific

characteristics of each n odel.

Vector models (PGA-la or PGA-PGV) show a better performance than scalar models,
and no evidentrelation exists among magnitudeand RMSE. The findings demonstrate the poor

efficiency of the RO0 model (from Italy) to match the Betic Cordillera data once again.



3.4. Residuals versus critical acceleration

The final step in our analysis consisted of verifying the response of the models for low
values of the critical acceleration. When they were established, although some models
included low values of critical acceleration (Table 1), most data corresponded to critical
accelerations that are out of the range of recorded accelerations for moderate to low
magnitudes (k,> 0.1 g). As in the previous section, the residuals have been grouped as a
function of the critical acceleration considered when computing displacements. Because there
are few displacements for critical accelerations greater than 0.7 - (0. ly 14 values), they were

grouped into a single category. The results are shown in Fisurc 6.

Scalar models show different behavior depenai."g on the parameter considered
quantifying ground motion (PGA vs. la). Those hascd on PGA show that for very low critical
accelerationvalues RMSEis higher, and it stak 'izes when k, > 0.05 g. By comparison, la-based
models display more complex behavior _~ that no specific pattern may be identified to this
respect. Nevertheless, regional-based u~ta models typically perform better than worldwide

models.
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Figure 6. Variation of RMSE as a function ¢ f critical acceleration. Continuous lines depict
models based on worldwide data. Loshed lines depict models based on regional data. See

Table 1 for specific characteristics ¢f 2a:h model.

Vector models once o, ~in perform betterthan scalarmodels. Itis true not only for RMSE’s
absolute value but alsc for its variability as a k, function (RMSE displays lower variance than

scalar models).

4. Discussion

The evaluation of Newmark displacements is a basic requirement for the development of
hazard maps of seismically-induced landslides. There are currently several models available for
forecasting displacements. These are focused on a wide variety of predictors of ground

motion, datasets for model development, and model functional forms.



Scalar models based on a single ground motion predictor were commonly used, as these
predictors are typically the result of seismic hazard studies (expected PGA or la in a certain
return period) and can be easily implemented (through regression models) to create
seismically-induced landslide hazard maps. However, the analysis presented in the previous

sections shows that present scalar models have several limitations.

In the case of models based on the PGA as a predictor, the obtained results using data
provided by the Betic Cordillera (Figs. 5and 6) suggest that such models should be used onlyin
the range of the magnitudes or critical accelerations from *.ic, they were established,
because the resulting average residuals are greaterthan 1.C. Fru m Figure 3, the displacements
predicted systematically overestimate the real ones It may contribute to an unnecessary
overestimation of real hazard values, and maps e'aucrated based on these models can
erroneously restrict the use of the land who 1 7pplied to low-to-moderate magnitude

scenarios.

Models that include the magnritule of events in addition to PGA show a better
performance (Figs. 5 and 6). R.s.Juais are significantly smaller, and the aforementioned
tendency to overestimate disp.~cements is now corrected (Fig. 4). Perhaps, this could be the

best way to continue us’.:7 ... PGA as a predictor of ground motion severity.

Models based in the /a as predictor also show clear limitations. This parameter has been
usually considered a better estimator of ground shaking severity than PGA in seismically-
induced landslide studies because the whole accelerogram and range of frequencies are
considered forits computation, taking into account both the duration and frequency content
of the record (Wilson and Keefer, 1985; Keefer and Wilson, 1989). In contrast, PGA only
considers a single point in the accelerogram (that of maximum amplitude), in most cases
related to high frequencies. Consequently, PGA may be controlled by high-frequency pulses of

short duration and may not properly reflect the frequency content and the duration of the



ground shaking (Harp and Wilson, 1995). Du et al. (2018) pointed out another important
limitation of models based on PGA: it may be indistinguishable from the PGA of a high
magnitude eventinthe far-field from that of a low-to-moderate magnitude in the near field.
However, the frequency content and duration differ significantly between both scenarios and

the consequences on the stability of slopes could be quite different.

