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Abstract

Ž .We show that in certain limits the 1q1 -dimensional massive Thirring model at finite
temperature T is equivalent to a one-dimensional Coulomb gas of charged particles at the same T.
This equivalence is then used to explore the phase structure of the massive Thirring model. For

Ž .strong coupling and T 4m the fermion mass , the system is shown to behave as a free gas of
Ž .‘‘molecules’’ charge pairs in the Coulomb gas terminology made of pairs of chiral condensates.

This binding of chiral condensates is responsible for the restoration of chiral symmetry as T™`.
In addition, when a fermion chemical potential m/0 is included, the analogy with a Coulomb gas
still holds with m playing the role of a purely imaginary external electric field. For small T and mˆ
we find a typical massive Fermi gas behaviour for the fermion density, whereas for large m it
shows chiral restoration by means of a vanishing effective fermion mass. Some similarities with
the chiral properties of low-energy QCD at finite T and baryon chemical potential are discussed.
q 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Ž .The massive Thirring MT model in two space-time dimensions has been widely
studied as a toy counterpart to low-energy QCD, since it does not include many of the
complications arising in 3q1 dimensions. Amongst the features shared by the MT

Ž .model and QCD is hadronisation bosonisation . In this primitive version, the MT model
Ž .is equivalent to the sine-Gordon SG model, both at zero and non-zero temperatures

w x Ž .1–3 . Viewed as a non-linear sigma model NLSM in 1q1 dimensions for a single
Goldstone boson with an explicit symmetry breaking term, the SG model mimics the
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Žchiral Lagrangian for low-energy, strongly coupled QCD whose role is played here byˆ
.the MT model where the lowest energy excitations of the vacuum are the Goldstone

Ž .bosons. In addition, the solitonic excitations of the SG model kinks, for brevity
correspond to Thirring fundamental fermions and hence they are the analogue of QCD

w xbaryons or, alternatively, the NLSM skyrmions 4 .
This paper is the second in a series concerning the statistical mechanical features of

w x Ž .those models. In Ref. 3 , the MTrSG system and their equivalences bosonisation
were analysed at finite temperature T)0 and non-zero fermion number chemical
potential m/0. It was shown that when there is a non-zero net fermion number in the
MT model, a topological term arises in the dual SG model which counts the number of

w xkinks minus antikinks 3 . Physically this term represents the thermal bosonisation of
fermions into kinks and it reflects the existence of pure fermion excitations in the
thermal bath. The same term appears in the exactly solvable massless Thirring model
w x5 , and a similar contribution for a non-zero baryon chemical potential in the low-en-

w xergy QCD chiral Lagrangian was obtained in 6,7 . However, the massless Thirring
model, dual to the Schwinger model, has a much less rich and relevant structure if we
have QCD in mind, and we shall not consider it here, except as a limiting case.

The purpose of the present paper is to analyse the thermodynamics of the MT model,
Žcalculating physical quantities such as the pressure, the fermion condensate the order

.parameter of the chiral symmetry and the fermion number density. We believe this to
be important for obtaining a better understanding of crucial physical phenomena such as
the QCD chiral phase transition, not only at finite temperature but also at finite baryon

w xdensity 8 .
Ž .We now introduce the model. In Euclidean space-time with metric q,q the

Lagrangian density of the MT model is
1 2 mLL c ,c syc Euqm cq g j x j x .Ž . Ž .Ž .MT 0 m2

Here c is a two-component fermionic field, the 0 subscript denotes bare quantities and
2Ž . Ž . Ž . w xj x sc x g c x where the Euclidean g matrices may be found in 3 . For g )0m m

forces are attractive and the theory is super-renormalisable. For y1r2-g 2rp (0,
w xfurther renormalisations need to be carried out as discussed in Ref. 9 for example,

2 w xwhereas for g rp(y1r2 the theory is no longer renormalisable 10 . Throughout this
paper we take g 2 )0 unless otherwise stated. With QCD in mind we are interested in
strong coupling. In this we are aided by the general result that the natural parameter in

Ž 2 .y1which to express results is 1qg rp . This is understood by the explicit nature of
the duality with the SG model, with Lagrangian density

a01 mw xLL f s E fE fy coslf ,SG m2 2l

where f is a real scalar field. Recall that these models are equivalent only in the weak
sense, i.e. for vacuum expectation values and thermal averages, provided that their

w xrenormalised constants are related through 1

l2 1
s , 1.1Ž .24p 1qg rp

a
sr m , 1.2Ž .2l
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where r is the renormalisation scale and m the renormalised mass at that scale. Thus
large positive g 2 corresponds to small l2, for which approximations can be well
controlled.

With QCD in mind, we will be interested in the chiral properties of the MT model as
Ž .well as of physical quantities such as the pressure. The chiral U 1 transformations are

Ž 5.c™exp iag c for the fermions and f™fqarl for the bosons with a real
arbitrary. The massless Thirring model is chiral invariant but the fermion mass term
breaks that symmetry explicitly. Similarly the free boson theory is chiral invariant,
whereas the coslf term in the SG model breaks it. Both models have still a residual Z

invariance, corresponding to the choice as2p n with n any integer. It is important to
remark that in two space-time dimensions, the breaking of a continuous symmetry
Ž Ž . . w x Ž .U 1 ™Z in this case cannot be spontaneous 11 . The U 1 and Z symmetries are,
respectively, the counterparts of the chiral and isospin symmetries for QCD, a and l0

playing the role of the pion mass squared and the inverse of the pion decay constantˆ
w xrespectively in the effective chiral Lagrangian to lowest order, i.e. the NLSM 12 . These

Ž .generalities apart, the identification 1.1 which, for strong coupling becomes lgf2p ,
is the only attribute of the SG theory that we shall use. Depending on which is most
convenient, we shall switch between the use of g and l. This is not to say that the SG
model has no interest in its own right. It fact, it is an ideal testbed for summation

w xschemes for the pressure and, as such, will be considered elsewhere 13 . It is also of
w xdirect relevance to the study of kinks in Josephson junctions 14 .

In order to make progress we comment on a further property of the 2D MT model
that also has a counterpart in QCD: at Ts0 and ms0 it is also equivalent to a 2D
classical statistical-mechanical system which consists of non-relativistic particles of

Ž . w xcharge "q a Coulomb gas at a temperature T 9,15 . Before clarifying the form ofCG

this analogy, we comment that one of the aims of this paper is to understand whether a
similar equivalence holds when the MT model is heated to a non-zero temperature T and
for m/0. If it does, we will then be able to use the simpler Coulomb gas system to
explore its phase space. It has not yet proved possible to perform similar calculations for

w xQCD, as represented in 16 , in which the Coulomb gas is composed of monopoles.
Indeed, one of our conclusions is that at high temperature T , the MT model can be

equivalent to a one-dimensional Coulomb gas of particles at the same temperature T.
This is not the case for the Ts0 MT model, for which

2p q2

T sCG 2l

Ž . 2 w xleading to a Kosterlitz–Thouless metal-insulator transition at l s8p 15 . The 1D
w xCoulomb gas model has been solved exactly 17,18 and we use those results to extract

information on the behaviour of observables such as the pressure and chiral condensate
of the MT model. Furthermore, when m/0 in the MT model, we show that the analogy
with a 1D Coulomb gas still holds with m playing the role of a purely imaginaryˆ
external electric field.

This paper is organised as follows. In Section 2 we analyse the conditions under
which the equivalence with a 1D Coulomb gas holds. Having specified this ‘‘dimension-
ally reduced’’ regime, the exact link between the parameters of the different models is
then specified in Section 3 where the pressure of the MT model is also calculated.
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Section 4 is concerned with the fermion condensate. We see that for large g and T
4m, the MT model behaves as a free gas of ‘‘molecules’’ made of pairs of chiral
condensates. This binding of chiral condensates is responsible for the restoration of
chiral symmetry as T™`, and no phase transition takes place. The effects of a fermion
chemical potential m/0 on the pressure and fermion density are discussed in Section 5.

2. Dimensional reduction of the T)0 MT model

At non-zero temperature T and zero chemical potential ms0 the MT model partition
w xfunction is given by 2,3

2 n22 l r4p` 1 r m T
FZ T sZ T F l,T , L . 2.1Ž . Ž . Ž . Ž .ÝMT 0 2 nž / ž /n! 2 rns0

FŽ .Here Z T is the partition function for a two-dimensional free massless Fermi gas,0

which, ignoring irrelevant vacuum terms, is given by

p LT
FZ T sexp ,Ž .0 6

Ž .and the function F l,T , L is2 n

2n
2b L e e l r4pj k2F l,T , L s dt dq Q x yx . 2.2Ž . Ž . Ž .Ł ŁH H2 n j j j k

0 0js1 k-j

Ž . y1Here x ' t ,q , bsT ,j j j

q js1, . . . ,n
e sj ½ y jsnq1, . . . ,2 n

and L is the length of the system. We will eventually take the thermodynamic or L™`

limit in all our results. It must be clarified though that the L™` limit will be taken
always keeping b finite. In fact, we will see explicit examples below in which the

q Ž .L™` and T™0 limit do not commute. Finally, the Q variable in 2.2 also appears
w xin the finite temperature free massless boson and fermion propagators 2 and is given by

p qq it p qy itŽ . Ž .
2Q q ,t ssinh sinh 2.3Ž . Ž .ž / ž /b b

w x Ž .betraying its conformal origins. As discussed in 3 , the integrals in 2.1 are convergent
for g 2 )0.

Ž .Eq. 2.1 will be our starting point here. First, notice that

< < < <2p q p q
12Q q ,t ™ exp for 41 ;t . 2.4Ž . Ž .4

b b

The key observation is therefore that if we were allowed to replace the Q2 functions in
Ž . Ž . Ž .2.1 by their asymptotic values 2.4 then, with appropriate definitions, 2.1 would
resemble the grand canonical partition function of a one-dimensional classical gas of
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charged particles with positions labelled by q . Remember that the two-particle Coulombi
2 < <potential for charges "s at points q and q on the line is VA"s q yq . This 1D1 2 1 2

w xCoulomb gas system was studied a long time ago 17,18 and it can be solved exactly.
We shall explore this analogy later on in Section 3 and use the exact results to calculate
the pressure and chiral condensate of the MT model.

Before doing so, however, we need to establish the conditions under which the
Ž . Ž .replacement given in 2.4 – which we will denote dimensional reduction DR – can be

safely made. This DR regime is the 2D analogue of more complicated situations
analysed in the thermal field theory literature, which roughly works for high tempera-

w xtures and large distances 19–21 .
Ž . Ž .Clearly the regions in the integrand 2.1 where the replacement 2.4 is not allowed

< <are those where q yq (brp . In those regions the dominant contributions to thej k

integral come from x ,x with e e sy1 sincej k j k

22 2 2 q qQ q ,t ™ p T q qt for q ,t ™ 0 ,0 .Ž . Ž . Ž . Ž .Ž .
ŽThus, on the one hand, we expect that for high enough T the contribution arising in the

.denominator can be neglected. On the other hand, the above contributions become more
important as g 2 decreases, so that one may also think that for large enough g 2 the
approach could be equally justified. Bearing these considerations in mind, we shall
analyse the limits of high T and large g 2 separately in Sections 2.1 and 2.2.

Ž .Before proceeding, two comments are in order regarding the expression 2.1 . First,
every term in the n-sum picks up an overall bL factor. In other words, the number of
two-dimensional independent variables in the integral is actually 2ny1. This is most
easily seen by changing variables to

z sx yx , z sx yx , . . . , z sx yx , z sx 2.5Ž .1 1 2 2 2 3 2 ny1 2 ny1 2 n 2 n 2 n

Ž .so that in 2.1
ky1

x yx s zÝj k i
isj

and therefore the integrand is independent of z , which yields the bL factor. Notice2 n
w xthat this is typical of closed loops in perturbation theory 22 . Order by order one has to

consider all possible connected closed diagrams for the partition function and the bL
factor is just the consequence of total energy–momentum conservation. One should bear
in mind that the physically relevant object is not the partition function but the pressure,
defined in the thermodynamic limit as

1
Ps lim log Z L,T , 2.6Ž . Ž .MT

bLL™`

which behaves as an intensive quantity.
Ž .The second comment concerns the scale dependence. The partition function 2.1 is

Ž .scale independent and so is the pressure since the explicit dependence on the
renormalisation scale r is exactly cancelled by the implicit dependence of the mass
Ž . Ž w x .m r see Ref. 3 for details . Thus, unless otherwise stated and whenever dealing with

scale-independent objects in the following, we will choose for convenience rsm, the
renormalised mass of the Thirring fermion.
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2.1. High-T limit

Ž .1Let us rescale q ™q b and t ™t b ; j in 2.2 . Then all the relevant Tj j j j
Ž .dependence is now outside the integrals in 2.2 since in the thermodynamic limit

hsLrb™` the integrals are finite as long as l2 -4p – excluding of course the h

Ž .overall factor mentioned above. Then, choosing rsm, the series in 2.1 yields
Ž 2 2 .Žpq2 g 2 .rŽ2pq2 g 2 . Ž 2 2 .1yl2 r8peffectively a perturbative series in m rT s m rT :

2 n21yl r8p° ¶2 2` 1 m
1F ~ •Z T sZ T 1q 2 h f lŽ . Ž . Ž .ÝMT 0 2 n42ž / ž /n! T¢ ßns1

Ž .with f l independent of h in the thermodynamic limit and given by2 n

2e e l r4pjq 1 kj2 ny1 `1 0 1 2f l s dz dz Q b z ,Ž . Ł Ł ÝH H2 n j j iž /0 0js1 k-jq1 isk

Ž 0 1. Ž . Ž . 2Ž .where z ' z , z is defined in 2.5 . It follows from 2.3 that Q bq,bt isj j j

independent of b. Therefore, to leading order in mrT , we can write the MT pressure as

2 24yl r2p 8yl rp6 m m
asymP l,T sP l,T 1q D f l qOO , 2.7Ž . Ž . Ž . Ž .MT MT 2ž / ž /p T T

where the asym superscript denotes the value obtained by replacing the Q’s by their
Ž . Ž . Ž . asym Ž .asymptotic values in 2.4 , and D f l s f l y f l with2 2 2

` 21 yl r4p2f l s dq dt Q bq ,bt 2.8Ž . Ž . Ž .H H2
0 0

and

2 l2 r2pq1
asymf l s .Ž .2 2l

Ž .We have evaluated numerically D f l and the result is plotted in Fig. 1. We see that it2
Ž . 2 2remains of OO 1 until very close to the limiting case l r4pQ1, or g R0, where it

2 Ž .2diverges. Thus, the relative error for T4m is at least of order mrT and we can
therefore conclude that for T4m, DR is valid for g 2 )0.

( 2)2.2. Strong coupling large g limit

2 Ž 2 .We would now like to study the pressure for g rp41 l r4p<1 . The first
Ž .observation is that the integrals in 2.2 diverge if we set ls0 and then take the limit

1 For much of this section it is more convenient to work with l rather than g in the first instance.
2 Notice that this is a scale-dependent condition.
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Ž .Fig. 1. The function D f l .2

Ž .L™`. Therefore we shall keep L finite and then take it to infinity keeping b finite
Ž . Ž . 2only when the pressure 2.6 is calculated. Then, expanding 2.2 in l r4p one obtains

22 2
hnbl l12 n 2F l,T , L s bL 1y dq dt log Q bq ,bt qOO .Ž . Ž . Ž .H H2 n ž /½ 54p L 4p0 0

Thus
22 2l l2 nasym ˆF l,T , L sF l,T , L yn bL I h qOOŽ . Ž . Ž . Ž .2 n 2 n ž /4p 4p

with

h1 1 2 2Î h s dq dt log Q bq ,bt q2h log2yph 2.9Ž . Ž . Ž .H H
h 0 0

so that
2 n22 2`l 1 m

asym FˆZ T ,l, L sZ T ,l, L y I h Z T n bLŽ . Ž . Ž . Ž . ÝMT MT 0 ž /4p n! 2ns0

22l
qOO ž /4p

22 2l z l
Xasym FˆsZ T ,l, L y I h Z T I z qOO ,Ž . Ž . Ž . Ž .MT 0 0 ž /4p 2 4p

where

l2r4 pT
2zsm bL 2.10Ž .ž /m

Ž .and I z is the modified Bessel function of zeroth order. On the other hand,0

2 2 2` 2 n1 z l l
F FZ T ,l, L sZ T qOO sZ T I z qOOŽ . Ž . Ž . Ž .ÝMT 0 0 0ž /ž / ž / ž /n! 2 4p 4pns0

2.11Ž .
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asym Ž . 2and Z T ,l, L has the same leading order in l r4p as above. Therefore, we canMT

write for the pressure
2X2 21 l I z lŽ .0asym ˆP T ,l sP T ,l y lim I h z qOO .Ž . Ž . Ž .MT MT ž /bL 8p I z 4pL™` Ž .0

w xNow, for large z 23 ,

e z 1
I z s qOO for z41Ž .0 ž /' z2p z

so that taking L™`
3 we finally get

22 2 2m l l
asym ˆP T ,l sP T ,l y I h™` qOO . 2.12Ž . Ž . Ž . Ž .MT MT ž /8p 4p

Ž̂ .Numerical analysis of the function I h shows that it clearly vanishes as h™`.
Ž 4.Therefore, we have DP sOO l . Although it might seem that this result is valid forMT

any T , one has to be extremely careful when approaching the limit T™0q. In fact, we
Ž . Ž 4.see that expanding 2.10 in l yields logarithmic factors logTrm hidden in the OO l in

Ž .2.12 , but which will show up at next-to-leading order. Therefore the above results
should not be trusted for temperatures T<m. This is just a consequence of the
non-uniformity of the T™0q limit or, in other words, that the L™` and T™0q do
not commute in general. Hence we will consider that our approach is justified for large
g 2rp and TRm. Recall that the presence of the logTrm factors in the l expansion
may be also troublesome for very large T , which gives a hint that the high-T limit may
not be compatible with perturbation theory, as has been noticed in more complicated

w xsituations 24 . In our case though, we have a well defined high-T expansion, namely
Ž 2 2 .1yl2 r8pour expansion in m rT discussed in Section 2.1, which we will indeed be

able to resum in the DR regime.
To summarise, the results of this section are that the range of validity of the DR

approach which we will be considering for the pressure is

T4m , g 2 )0,

g 2

TRm , 41. 2.13Ž .
p

We now turn to the 1D Coulomb gas system and specify exactly the link between it and
the MT model.