Eventhoughthe /a is considered more robust to quantify the severity of ground shaking,
displacements predicted by models based on this parameter show greatervariability than PGA
models. Insome cases, they overestimate displacements; in ot!.>rs, the opposite occurs. Itis
remarkable that regional models (Rall and CH14, but no. JL18) typically display lower
residuals than models obtained using comprehensive daw. (J07_3, HL11), initially with utility
restricted to the areas where they were developed. !n . 1dition to the observed differences
given the origin of the used data in designing the ncJels, there are also significant variations
inthe range of values used when establi ninr, the models. In essence, regional models consider
data from moderate-to-low magnitu.'e events, and low values for the critical acceleration
(although HL11 model also considerc d ow values of critical acceleration). Model JL18 shows
the worst results when pred.ctit,; our data, with very high residuals that show very high
variability. Interestingly, ti.’s mondelwas derived from a particular scenario: data from a single
high magnitude evr., * (1v**7.9) and very high critical accelerations (k,>0.2 g). These conditions
are distinctly different iromthose observed in the study area, where no data are available for
eventswith Mw > 6.3, and displacements for critical accelerations above 0.2 g are very scarce
in the dataset. Once again, these findings seem to point out that working with models
established from an appropriate range of data (of M, of k,) is vital, perhaps more critical than
utilizing models derived from only the same geodynamic background as the area being
studied. These results (Figs. 5, 6 and 8) also seem to point out that functional forms of
relationships based on Al are forecasting significantly worse than those based on other ground

motion predictors. New functional forms ought to be developed for this purpose. Maybe, the



use of extensive datasets and data-driven machine learning techniques could help to improve

these relationships.

Vectormodels are considered more robust to predict Newmark displacements (Saygili and
Rathje, 2008; Rathje and Saygili, 2009). Having a second parameter to explain the severity of
ground shaking allows the elimination of the observed indetermination, such as while dealing
with PGA based models (Du et al., 2018). The obtained results generally show an increase of
performance with respectto scalarmodels (lower RMSE and higher efficiency coefficient, see
Table 3). Eventhoughthereisa generalimprovementin predict.. s, .hisdoes notapply for all
models in the same way. Differences could not be attrib’itaL'e to the predictors but to the
functional form of models. Thus, distribution of real vs. nre licted displacements with model s
R0OO0 and J07_4 (PGA-la), show a distribution similar to 2 hyperbola, showing a trend to an
important overestimation for small/large disp'ice ments (Fig. 4). In these two cases, the
functional forms of the models were hig'dy s'.nsitive to small changes in the predictors, and a
slightincrease inthem would lead to . notable change in the predicted displacements (large
values). On the contrary, some kinc cf saturation of the model exists in the low range of
predictor’s values, and predictea tisplacements start to be very similar, departing from real
values (and overestimatii.7 thim). Differences between these R00 and J04_7 models come

from the fact that P.? n.>41 predicts larger displacements (Fig. 4).

Model ROO was of especial interest for this research. It was established with data from
Italy, an area which is commonly considered to have a similar geodynamic framework to that
foundinthe Betic Cordillera. Several ground motion prediction equations developed based on
Italian datawere used for hazard studies in Spain (i.e., Peldez et al., 2005, Rodriguez-Peces et
al., 2011a). Nevertheless, the overestimation of displacements, especially for the larger ones,
prevents its use in the Betic cordillera because it can lead to a significant overestimation of

hazard.



For the remaining vector models, the distribution of residuals shows that they can predict
displacements very close to the obtained ones. Most of the residuals (>40%) are less than 0.25
log,o units. Thatimplies that differences are underafactor of 2 (forexample, differences were
above 10 times the reported values for PGA models). Model SRO8 2 considers just the same
predictors as R0OO and JO7_4 models but it fits better here (Fig. 4), showing a quasi-lineal
relation between observed and predicted displacements. Statistics of control of this model are
also significantly better than J07_4 model. Moreover, Model SR08_3 uses PGA and PGV as
predictors. Displacements predicted based on this model could o considered the best of all
consideredinouranalysis (Table 3, Figs. 3—5). These two mndc '~ Lhare the same polynomial
functional form to forecast displacements. The RS0S moael (PGA-M) provides a similar
functional form, which also shows a lineal relau n<nip between real and predicted

displacements.

5. Proposal of regression models for t1.~ Betic Cordillera

Regression models used ir aur . 2search have shown wide variability in performance to
predict Newmark displaceme.*ts1. the Betic Cordillera, using the available data from low-to-
moderate magnitude e irth.'uakes. Itis remarkable to point out the low performance of scalar
models among the pres :nted results regardless of the predictor considered. Thus, RMSE is
very high for low critical accelerations (k,< 0.05 g) and low magnitude (Mw <5.0) in the PGA-

based models. Similarly, /la-based models show a noticeable irregular but high RMSE.