3. The MT partition function as a Coulomb gas

Consider the partition function for a one-dimensional neutral classical non-relativistic
gas of charged particles. In particular, take N positively charged particles and N

3 p 2 2Ž .Note that, in turn, from 2.11 we find the asymptotic limit P , T q m for small l, which we willMT 6

recover in the Coulomb gas approximation in Section 3.
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negative ones, where the magnitude of the charge will be denoted by s . In one
dimension, these charges interact via a Coulomb potential proportional to "s 2 and to
the distance between them on the line. This system can be also interpreted as uniformly

w xcharged plane sheets moving along the direction normal to their planes 17,18 . Then,
the partition function in the grand canonical ensemble at fixed temperature u , fugacity z

w xand length L is 17,18

2 N` 2 Nz L 2 y1 < <V z ,u ,s , L s dq exp 2ps u e e q yq ,Ž . Ý Ł ÝH i i j i j2 ž /0N ! is1Ž .Ns0 1(j-i(2 N

3.1Ž .

where e s1 for i(N and e sy1 for i)N. The fugacity is related to the chemicali i
y1 4'potential m by zs 2p Mu expu m, where M is the mass of the particles . However,

we will keep z instead of m here, so as not to confuse this chemical potential with the
fermion chemical potential we will introduce in Section 5. In the thermodynamic limit
the pressure and the mean particle density are given by

u
P z ,u ,s s lim log V z ,u ,s , L ,Ž . Ž .

LL™`

²² ::2 N E
y1n z ,u ,s s su z P z ,u ,s ,Ž . Ž .

L E z

²² ::where P denotes the statistical average in the above ensemble. We therefore realise
Ž . Ž . 5that by making the replacement 2.4 in 2.1 and setting rsm, one can write

2 l2r4 pm 2T lT
FZ T , L sZ T , L V zs ,usT ,ss , L . 3.2Ž . Ž . Ž .MT 0 ž / 'ž /2T m 4p

This is the central equivalence of this paper. Its utility lies in the fact that the above
w xclassical problem was solved analytically in Refs. 17,18 . There it was shown that for

small u the 1D Coulomb gas behaves as a gas of free ‘‘molecules’’, made up of qy
Žcharges pairs bound together since the mean kinetic energy is much smaller than the

. Ž .mean potential energy . The main features of this phase are: i The pressure is small
2 Ž .compared to 2ps , which represents the pressure between qy charges, and ii the

probability density of finding a qy pair within a given distance r is much bigger than
that of finding a qq pair for distances r less than a typical ‘‘molecule’’ size, which on
the other hand is much smaller than the typical inter-particle distance. On the contrary,

Žfor large u when the mean kinetic energy is much larger than the mean potential
.energy the charges are completely deconfined, forming an electrically neutral ‘‘plasma’’

of 2 N free particles, where the pressure is higher than in the ‘‘molecule’’ phase. The
Ž .crucial point in our case is that, from 3.2 we see that the unit charge grows with

4 'This definition of fugacity differs from the usual one by the factor of M . We have absorbed this factor
into the definition here as M plays no role in future considerations.ˆ

5 Again we work first with l and translate to g later.
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Ž . Žtemperature sAT and therefore the above phases are going to be reversed high-T
.‘‘molecule’’ phase and low-T ‘‘plasma’’ phase , as we shall now see in detail.

w x6Let us first quote the result for the pressure in 18

zu
2P z ,u ,s s2ps g ,Ž . 0 22ps

Ž .where g z is the highest eigenvalue of Mathieu’s differential equationˆ0

2d
q2 zcosf y f sg y f 3.3Ž . Ž . Ž .ˆ2df

Ž . Ž . Ž .with y fq2p sy f . Notice that 3.3 differs slightly from the notation customarily
Ž w x.used for Mathieu’s equation see for instance Ref. 23 , which is recovered by setting

Ž .gsyar4, zsyqr4 and fs2Õ. Therefore, from 3.2 we obtain for the fullˆ
pressure of the MT model in the DR regime:

p
2P T s T qP T ,l 3.4Ž . Ž . Ž .MT C6

with the ‘‘Coulomb gas’’ pressure being given by

22 2 2 l r4pl T m 2T
P T ,l s g .Ž .C 0 2 2 ž /2 ml T

Or, in terms of g 2,

2 y1Ž .2 2 2 1qg rp2p T m g 2T
P T , g s g 1q . 3.5Ž . Ž .C 02 2 ž /ž /p m1qg rp 4p T

Ž .The eigenvalues and eigenfunctions of the characteristic problem 3.3 are well
w xknown and tabulated. We refer to Ref. 23 for their general properties and quote here

Ž .only those relevant for our purposes. For instance, the asymptotic limits of g z forˆ0

very large and very small z areˆ

g z ,2 z 2 qOO z 4 for z<1, 3.6Ž . Ž . Ž .ˆ ˆ ˆ ˆ0

'g z ,2 zy z qOO 1 for z41. 3.7Ž . Ž . Ž .ˆ ˆ ˆ ˆ0

The relevant parameter setting the qualitative behaviour of the system is the argument
Ž .of g in 3.5 ,0

Ž 2 .y12 2 1qg rpm g 2T
zs 1q : 3.8Ž .ˆ 2 ž /ž /p m4p T

6 w xNote that in 18 , the pressure and other quantities are calculated in units of u r2p s1 with s integer.
Ž . 2 Ž . Ž 2 2 y1 .Changing variables in 3.1 as q ™ q u r2ps , we have V z,u ,s , L s V zu r2ps ,2p ,1,2ps u L soi i

that Edwards and Lenard’s results can easily be rescaled for our purposes.
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for small z, the system is in the ‘‘molecule’’ phase, whereas for large z it is in theˆ ˆ
‘‘plasma’’ phase. Let us then consider three separate limiting cases:

Ž . 2i g 4p and T4mgr2p : This is the very high-T regime and we have
Ž . Ž . 2Ž 2 2 2 2 .z<1, so that Eqs. 3.6 and 3.5 give P ;m m g r4p T , i.e. theˆ C

Coulomb pressure vanishes at high T for large g 2. This is the ‘‘molecule’’
w xphase described in 17 in which the Coulomb charges tend to pair, thus

lowering the pressure. As noted above, this ‘‘unexpected’’ behaviour of high
temperature binding is just a consequence of the fact that our coupling

Ž .‘‘charge’’ s in 3.2 increases with T. Besides, when adding the free term in
Ž .3.4 , the total pressure is an increasing function of T , behaving in the high-T
Ž 2 .and large g regime as a free gas of massless fermions. This is indeed the first
indication that the ‘‘molecule’’ phase corresponds in fact to a phase of
asymptotic chiral symmetry restoration. The reason is that we expect that if the
chiral symmetry is restored, the system behaves roughly as the massless case
which is chiral invariant. In other words, we would expect the effective fermion
mass to vanish in the T™` limit when the system tends to restore the chiral
symmetry.

Ž . 2 Ž . 2ii g 4p but T<mgr2p : Now Eq. 3.7 gives P ;m yp mTrg. SinceC

z41, now we are in the ‘‘plasma’’ phase. Notice that this same result, toˆ
leading order, could have been obtained through our analysis for large g in

Ž . Ž 2 .Section 2.2, c.f. Eq. 2.11 . Again we note that to OO l in the expansion of PC
2 2 Ž .there is a contribution proportional to l m log Trm which prevents us from

Ž .going to T<m. This is another reason why in the small l large g regime we
can only trust DR for TRm, which is the region covered in this second case.

Ž . 2iii 0-g <1 and 2p T4m: we have now z,mr2p T. Again, z<1 and weˆ ˆ
are in the ‘‘molecular’’ phase. Remember that in this region we can only trust
DR for T4m. Thus P ;m2rp so that the pressure tends to a constantC

value for high T. Actually, if we were able to push our results formally to
2 Ž 2 .g (0 l 04p , the pressure would start growing for large T. Clearly, our

previous calculations in the MT model are not justified in this case, which at
least would require extra renormalisations. However, from the viewpoint of the
Coulomb gas only, there is no particular problem with taking g 2 negative. In

Ž .Fig. 2. The Coulomb pressure P T , g .C
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Fig. 3. The total pressure and the Coulomb pressure for g 2rp s1.

other words, the dimensionally reduced theory is UV finite. Notice also that, as
we make g 2 more negative, the Coulomb correction to the free boson gas term
becomes more and more important. In particular, if we take g 2rp Qy1r27,
P would grow quadratically with T , thus being of the same order as the freeC

contribution.

Ž . 2In Fig. 2 we have plotted P T in units of m for different values of g . Notice that,C
Ž .as we have said before, we cannot claim that curve iv corresponds to the MT model in

the DR regime. We are simply extrapolating the Coulomb gas results to that point. As
Ž .for curve iii , we should intend it as the limit of the dimensionally reduced MT model

for very small but positive g 2, where we can still trust our DR approach, as long as we
Ž .look only to the Trm41 tail of that curve. Note also that P T is always aC

continuous function of the temperature and thus we do not see a phase transition in T ,
consistent with being in two dimensions. In Fig. 3 we plot the Coulomb pressure and the
total pressure for g 2rp s1 in order to estimate the size of the ‘‘Coulomb’’ gas
correction to the free gas.

4. The chiral charges and CmoleculesD

In the previous section we have exploited the analogy of our dimensionally reduced
MT partition function with that of a Coulomb gas on the line in order to calculate the
pressure. In this section we will show that this analogy can be extended further, i.e. that
it also works in the same way for other observables. In particular, we will concentrate on
thermal averages of products of the operators

1 5s x s c 1"g cŽ . Ž ." 2

7 Recall that this corresponds to l2 R8p and thus to the Kosterlitz–Thouless transition in the zero-tempera-
ture theory.
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since these account for the chiral properties of the system. Under the chiral transforma-
Ž . Ž . Ž .tions discussed in the introduction, s x ™exp "2 ia s x ; in other words, the s" " "

operators have well defined " chiral charge. Below we will show that in our Coulomb
gas analogy they play the role of the charges, and the chiral invariant combinationˆ
s s will then represent a ‘‘molecule’’. Thus by forming ‘‘molecules’’, the systemq y
tends to restore the chiral symmetry, i.e. it behaves as the massless theory where only
s s combinations are allowed.q y

We will show below that the s correlators can be related with the 1D Coulomb gas"

w xreduced density functions discussed in 18 . These functions are defined as follows:
Ž .f x dx denotes the probability of finding a " charge in the element dx;"

Ž .f x , x dx dx is the joint probability of finding a q charge in dx and a y one inqy 1 2 1 2 1

dx , and so on. It turns out that such density functions can also be exactly calculated2
w x18 . We will only consider here the one-point and two-point functions, which will
provide information on the relationship between Coulomb ‘‘molecule’’ pairing and the
chiral symmetry, as explained above.

4.1. The fermion condensate and chiral symmetry Õs ‘‘molecule’’ pairing

The first correlator we will analyse is just the one-point function, i.e. the condensate
²² :: ²² ::of s . Observe that s s s since the MT model is invariant under" q y
1 5Ž .c lc where c s 1"g c are the right and left-handed projections of theq y " 2

Ž .spinor field f™yf in the SG model . This is a parity transformation and has nothing
to do with the chiral transformations we have been discussing here. We shall implicitly
make use of this qly symmetry in the correlators throughout this section.

²² ::The scale invariant fermion condensate m cc is the order parameter of the chiral
symmetry, exactly as the quark condensate in QCD. An immediate consequence of the
absence of a phase transition in 2D is that the fermion condensate cannot vanish strictly
at any temperature. On the other hand, for high temperatures T4m we would expect
that the mass scale m becomes irrelevant and thus the system would restore the chiral
symmetry, as indeed happens in the QCD chiral phase transition. This was already
suggested by our previous analysis of the pressure. We may therefore expect the
condensate to become smaller at large T but never to reach zero. However, we do not
expect chiral restoration for all positive values of g 2. An indication that this may
actually be the case is the following. In the g 2 ™0q limit, the system should behave as
a free massive fermion theory. However, it is not difficult to see that for gs0 the

2 2²² :: Ž . Ž .condensate behaves for T4m as cc , mrp log T rm , so that there is
clearly no chiral restoration in that case. Therefore we expect that chiral symmetry
restoration is lost as the value of g 2 is decreased. Indeed, we have seen that behaviour
already for the pressure, where the Coulomb correction to the massless term did not
vanish for large T and for very small g 2.

We will now show that in the DR regime the fermion condensate can be calculated
exactly, thanks again to the analogy with the Coulomb gas. In fact we do not need to
appeal to the density functions in this case since in the thermodynamic limit L™` the
system is translationally invariant so that

E
²² ::m cc sm P T . 4.1Ž . Ž .MTE m
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Notice in particular that this implies that the regime in which we are allowed to replace
the Q’s by their DR values for the condensate will be the same as for the pressure, i.e.
Ž .2.13 .

Thus we only need to differentiate once in the expression obtained for the MT
partition function in the DR regime to get the condensate. However, in order to clarify
the procedure we will follow for the two point correlator and to understand better the
analogy between Coulomb charges and chiral operators, let us relate the condensate with

w xthe one-charge density functions f analysed in 18 . Those functions are given by"

f s f withq y

` 2 N 2 N N1 z L
f z ,u ,s , L; X s dq d q yXŽ . Ž .Ý Ł ÝHq i j2 ž /V 0N ! is1Ž .Ns1 js1

= 2 y1 < <exp 2ps u e e q yqÝ i j i j
1(j-i(2 N

` 2 N 2 N1 z L
s dq d q yXŽ .Ý ŁH i Nž /V N ! Ny1 !Ž . 0is1Ns1

= 2 y1 < <exp 2ps u e e q yq , 4.2Ž .Ý i j i j
1(j-i(2 N

Ž .where V is the partition function of 3.1 . We see that in the L™` limit, a simple shift
q ™q qX ; is1, . . . ,2 N ensures that f is independent of X. In turn, notice thati i q

1 1 EL
f z ,u ,s , L s dXf z ,u ,s , L; X s z log V z ,u ,s , L . 4.3Ž . Ž . Ž . Ž .Hq qL 2 L E z0

Ž . w xNow compare 4.2 with the expression obtained in 3 for the condensate:
Ž .2 nq12l r4pF `Z T 1 r m TŽ .0²² ::m cc s2 Ý ž /Z T n! nq1 ! 2 rŽ . Ž .MT ns0

=
nq1

2b L e e l r4pj k2dt dq Q x yx .Ž .Ł ŁH Hj j j k
0 0js1 k-j

Thus, shifting n™ny1 in the above equation, replacing the Q’s by their asymptotic
Ž .values 2.4 , fixing rsm and comparing with f we obtain in the DR regimeq

2 l2r4 pm 2T lT
²² ::m cc s2Tf zs ,usT ,ss , L . 4.4Ž .q ž / 'ž /2T m 4p

Ž .Relation 4.4 is very interesting indeed since it supports the idea that the role of theˆ
Ž .Coulomb charges is played here by the s chiral correlators in the DR regime . We"

will elaborate further on this issue below.
As it was said above, the fermion condensate can be obtained either using the

analogy with the f functions or by differentiating the pressure. We should then be able"

Ž . Ž .to rewrite 4.4 as 4.1 , which would be a consistency check of our results. For that
Ž .purpose, all we need to use is 4.3 and the equivalence between V and Z found inMT
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the previous section. In doing so it is important to leave the scale r unfixed, since
differentiating with respect to m is a scale-dependent operation. After multiplying by m
the result becomes scale independent, and we can safely fix rsm. Once that consis-
tency check has been performed, let us write the final expression for the fermion
condensate as

2 y1 2 y1Ž . Ž .2 2 21qg rp 1qg rpm 2T m g 2T
X²² ::m cc s g 1q , 4.5Ž .0 2ž / ž /ž /2 m p m4p T

X Ž . Ž . 2where g z sdg z rdz and we have converted back to g . Remember that unlike the0 0

partition function, there is no contribution to the condensate coming from the free Bose
part since the free theory is chirally symmetric. Therefore by taking into account the

Ž . Ž .asymptotic behaviour 3.6 – 3.7 , we now analyse the same limiting cases considered
for the pressure in the previous section:

2 2 2 2Ž . ²² :: Ž .Ž .i g rp41 and T4mgr2p : we have m cc ; m r2p mgrT . The
condensate vanishes asymptotically and hence the chiral symmetry is restored
as T™`.

2 y12 2 Ž1qg rp .Ž . ²² :: Ž .ii g rp41 and T<mgr2p : Now m cc ;m 2Trm . This is
the behaviour for temperatures TRm. Notice again that if we insisted on

²² ::Ž .extrapolating this behaviour to Ts0 we would find cc Ts0 s0,
which is clearly incorrect since we know that at Ts0 the chiral symmetry is
broken. Once more, we remark that we should trust our result only for TRm
due to the presence of logarithms in the l expansion.