Displacement data provided by earthquakes occurred the Betic Cordillera have been used
to develop modelsvalid forthis area. In light of the presented results, it seems that polynomial
models work betterthan other functional formsinthis area. Then, only polynomial functional

models were considered forthe PGA model as well as a functional form similar to that of CH14



(Chousianitis et al., 2014), which has been the la-model that better performed in our study.

Additionally, polynomial models based in PGA-M, PGA-la and PGA-PGV also have been tested.

Data include the displacements computed as described in section 2. Since most data
correspond to low values of critical acceleration (0.02 and 0.03 g; Fig. 2), we have used a
weighted regression procedure to avoid an excessive influence of these data in the resulting
models. For this purpose, data were binned into 8 categories as a function of critical
accelerations (k, = 0.02, 0.03, 0.04, 0.05, 0.06, 0.08, 0.10, and a final category that includes
those data with K,> 0.1 g). Each category was weighted by 1/8, 7..¥ wight of individual datum
within each category was setto ‘(1/8)/numberofdatain th : bi.’. The analysis was conducted

using the Statgraphics software (©Statpoint Technolo=ies, 2019).

For each considered regression model, results ;howed that P-values for the calculated
coefficients of the term k,/PGA in all poly- omic models were always greater than 0.05.
Therefore, thatterms are not statistically _i".nificant at the 95.0% or higher confidence levels.
Similarresultis observed with the term ic 7;5(1a) *log0(k,) in the model that uses /a as predictor
of ground motion. Consequentl', . ‘e ;.ave removed them in the corresponding models. This
may be due to the limited amoJ.nt of availabledatafor the analysis. Presumably, as more data
becomesavailable, the rZ~t, _.ents for those terms may become statistically more significant

and the models will re.~in these terms.

Once removed, data were fitted with the new functional forms. The corresponding
models are presentedin Table 4. Residuals obtained for each model are shownin Figures 7and
8. The resulting models are usually characterized by high values of the correlation coefficient
(p%), above 0.85, and low standard deviations (between 0.3 and 0.5). It is remarkable the good
quality of the model that uses PGA and PGV: p° = 0.94, standard deviation = 0.35 and residuals
of almost 70% of data are lower than 0.25 log;, units (Fig. 7). Because these models were

obtained from a dataset that includes the range of accelerations of interest for low-to-
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moderate magnitude earthquakes, RMSE do not shows any dependence of k,. Thisis especially

remarkable in the case of the PGA-model, where currently available models show a strong

relation of RMSE with k, (Fig. 8).
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Figure 7. Residuals (and theirrelative frequency) obtained with regression models obtained for

the Betic Cordillera. See Table 4 for more data about the models.

Yet again, the model that uses /a as ground motion predictor shows the worst statistics
(Table 4), being p*> = 0.67 and the standard deviation is as high as 0.8. Figure 7 shows that only
20% of data show residuals below 0.25log, units. Distribution of data vs. predicted values of
displacement shows the same hyperbolicshape (although less pronounced) already observed
in other models based on this parameter. This may impl a ~ossible deficiency of the

functional form of these models.
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Figure 8. Variation of RMSE as a function of critical accelerationin the models obtained for the

Betic Cordillera(bluelines). See Tables 1and 4 for more details concerning regression models.



These results (Figs. 5, 6 and 8) seemto point out that functional forms of relations based on /a
are working worse thanthose based on otherground motion predictors. New functional forms
should be considered forthis purpose. Perhaps, the use of extensive datasets and data-driven

machine learning techniques may help to improve these relations.

6. Conclusions

The use of regression models to estimate Newmark displace = atsis a standard procedure
when estimating seismically-induced landslide hazard mzys. Acpresent, most available models
have been obtained from data recorded during earth,1ak 2s of moderate -to-high magnitude
(Mw > 6.5). However, many areas in the world ar: ~ffected by moderate-to-low magnitude
earthquakes. Thus, the reliability of existir.g: You ~Isisnotassured forthese areas. In our study,
an analysis of the behavior of some of these | >gression models was conducted by comparison
with data fromthe Betic Cordillera/s € ~in). The aim has been to evaluate their usefulness to

predictreliable values of Newm. vk displacements for moderate-to-low magnitude scenarios.