2 2Ž . ²² ::iii 0-g <1 and m<2p T : m cc ;2m rp , so that the condensate
Ž .tends to a constant value at high temperatures just as the pressure did , and

there is no chiral symmetry restoration. As we anticipated before, we do not
expect chiral restoration to take place for small g 2. In turn, notice that the exact
g 2 s0 limit predicts that the condensate grows logarithmically for large T ,
while we get here that it remains constant for g 2 small. This is another sign of
the special character of the g 2 s0 case, where, as commented several times
before, we cannot apply our DR arguments because of the extra UV infinities.

In Fig. 4 we have plotted the condensate as a function of the temperature for different
values of g 2 and we can see the different asymptotic limits discussed above. It must be

Fig. 4. The fermion condensate as a function of temperature in units of m, for different values of g 2.
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stressed again that the g 2 s0 case plotted in that figure should be taken as g 2 very
small but positive.

From the above discussion the following picture emerges: for large values of g 2, the
system at high temperatures behaves like a gas of neutral ‘‘molecules’’ made of pairs of

Ž .chiral charges chiral neutrality and the chiral symmetry tends to be restored continu-
Ž . 2ously i.e. no phase transition and asymptotically as T increases. As we decrease g ,

the ‘‘molecule’’ phase tends to disappear in favour of the ‘‘plasma’’ phase – as was
already seen for the pressure. Here the s and s correlators can be different fromq y
zero in chiral non-invariant combinations and thus the chiral symmetry remains broken
even for large temperature.

Consequently if we look now at the two-point correlators, we should see a tendency
of the system to increase the s s correlator against the s s one in the ‘‘molecule’’q y q q
phase, i.e. for high temperatures and large enough g 2. That will be the purpose of the
next section.

4.2. Two-charge correlators and the screening length

Let us begin by recalling the definition of the two-charge density functions in the
w xCoulomb gas 18 :

` 2 N 2 N N 2 N1 z L
f X ,Y s dq d q yX d q yYŽ . Ž . Ž .Ý Ł Ý ÝHqy i i j2 ž /V 0N ! is1Ž .Ns1 is1 jsN

= 2 y1 < <exp 2ps u e e q yqÝ i j i j
1(j-i(2 N

` 2 N 2 N1 z L
s dq d q yX d q yYŽ . Ž .Ý ŁH i N 2 N2 ž /V 0is1Ny1 !Ž .Ž .Ns1

= 2 y1 < <exp 2ps u e e q yq , 4.6Ž .Ý i j i j
1(j-i(2 N

` 2 N 2 N N N1 z L
f X ,Y s dq d q yX d q yYŽ . Ž . Ž .Ý Ł Ý ÝHqq i i j2 ž /V 0N ! is1Ž .Ns2 is1 i/js1

= 2 y1 < <exp 2ps u e e q yqÝ i j i j
1(j-i(2 N

` 2 N 2 N1 z L
s dq d q yX d q yYŽ . Ž .Ý ŁH i Ny1 Nž /V N ! Ny2 !Ž . 0is1Ns2

= 2 y1 < <exp 2ps u e e q yq . 4.7Ž .Ý i j i j
1(j-i(2 N
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As in the single charge case, the above functions depend only on XyY in the L™`

Ž .limit translation invariance . Also, notice that f s f and f s f while foryq qy yy qq
brevity we have omitted the dependences on z,u ,s , L. Our task now will be to compare
Ž . Ž . ²² :: ²² ::4.6 , 4.7 with the MT correlators at finite temperature; s s and s sq y q q

w xrespectively. Let us start with the qy correlator. In Ref. 3 the following result was
obtained:

²² ::T s X s YŽ . Ž .C q y

2 n2 22l r2p l r4pF `2Z T T r 1 r m TŽ .0
s Ýž / ž /ž / ž /Z T r 2 n! 2 rŽ .MT ns0

=

Ž .2 nq1
b L Ž2. Ž2.dt dq d x yX d x yYŽ . Ž .Ł H Hj j nq1 2 nq2

0 0js1

=
2e e l r4pj k2Q x yx , 4.8Ž . Ž .Ł j k

k-j

where e sq for js1, . . . ,nq1, e sy for jsnq2, . . . ,2 nq2 and T meansj j C
w xcontour ordering along Cs 0,y ib . For convenience we have retained l in the

exponents rather than g. Again, the above correlator depends only on XyY in the
thermodynamic limit. Notice that we are using the same notation X and Y both for
one-dimensional and two-dimensional variables; the meaning should become clear from
the context.

As for the s s correlator, it can be calculated through the same procedureq q
w xfollowed in 3 for the qy correlators using the generating functional technique. Notice

that this correlator is not chiral invariant, unlike the s s one, which makes itsq y
w xanalysis slightly more involved, as explained in 3 . Despite that, we obtain after

renormalisation

²² ::T s X s YŽ . Ž .C q q

2 nq22 2l r2p l r4pF `2Z T T r 1 r m TŽ .0
s Ýž /ž / ž /Z T r 2 n! nq2 ! 2 rŽ . Ž .MT ns0

=

Ž .2 nq2
b L Ž2. Ž2.dt dq d x yX d x yYŽ . Ž .Ł H Hj j nq2 nq1

0 0js1

=
2e e l r4pj k2Q x yx , 4.9Ž . Ž .Ł j k

k-j

where e sq for js1, . . . ,nq2, e sy for jsnq3, . . . ,2 nq4.j j
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Note that the ratio

²² ::T s X s 0Ž . Ž .C q y
R l,T ; X sŽ . ²² ::T s X s 0Ž . Ž .C q q

is scale invariant – this is the observable in which we are interested. However, before
proceeding further, we need to clarify how DR works for the above correlators. We

Ž . Ž .begin by noting that DR is not allowed for all values of XyY in 4.8 – 4.9 . In fact,
Ž2. w 2Ž .x" l2 r4pperforming the d integrations, a factor Q XyY comes outside the

Ž .integrals and it is clear that the replacement 2.4 will be allowed for that factor only for
q4br2p , where q is the spatial component of XyY. Besides, our analysis for the

Ž . Ž .partition function does not imply that even inside the integrals in 4.8 – 4.9 such
Žreplacement can be done. The detailed analysis which follows a similar line to that of

.Sections 2.1 and 2.2 can be found in Appendix A. Here we simply summarise the
Ž . Ž .result: the structure of the correlators 4.8 – 4.9 makes it possible to reduce them

Ž . 2 Ž .dimensionally inside the integrals in the large g small l limit but not in the large T
one. If, in addition one works at large distances q4br2p , the Q’s outside the
integrals are also dimensionally reduced. Bearing this in mind, we shall proceed to
evaluate these correlators in the dimensionally reduced regime by exploiting again the
analogy with the Coulomb gas.

4.2.1. Two-point correlators and the Coulomb gas
Ž .Given the conditions for DR to work for the correlators, let us now compare 4.8

Ž . Ž . Ž .with 4.6 and 4.9 with 4.7 . For that purpose we replace the Q’s inside the integrals
Ž . Ž .in 4.8 by their asymptotic values 2.4 . In doing so, we have to remember that such

Ž . Žreplacement is not allowed in general for the term jsnq1, ks2 nq1 see the
. Ž .above comment . Next, shift n™ny1 in the sum so that, comparing with 4.6 , we get

T 2 el2 qr2 b
2l r4p1²² ::T s X s 0 sŽ . Ž . Ž . 2C q y 4 2 l r4p2m Q q ,tŽ .

=

2 l2r4 pm 2T lT
f zs ,usT ,ss ;q ,qy ž / 'ž /2T m 4p

Ž . Ž .where Xs q,t , we have set Ys0 and we have also made use of 3.2 . It is important
to point out that the overall factor T 2rm2 depends on r implicitly through m but does

Ž .not have explicit r dependence we cannot fix r for that factor , whereas the rest – i.e.
the function f – is scale independent and we have fixed rsm only in that part.qy

Following the same steps for the qq correlator we now find

2l r4p2 2T Q q ,tŽ .2l r4p²² ::T s X s 0 s4Ž . Ž . 2C q q 2 l qr2 bm e

=

2 l2r4 pm 2T lT
f zs ,usT ,ss ;qqq ž / 'ž /2T m 4p
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and therefore the scale-independent ratio of the two yields

el2 qr b
2yl rpR l,T ; X s2Ž . 2l r2p2Q q ,tŽ .

=

2 l2r4 pm 2T lT
f zs ,usT ,ss ;qqy ž / 'ž /2T m 4p

. 4.10Ž .22 l r4pm 2T lT
f zs ,usT ,ss ;qqq ž / 'ž /2T m 4p

Once more, the main advantage of comparing with the Coulomb gas is that the
functions f and f can be calculated exactly. They can also be related with theqq qy

Ž . w xMathieu equation 3.3 as 18
22 `2ps

w xŽ . Ž .q " y g z yg z qˆ ˆ ˆ0 mf z ,u ,s ;q s B B e .Ž . Ýq" m mž /u ms0

Here
p

" " ifB sz df y f y f e ,Ž . Ž .ˆHm 0 m
yp

2 2 Ž .the L™` limit has been taken, zsu zr2ps , qs2ps qru and y f , g are,ˆ ˆ m m
Ž .respectively, the eigenfunctions and eigenvalues of 3.3 , with g )g , ms1,2, . . .my 1 m

First, note that since g -0 for m01 and g )0, only the B term survives in them 0 0
Ž . Ž . Ž .2above sum in the limit q™`. Then, since y f sy yf , we have f ™ B in0 0 q" 0

X Ž .that limit. In fact B szg z . Since in that limit we can also dimensionally reduce theˆ ˆ0 0
2 Ž .Q factors in 4.10 , we get

R l,T ;q™`,t s1.Ž .
Ž .After conversion to g, our results for R g,T ; X are plotted in Fig. 5 for different

2 Ž .y1values of T and g . In all those curves, we have considered values q4 2p T , so

Ž . 2Fig. 5. The two-point correlator ratio R T , g;q for different values of T and g . The numerical parameters for
Ž . Ž .y1 Ž . Ž .y1 y4 Ž .the above curves are: i zs0.225, 2p T rq s0.044, ii zs0.082, 2p T rq ,1.3=10 , iiiˆ ˆ0 0

Ž .y1 y5 Ž . Ž .y1 y6zs0.01, 2p T rq s2.3=10 , iv zs0.005, 2p T rq s5=10 .ˆ ˆ0 0
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Ž .that we can neglect the t dependence and thus 4.10 becomes just the ratio
Ž . Ž .f q rf q . We also recall that the f function can take negative values forqy qq qq

Ž .smaller q, but we have only displayed in Fig. 5 the region where R T , g;q is positive.
Let us define the parameter q to be the mean inter-particle distance so that0

q s1rf , i.e. the inverse of the density of charges, regardless of whether they are0 q
positive or negative. Thus,

2T
q l,T sŽ .0 ²² ::m cc

²² :: Ž .with m cc in 4.5 .
As in our previous analysis of the pressure and the fermion condensate, the relevant

Ž .parameter here is z in 3.8 . For very small z the system is in the condensed regime.ˆ ˆ
Since we need to work at large g 2rp for DR to work, small z means large T. In thatˆ

Žregime, the qy correlator is much larger than the qq one at short distances but yet
Ž .y1 .large distances compared to 2p T , as a result of the tendency of the system to form

Ž .s s pairs ‘‘molecules’’ . For large distances, R tends to 1. In the ‘‘normal’’ phase,q y
i.e. when no ‘‘molecules’’ are formed, we expect that R starts approaching its
asymptotic value near qsq and it does not grow very much below q . Conversely in0 0

the ‘‘molecule’’ phase, R grows for small q and it approaches 1 much faster, defining a
certain q <q , which we interpret as the screening length or ‘‘molecule’’ size. Forcond 0

Ž . Ž . Ž .the curves plotted in Fig. 5, we get i q ,1.3q , ii q ,0.3q , iii q ,cond 0 cond 0 cond
Ž .0.01q , iv q ,0.0025q . One can clearly observe that the screening length0 cond 0

decreases with the temperature.

5. Dimensional reduction of the Thirring model at non-zero fermion chemical
potential

w xIn Ref. 3 , the issue of thermal bosonisation in the MTrSG system was also studied
for m/0, where m is the fermion chemical potential associated with the conservation of

Žthe fermion number density cg c in the Thirring model the conserved quantity is the0
.number of fermions minus antifermions . It has been shown that the SG model

Lagrangian acquires an extra topological term, interpreted as m times the number of
kinks minus antikinks. The purpose of this section is to show that in the DR regime, the
partition function of the Thirring model at T)0 and m/0 can also be related with the
1D Coulomb gas.

Ž . w xWe start by recalling the result in perturbation theory in m obtained in 3 for the
partition function of the MT model at T)0 and m/0:

Z T ,m ;L sZ T ,m ;L Z T ,m ;L ,Ž . Ž . Ž .MT ms0 C

Ž . w xwhere Z T ,m;L is the massless Thirring result derived in 5 and is given byms 0

2m
FZ T ,m ;L sZ T , L exp bLŽ . Ž .ms 0 0 22 pqgŽ .
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and

2 n22 l r4p` 1 rm T
Z T ,m ;L s F l,T ,m ;L . 5.1Ž . Ž . Ž .ÝC 2 nž / ž /n! 2 rns0

Here

F l,T ,m ;LŽ .2 n

22n 2 n
2 lb L e e l r4pj k2s dt dq Q x yx exp im e q 5.2Ž . Ž .Ł Ł ÝH Hj j j k j j4p0 0js1 k-j js1

Ž .and, as in 2.2 , e sq1 for j(n, e sy1 for n- j(2n. Notice that the abovej j

partition function is real, as it should, because of the symmetry of the integrand under
the simultaneous relabelling q lq , . . . , q lq .1 nq1 n 2 n

Once more, we need to analyse the regime in which we can dimensionally reduce the
Ž .Q variables inside the above integral through 2.4 . It turns out that the analysis in this

case is much simpler than in the case of the two-point correlators and indeed the
Ž .conclusion is that DR works in the same regime as for the ms0 pressure, that is, 2.13 .

We quickly sketch the argument here: first, for small l one readily notes that the
leading order is m-independent since Ý e s0. Second, for large T , one arrives to anj j

Ž . Ž . Ž .expression identical to 2.7 , with f l in 2.8 replaced now by2

2
` bml q21 yl r4p2f l,m s dq dt Q bq ,bt cos ,Ž . Ž .H H2 2p0 0

Ž .whose numerical analysis shows a similar behaviour than f l , i.e. its corresponding2
Ž . Ž . 2D f l,m remains of OO 1 for l r4pQ1 for different values of bm. That is easily2

Ž . Ž . asym Ž . Ž .understandable by realising that f l,m ( f l and f l,m )0, so that D f l,m2 2 2 2
Ž . 2 Ž . Ž 2 . Ž .( f l , which near l Q4p where the error is bigger is f l Q4p sOO 1 .2

Ž .Given therefore that one can work in DR also for m/0, the Q’s in 5.2 may be
Ž . Ž . Ž .replaced by 2.4 . We then realise that Z T ,m in 5.1 is now the grand canonicalC

classical partition function of the Coulomb gas, the extra m-dependent term having
exactly the form of a purely imaginary external electric field term added to the

ŽHamiltonian of the system. In fact, note that if we wanted to describe N positive and N
.negative charges on the line not only interacting among themselves with a Coulomb

force, but also with an external electric field EE, we should add to the Coulomb
Hamiltonian the term

2 N

HH™HHys EE e q . 5.3Ž .Ý i i
is1

Ž .However, this is precisely the form of the m-dependent term in 5.2 , so that once the
Q’s are dimensionally reduced one obtains

2 l2r4 pm 2T lT iml
Z T ,m ;L sV zs ,usT ,ss ,EEs ;LŽ .C ž / ' 'ž /2T m 4p p



( )A. Gomez Nicola et al.rNuclear Physics B 570 2000 475–505´496

Ž .with V z,u ,s ,EE, L the grand canonical partition function of the classical Coulomb gas
Ž .interacting with an external electric field EE through 5.3 .

Ž .The exact calculation of the pressure P z,u ,s ,EE s lim log VrbL was alsoL™`

w x 8performed in 17 . In this case though, the result cannot be expressed in a simple way
in terms of Mathieu functions as for ms0. Now it is given by

1 2p T 2

P T ,m ' lim log Z T ,m ;L s g z , 5.4Ž . Ž . Ž . Ž .ˆC C 2bL 1qg rpL™`

Ž . Ž .where z is given in 3.8 and the function g z is defined implicitly as follows. Letˆ ˆ
Ž .G z,g ,h be the following continued fraction:

z
G z ,g ,h s , 5.5Ž . Ž .z

gq2hq1y z
gq4hq4y

gq6hq9y . . .

where

EE m
hs s i ,

4ps 2p T

and define

1
Q z ,g ,h s G z ,g ,h qG z ,g ,yh .Ž . Ž . Ž .

g

Ž .Now let z g ,h be the smallest positive solution to the equation0

Q z g ,h ,g ,h s1. 5.6Ž . Ž .Ž .0

Ž . 2 Ž .Then g z is defined implicitly by identifying z sz g ,h .ˆ ˆ 0

First note that for ms0 the above result reduces to the solution in terms of Mathieu
Ž .functions we have found in Section 3. In that case Eq. 5.6 defines precisely the

Ž .condition that the two parameters z and g of Mathieu’s differential equation 3.3ˆ
should satisfy in order that the solution is 2p periodic. Therefore for ms0, we have

w x Ž .just gsg . In Ref. 17 it was shown that Eq. 5.6 has always a solution. It is worth0

mentioning that in our case, due to the purely imaginary character of h, the convergence
w x Ž .of the different integrals analysed in 17 and hence of the continued fraction 5.5 is

automatically ensured. This should be contrasted with the real h case where g and h

have to satisfy certain constraints to ensure convergence. In addition, notice that for g

Ž .real, Q in 5.5 is also real, which means that the pressure is real, as it should.