The results have shov. n thac the performance of scalar models is low. A general trend to
overestimate disp'c-ei.er¢s is detected in models that use the PGA as ground motion
predictor, while the wvehavior is irregular in la-based models. In both cases, errors in
displacement forecasting increase, considering lower magnitudes (Mw < 4.5-5.0) or lower
critical acceleration scenarios (k,< 0.05 g). Regional regression models, based on low
magnitude and low critical accelerations, give more significant results than worldwide ones. It
seems that it is imperative to have an appropriate range of data (both for Mw and k,) to
establish the regression models since they may overcome differences due to the geodynamic

context of the area where data come from.



Vector models show a better performance regardless of the combination of ground
motion predictors considered in the model. The inclusion of a second ground motion
parameter allows a better characterization of ground motion severity and the extrapolation of
existingmodels is possible (even though they did not include Mw or k, found in moderate-to-

low seismic scenarios).

The functional form of regression models displays some control over the quality of the
results obtained in this study. Polynomial forms exhibit better behavior than other forms
based on the logarithm of ground motion predictors. It become= -<pcziallyrelevant when /g is
considered as a predictor from which no polynomial nmoac' exists, and the accuracy of
predictionsislowerthanin PGA or PGA-PGV dependent m. dels. New functional forms should
be considered forthis ground motion predictor. New ctucias are needed onthistopic. Perhaps
the usage of very large datasets and data-driven . -ac'iine learning techniques may be of great

benefit.

Finally, we propose newmodels for .~e Betic Cordillera. They have been developed using
polynomial functional forms, ar. 3rc .apable of reducing the residuals in all situations with
regard to currently available . ~odels. They are especially suitable for low magnitude events

(Mw <5.0) and low critic=! ac~.lerations (k,< 0.1g).
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Figure caption

Figure 1. Map showingthe location of stations of the Spanish Strong Ground Motion Network
operated by the Spanish IGN. The map also shows the epicentral location of earthquakes
known to have induced landslides for the period 1919 to 2019.

Figure 2. Distribution of seismic data used in our analysis as a function of magnitude and
epicentral distance, and ground motion parameters.

Figure 3. Residuals (and their relative frequency) obtained witih regression models that use
PGA, PGA and PGV, or PGA and magnitude as ground motion prea. tors. See Table 1 for more
data about these models.

Figure 4. Residuals (and theirrelativefrequency) obtaineu “vith regression models that use /a
or PGA and /a as ground motion predictors. See Tabl< 1fc - more data about these models.

Figure 5. Variation of RMSE as a function of mz zr.. ~17.e. Continuous lines depict models based
on worldwidedata. Dashed lines depict m~. . ~ls -ased on regional data. See Table 1forspecific
characteristics of each model.

Figure 6. Variation of RMSE as a ‘ur.c..un of critical acceleration. Continuous lines depict
models based on worldwide da’.a. Dasned lines depict models based on regional data. See
Table 1 for specific characteristic: of each model.

Figure 7. Residuals (anc u.>irielativefrequency) obtained with regression models obtained for
the Betic Cordillerz. Sev Talsle 4 for more data about the models.

Figure 8. Variation of RMSE as a function of critical accelerationin the models obtained for the
BeticCordillera (bluelines). See Tables 1and 4 for more details concerningregression models.

Table caption

Table 1. List of regression models for estimating Newmark displacement (Dn) usedin the
analysis.PGA: Peak ground acceleration (ing’s); PGV: Peak ground velocity (incm/s); la: Arias
intensity (in m/s); M: Moment magnitude; k,: Critical acceleration of slope (ing’s). NA: Not
available.



Table 2. List of earthquakes and strong ground motion records used in the analysis. Datafrom
IGN (availableat https://www.ign.es/web/ign/portal/sis-catalogo-acelerogramas).

Table 3. Statistics of the residuals (10810(DNobserved) = 10810(DNpredictea) ) resulting with different
regression model (see Table 1). RMSE: Root Mean Square Error; E: Efficiency coefficient.

Table 4. Regression models developed for estimating Newmark displacementsin the Betic
Cordillera.



Table 1. List of regression models for estimating Newmark displacement (Dn) used in the

analysis. PGA: Peak ground acceleration (ing’s); PGV: Peak ground velocity (in cm/s); la: Arias
intensity (in m/s); M: Moment magnitude; k,: Critical acceleration of slope (ing’s). NA: Not

available.