8 w x ŽNote that the ensemble used in 17 was the canonical one at fixed N and P so that L is varying, for
.instance by means of a moving piston rather than the grand canonical ensemble at fixed z and L being used

here – the former are the conjugate variables of the latter. However, in the thermodynamic limit the results
obtained in the different ensembles should be equivalent, after the standard identifications. Namely, for N™`,
L™` with NrL fixed, we can identify N with N and L with L, where the bar denotes averages in the
corresponding ensemble.
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Ž .Eq. 5.6 can be solved exactly in the asymptotic limit z<1 and g<1, where weˆ
Ž . Ž .know there is condensation into ‘‘molecules’’. For z,g<1, Q z,g ,h in 5.5 just

becomes

2 z
Q z ,g ,h ,Ž . 2g 1y4hŽ .

so that

g zŽ .ˆ
2 2z , 1y4h 5.7Ž .ˆ

2

Ž . Ž .is the smallest solution to Qs1 and defines g z in this limit. Therefore, using 5.4 ,ˆ
replacing the values for z and h, and eliminating l2 for g 2, we find in the z<1 limitˆ ˆ
Ž .condensation regime

Ž 2 .y14 2 2 1qg rpm 1qg rp 2T 1Ž .
P T ,m , .Ž .C 2 2 2 2ž /m4p T 1qm rp T

One can check that for ms0 the above result reduces to the one we have found in
Ž .Section 3 in that regime. Notice that the pressure not only vanishes for large T T4m

Ž .but also for large m at large T m4T4m . That is, chiral restoration also takes place
Ž .for large m in the large T limit here . This is confirmed by differentiating the above

with respect to m to get the fermion condensate, which clearly vanishes as m™`. On
the other hand, differentiating the pressure with respect to m yields the net averaged
fermion density,

1 E
0²² ::r T ,m s lim cg c s P T ,m .Ž . Ž .

L EmL™`

Thus, we get for the total fermion density in the condensation regime

Ž 2 .y14 2 2 1qg rpm m 1qg rp 2T mŽ .
r T ,m s y ,Ž . 2 3 4 2ž / 2 2 2mpqg 2p T 1qm rp TŽ .

5.8Ž .

w xwhere the first contribution is the massless result obtained in 5 . The above result for
Ž .the fermion density deserves some comments. One notes that in 5.8 the Coulomb

correction to the massless case is always negative and very small in this regime, since
the above result is valid only when T4m. Therefore as T™`, only the massless
contribution remains since the first term is T-independent. This is nothing but another
signal of chiral restoration for large T : in that regime there remain only massless

Ž .fermion excitations in the thermal bath. The same is true if we take in 5.8 the limit
m4T as commented above. In our picture of chiral condensation, the Coulomb term in
Ž .5.8 represents the density of ‘‘residual’’ charges that are not yet paired to form chiral
‘‘molecules’’.

Ž .For arbitrary values of z, the solution to 5.6 has to be found numerically. First, oneˆ
Ž .truncates the continued fraction 5.5 to a given order, making sure that the difference

Žbetween successive truncations becomes smaller than a fixed numerical precision see
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w x .Ref. 23 for details . This procedure is meaningful only if the continued fraction is
convergent and indeed, by computing it in this way we check numerically the arguments
about convergence discussed above. Then one has to find, also numerically, the smallest

Ž .positive zero of Q z ,g ,h s1. For that purpose we have used a bisection method. In0
Ž .fact, since our objective is to get the function g z , it is simpler to look for the zeroes inˆ

2 Ž .g fixing z sz . Besides, we have made use of the asymptotic expression 5.7 toˆ0

check the answer in the large z limit.ˆ
Ž . Ž .Our results for r m and r m are displayed in Fig. 6 for temperatures aroundC

2 Ž 2 .T,m at fixed g rps9 l r4ps0.1 . When z increases, or equivalently when theˆ
Ž . Ž .temperature decreases, r m the curves below the axis in Fig. 6 has a similar shapeC

Ž .as that given by the second term in 5.8 , but its magnitude increases so that the
Ž .negative correction to the massless gas becomes more and more important. In fact, we

Ž .see that for mQm, r m roughly equals the massless contribution, thus yieldingC
Ž . Ž .r m ,0 in that region, whereas for large m, r m becomes negligible and only theC

massless contribution remains.
In view of this behaviour, let us define two ‘‘critical’’ points: m ,m such that0

Ž . Ž . Ž . Ž .r mQm ,0, r m)m /0, and m such that r m)m ,r m , where the0 0 1 1 ms0
Ž .curve for r m catches up with the massless one, i.e. m is the chiral restoration point.1

Recall that we have no true critical behaviour here, so that m and m can be defined0 1

only approximately.
Physically, m at Ts0 would represent the energy needed to excite a fermion in the0

Ž .thermal bath. Thus the behaviour of r m in Fig. 6 near msm is typical of a massive0

Fermi gas: It is approximately zero until m,m . For instance, notice that for a free gas0
Ž . Ž . Ž . Ž .of fermions of mass m, m Ts0 sm and r m,Ts0 s mym u mym . For a0

small but non-zero temperature, that characteristic step-function behaviour is smoothed
because there is also thermal energy available, and this can also be observed in Fig. 6 as
T increases. Remember that T,m is the lower temperatures we can take in our DR
regime – see our previous comments about the problems with the T™0q limit within
our approach. In addition, notice that in our case, the almost exact cancellation between

Ž . Ž .r mQm and r mQm for low T takes place after a non-trivial numericalC 0 ms0 0

calculation of the Coulomb part, and therefore it provides a good consistency check.

Ž . Ž . Ž .Fig. 6. The total net fermion density r m above the m axis and the Coulomb gas correction r m to theC
Ž . 2massless gas below the axis for g rp s9 and different values of the temperature around T s m. The

Ž . Ž 2 . 2massless result r m smr p q g is also displayed for g rp s9.ms 0
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Let us now comment about the behaviour we observe for m)m in Fig. 6. Following1

our previous description of chiral symmetry restoration in terms of pairing of conden-
sates, our results suggest that the chemical potential also increases the effective
‘‘coupling charge’’ holding the condensate pairs together. In fact, from the viewpoint of
the Coulomb gas, we now have another way of increasing the mean potential energy
with respect to the mean kinetic energy; namely to switch on a strong electric field
< <EE 4T. It seems natural then that in this regime the systems behaves as in the low
temperature phase of Lenard, forming ‘‘molecules’’. This corresponds to the m)m1

regime in Fig. 6, i.e. moderate temperatures T,m and large chemical potentials
m4T.

As T increases further, the effective mass of the fundamental fermion decreases with
Ž .T , until, for very large T , the chiral symmetry is effectively restored and then r m

Ž .grows linearly with m ;m)0 as given by 5.8 .
w xThis type of behaviour also takes place in QCD at finite baryon density r 25 .B

There, at Ts0 one has m ,m , 930 MeV, the vacuum to nuclear matter transition0 B
Ž q. y3point, with r m , 0.16 fm the density of nuclear matter, and at m , 1300 MeVB 0 1

Ž . Ž .for Ts0 the chiral symmetry is restored vanishing quark condensate . At both points
it is expected that the phase transition is of first order at Ts0.

Ž .Another system where one observes a similar behaviour of r m is the massive
w xSchwinger model 26 , where for large m the system is in the deconfined phase, unlike

w xthe massless case, where there is confinement for any m 5 .

6. Conclusions

In this paper we have considered the massive Thirring model in 1q1 space-time
dimensions at finite temperature T and chemical potential m. We have shown that in a
certain regime, which we have denoted dimensional reduction, the statistical mechanics
of this system is the same as that of a classical Coulomb gas in one spatial dimension,
where the unit charge grows linearly with the temperature.

The range of validity of the DR regime depends on the observable under considera-
tion: for the pressure, the fermion density and the fermion condensate, we have seen that

2 2 Žit works both for T4m with g )0 and for TRm with g rp41 strong coupling
. Ž .regime . However, for the two-point correlators of fermion chiral operators s x , it"

only works for large g, requiring in addition that the spatial distance q between the two
chiral operators is such that q4br2p .

Thanks to the analogy with the Coulomb gas, we have been able to calculate exactly
the pressure, fermion density, fermion condensate and two-point correlators of the MT
model. Our results show that the chiral symmetry is restored both for high T and high m

Ž .in a continuous way no phase transition . Chiral symmetry restoration takes place only
Ž 2 .in the strong coupling large g regime. The symmetry restored phase corresponds to

the Coulomb ‘‘condensed’’ phase, in which qy pairs of charges tend to pair, forming
‘‘molecules’’, whereas our low-T phase is the Coulomb ‘‘plasma’’ phase, in which the
charges are free. The low-T and high-T behaviours are reversed in our case with respect
to the Coulomb gas because the coupling between charges grows with T. We have also

Ž .seen that the role of the Coulomb charges is played here by the s x operators. Theseˆ "
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operators tend to pair in the high T or m phase forming chiral invariant s sq y
combinations. These play the role of the ‘‘molecules’’, whose ‘‘size’’ is determined byˆ
the condensation or screening length, which we have estimated for different values of
the coupling constant and temperature. We find that the screening length decreases with
T. In the restored phase, this screening length is of the same order of the inter-particle
distance, which is proportional to the inverse of the fermion condensate.