. Code . 2 Num. Magnitude Num. N
Predictor (Reference) log10 Dn (Dnin cm) ° EQs range Records
poagla 100 0.852 + 0.6071 (I—a) —-37191 (k—y) 0.365 0.89 17 4.6-6.8 190

@ (Romeo,2000) OU710810 \10g) ™2/ 7 10810\ by ‘ ‘ o
107_1 K\ Ky
PGA Uibson, 2007) 0215+ 2341l0gs, (1-22)-1438l0g, () 0.510 084 30 53-7.6 2770
o7 2 —0.710 + . .
PGA& M Uibson, 2007) 2.335log;, (1 —P—;A) — 1.478log,, (ﬁ) + 0.454 0.87
0.424M
la :ﬁ;gﬁn 2007) —3.230 + 2.401 log,,(Ia) — 3.481log,, (k,) 0.656 0.71
PGA& | 1074 —1.474 + 0.56 log;,(Ia) — 3.8331 (ﬁ) 0.616 0.75
@ (libson, 2007) . 5610gyo(1a) - 3.833log (5~ : -
2
SRO8_1 0.4343 [5.52 —443(2)-2039(2) +
PGA (Saygili & b \? e\ roa 1.13 NA 54 5.0-7.9 2383
Rathje, 2008) 4261 (=2) —2874(-2) + 0.721n(PGA)]
2
0.4343 [2.39 ~5.24(2)-1878(2) -
SROS 2 PGA PGA 0 46 .
- ) LAY \ :
PGA Ia (Rs:tﬁi . 88; 4201 (%) -2915(-2) - 1.56In(PGa, 0s6kpca)  NA
’ 1.381n(14)
2
0.4343[—1.56—4.58 (2)-208 2 ) +
pGARPG R08.3 i \8 v o 0.41+
$ (Saveili & 4475(2) 305 () — v64.(PGA) + os2spen) A
Rathje, 2008) paa P4 e
155 In(PGV)
2
04343 [4.89 —485 )~ 1964 (=) +
RS09 3 SN, pGA 0.732+
PGA& M  (Rathje & 4249 (—7) —2006 == +0.72In(PGA) + 0.789(k,/PGA)—  NA 54 5.0-7.9 2383
sayeili, 2009) o (M”j’*@ r 0.539(k,/PGA)
HL11 1.84 +
la (Zl-é)slli? & Lee, 0.8471rq10\'v)—10.62ky +6.587k, logyo (I@) 0.259 0.89 6 6.7-7.6 1343
Rall
la (Rajabi et al., —1 154+ 1.202 log;, (Ia) — 1.585log;, (k,) 0.358 NA 80 36-7 108
2011) a \
CH14 -
— 495 + 2.228log,, (Ia) — 2.498log,, (k,) +
la (Chousianitis . o1 (o) g“&l(( )) go(k) 0.231 095 98 3.2-6.7 205
etal., 2014) 081011210810\ Ky
JLig 2092 + 0.465log,, (Ia) — 22.201k, +
la (Jia-Liang et 12.896k. log,, (Ia) 0.148 0.92 1 7.9 33
al., 2018) ©7OKy 10810

*Displacements were computed, for each accelerogram, by setting the ratio k,/PGA instead of
fixing the value of k.

**Figure 3 of Saygili and Rathje (2008) plots accelerograms versus distance and magnitude of
events. Some accelerograms were used in the range Mw 5.0-5.5 but the overlap of symbols
prevents estimating the number of them or the percentage with respectto total datausedin

the analysis.



Table 2. List of earthquakes and strong ground motion records used inthe analysis. Datafrom
IGN (availableat https://www.ign.es/web/ign/portal/sis-catalogo-acelerogramas).

" Num.
Date Time Lat. Lon. Depth (km) Mw Records
23/12/1993 14:22:35 36.78 -2.9367 8 5.0 2
04/01/1994 8:03:15 36.5717 -2.815 2 4.9 3
19/04/1994 23:51:59 37.3083 -1.9467 5 3.6 1
17/03/1995 14:04:14 37.175 -3.7733 2 39 3
09/01/1996 7:36:59 37.055 -3.92 2 3.8 2
28/12/1996 7:30:37 37.1617 -3.7167 1 4.1 7
24/02/1997 7:09:51 37.02 -3.835 6 4.3 6
18/11/1998 23:18:11 36.9678 -3.7792 3 3.8 4
02/02/1999 13:45:17 38.0963 -1.5014 1 4.7 2
10/09/2003 20:22:47 37.1189 -3.7966 3 3.6 2
29/01/2005 7:41:32 37.8535 -1.7555 11 4.8 2
04/01/2007 23:32:32 37.2008 -3.7447 - 3.8 3
30/06/2007 3:53:45 37.0784 -5.3732 8 4.4 1
06/02/2008 17:53:00 36.8928 -2.1944 1% 4.3 2
21/07/2008 2:30:03 39.013 -0.433 3.6 2
02/10/2008 4:02:53 37.0442 -5.4112 8 4.7 2
05/11/2009 5:39:55 37.0517 -3.8217 1 3.9 6
11/05/2011 15:05:13 37.7196 -1.7076 2 4.5 2
11/05/2011 16:47:26 37.7175 -1.7114 1 51 8
11/05/2011 20:37:45 37.7308 -1.701". 4 3.9 2
26/02/2012 15:31:35 37.0618 -3.876> 2 3.5 4
05/02/2013 21:23:48 38.0399 2 2/258 3 3.7 2
05/02/2013 21:24:12 38.0476 -3..651 - 3.9 2
23/11/2015 8:02:11 36.8027 © 1812 7 3.8 2
25/01/2016 4:22:01 35.6004 -3.8056 12 6.3 2
31/01/2016 16:25:27 36.5694 -3.0897 - 4.5 2
22/02/2016 3:46:03 35.634: -3.6097 12 51 2
12/03/2016 15:04:07 35.57%.° -3.5971 22 4.8 i
15/03/2016 4:40:40 35..26 -3.6483 11 5.2 1
03/05/2016 11:56:38 37718, -1.5876 - 3.7 1
02/03/2018 19:08:22 27531 -1.4223 12 3.9 2
13/12/2018 7:58:27 37 5749 -1.7424 1 3.5 1
25/10/2019 9:35:48 36.9835 -5.2931 - 4.5 2
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Table 3. Statistics of the residuals (10810(DNobserved) = 10810(DNpredictea)) resulting with different
regression model (see Table 1). RMSE: Root Mean Square Error; E: Efficiency coefficient.

Predictor Regression model RMSE E

PGA J07_1 1.266 0.203
SR08_1 1.249 0.223

PGA& M J07_2 0.550 0.850
RS09 0.495 0.878

la J07_3 1.215 0.265
HL11 1.531 -0.166

RA11 1.031 0.471

CH14 0.882 0.613
JL18 1.944 -0.880

PGA& la ROO 1.451 -0.047
J07_4 0.733 0.733

SR08 2 0.474 0.888

PGA&PGV SRO8_3 0.421 0.912

39



Table 4. Regression models developed for estimating Newmark displacementsin the Betic
Cordillera.

Primary
Predictor type of Equation forlogio Dn (Dnincm) 3 p> E
Equation

2 3
1655 (+0.166) — 13.755 (+3.193) (=2 ) +26.429 (+7.012) (=) —
PGA SRO8_1 o PGA PGA 0537 085 0.88
16.897 (i4.090)($) + 1487 (+£0.127) log,, (PGA)

ky, \2 ky, \3
~0.813 (+0.261) — 12.428 (iz.eoz)(ﬁ) +22.873(i5.717)($) -

o 0.438 0.0 0.91
14.487 (+3.337) (j) +1.268 (+£0.105)log,, (PGA) +0.486 (+0.044) M

PGA& M  RS09

la CH14 —1.014 (40.240) + 2.185 (£0.102)1log;, (Ia) — 2.291 (i0.235)log10(ky) 0.806 0.67 0.68

7 —3
1.416(i0.127)—11.110(12.423)(%) +20421 (£5.32M (;;A) -
4
PGA&Ia  SROB.Z 13303 (+3.105) (-2) 0279 (+0.163) log,y(PGA)+

A

1.056 (+0.079) log,, (Ia)

0.406 0.92 0.92

3
~1419(£0.203) - 10.713 (+2.092) (=2 ) +19.787 (L 4.55) (=) —
PGA & B A PGA PGA
PGV SR08_3 13.065(12.680)($) — 0530 (+0.140)log,,( ™74,
1.632 (£0.091) log,, (PGV)

0.351 0.94 0.94
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Highlights:

e Performance of existing models in low-to-moderate magnitude scenariosis evaluated.
e Scalar models show magnitude and critical acceleration dependent behavior.

e Bestperformanceisfoundwith polynomial vectorial models.

e Modelsforthe BeticCordilleraare proposed.
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