The case of a non-zero fermion chemical potential m can also be related to the 1D
Coulomb gas, by noting that m plays the role of a purely imaginary external electricˆ
field. For high T , the system behaves with m as the massless case, which is consistent
again with chiral restoration since the effective mass falls off with T. For T,m, we see

Žthat the fermion density is very small until m ,m and then starts growing typical0
. Ž .massive Fermi gas behaviour until eventually, for large m m)m , it reaches again1
Ž .the massless linear behaviour chiral restoration . This is again consistent with the idea

that the fermion excitation of the system becomes massless both at high T and at high
m. In the case of moderate temperatures, chiral condensates are held together at large m

by means of the strong external electric field.
Among the analogies with QCD we have found, it is worth mentioning that the chiral

condensate vanishes for both large T and m, although in our case there is no phase
Ž .transition. In addition, the type of behaviour of the fermion density r m we have

obtained at low temperatures is also quite similar to that of the baryon number density
r in QCD, where m and m are the vacuum to nuclear matter and chiral restorationB 0 1

critical points, respectively.
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Appendix A. Dimensional reduction for the two-point correlators

Ž . Ž .In order to compare the ss correlators 4.8 , 4.9 with the corresponding ff ones
Ž Ž . Ž ..Eqs. 4.6 , 4.7 in the Coulomb gas, the former must be dimensionally reduced

Ž .through 2.4 just as in the case of the partition function. All calculations are performed
with respect to l2.

Let us start with the qy correlator. The relevant integral to analyse now is

2n
2b L e e l r4pj kqy 2F l,T , L; X s dt dq Q x yxŽ . Ž .Ł ŁH H2 n j j j k

0 0js1 k-j

=

2e l r4pj2Q x yXŽ .j
,2Q xŽ .j
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Ž .where X' q,t , 0(q(L and we have set Ys0. The above integral is the counter-
Ž . 2part of 2.2 . Let us consider first the limit l r4p<1. We readily realise that the

X-dependent factor in the integrand does not contribute to leading order, since Ýe s0.j

Thus, following similar steps as in Section 2.2, we get

²² :: ²² ::asymT s X s 0 y T s X s 0Ž . Ž . Ž . Ž .C q y C q y

²² ::T s X s 0Ž . Ž .C q y

22 2 2l m l
ˆsy lim hI h qOO ,Ž .2 ž /4p 4p2T h™`

Ž̂ . Ž .where I h is given in 2.9 and the superscript asym means now replacing the Q’s
Ž . 2Ž .inside the integrals as 2.4 , but not for the function Q X outside, which would be

Ž .allowed only for q4br2p see our comments in the main text . Notice once more,
that one should be careful when taking T to arbitrary small values at the same time as
expanding in l. Here, we even find a term m2rT 2 to leading order. Again, we will
consider our approach valid only for TRm.

ˆ y1Ž .Our numerical analysis of I h shows that it vanishes much faster than h as
Ž .h™`, so that we see that for small l, DR for the integrals is justified. Notice that the

above relative error is scale independent, so we have fixed rsm. That is not true for
Ž . 2yl2 r2pthe correlator 4.8 itself, where there is an explicit r overall dependence.

Next, we will discuss the T4m case. Following the same steps as for the partition
function, we get now

²² ::T s X s 0Ž . Ž .C q y

l2r2 pF 2Z T T r 2Ž .0 yl r4p2s Q XŽ .ž /ž /Z T r 2Ž .MT

=

221yl r8p 2° ¶2 8yl rp1 m m
qy~ •1q f l, X qOO A.1Ž . Ž .22 ž /ž /2 TT¢ ß

with

h1qyf l, X s dt dt dq dqŽ . H H2 1 2 1 2
0 0

=

2l r4p2 2Q q yq ,t yt Q q ,tŽ . Ž .1 1 2 2
,2 2 2Q q yq ,t yt Q q yq ,t yt Q q ,tŽ . Ž . Ž .1 2 1 2 2 2 1 1

A.2Ž .
Ž . 2where Xs q,t , q has been rescaled q™qrb and all the Q functions are evaluated

Ž .at bs1. Notice that we have replaced rsm in A.1 only for the scale-independent
part, keeping the scale dependence outside the curly brackets.

Ž .Thus, for T4m, we have to analyse the behaviour of the integral A.2 with l and
qyŽ . qy,asym Ž .X or, rather, the difference between f l, X and f l, X obtained by2 2
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qyŽ .replacing the Q’s by their asymptotic values. Notice that f l,0 gives exactly the2

same contribution as the partition function evaluated to the same order, that is,
qyŽ . Ž . Ž .f l,0 s f l in 2.8 . In fact, in the language of Feynman diagrams, this is a2 2

disconnected contribution, proportional to h, so that the factor Z rZ in front ensures0 MT

that the answer for this correlator is finite as h™` and we take it into account by
qy, asym Ž .subtracting the Xs0 contribution to the correlators. The same is true for f l, X .2

Bearing this in mind, let us concentrate on the values of l2 close to and below 4p . The
reason is twofold: On the one hand, we have seen already that for small l the DR
works. On the other hand, those are the values that will give us the biggest contributions
to the error, since the integrand of the asymptotic form is not singular at any point,

Ž .whereas in A.2 , there are singular regions where the denominator vanish, and those
Ž . 2give larger but finite contributions to the integral the closer we approach to l Q4p .

Ž .The direct numerical evaluation of A.2 is a hard task. However, for T4m, all we
need to show is that the difference with its asymptotic value remains bounded close to
l2 Q4p . Therefore, let us estimate it by looking only at the biggest contributions, i.e.
those of the regions close to the singularities of the integrand. Firstly, in the region

Ž . Ž .x ,x , where x s q ,t and x s q ,t , we see that the integrand simply tends to1 2 1 1 1 2 2 2

its Xs0 value, and hence that contribution cancels with the partition function. On the
2 2other hand, near x , X or x , 0, the integrand goes like Q X rQŽ .2 1

Ž . 2Ž .xl2 r4px yX Q x . Then,2

2l r4p 2qy qy 2f l, X y f l,0 ; Q X f l dominant contributionŽ . Ž . Ž . Ž . Ž .2 2 2

A.3Ž .

< Ž . l2 r2p 2 < 2We have seen in Section 2.1 that f l y2 r2l Q1 for l -4p .2
Ž .As for the asymptotic contribution to the integral A.2 , we can evaluate it explicitly

Ž .by integrating over the four separate regions on the q ,q plane according to the1 2

different relative signs of q yq , q yq and q yq. We obtain in the h™` limit1 2 1 2

f qy,asym l, X y f qy,asym l,0Ž . Ž .2 2

l2 r2pq12 2 2 28 1 10l qr2 y3l qr2s y qq e q e y . A.4Ž .3 9 92 2½ 5l l

Ž . Ž . Ž .Therefore, from A.4 , A.3 and A.1 , we see that the relative error for the two-point
qy correlator – which is a scale-independent quantity – does not remain bounded at
large T for l2 close to 4p , unlike the pressure, but it grows arbitrarily large for q41.
In particular, taking l2 Q4p and q41 in the above expressions, we find

²² :: ²² ::asymT s X s 0 y T s X s 0Ž . Ž . Ž . Ž .C q y C q y

²² ::T s X s 0Ž . Ž .C q y

22 2m m
w x,c exp 2p q qOO2 2ž /T T

Ž Ž .2 2 .with cs f l r4y1rp r4.2
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Now we turn to the qq correlator. As before, we shall start with the limit
2 Ž .l r4p<1. From 4.9 we have now

l2r2 pF 2Z T T rŽ .0²² ::T s X s Y sŽ . Ž .C q q ž /ž /Z T r 2Ž .MT

=

2 nq222 l r4p` 1 m T
Ý ž /n! nq2 ! 2 mŽ .ns0

=
2l r4p2 qqQ q ,t F l,T , X A.5Ž . Ž . Ž .2 n

with
2nq2 h 21 e l r4pjqq 2Ž2 nq2. 2 2F l,T , X sb dt dq Q x yX Q xŽ . Ž .Ž .Ł H H2 n j j j j

0 0js1

=
2e e l r4pj k2Q x yx ,Ž .Ł j k

k-j

where now

q js1, . . . ,n
e sj ½ y jsnq1, . . . ,2 nq2

Ž .and, as before, we have set q™qrb , rsm, in the scale-independent part, Xs q,t
with 0(q(h and the Q’s in the integrand are evaluated at bs1. Notice that now
Ý e /0, so that we find an additional contribution when expanding in l2r4p . We findj j

for the relative error

²² :: ²² ::asymT s X s 0 y T s X s 0Ž . Ž . Ž . Ž .C q q C q q

²² ::T s X s 0Ž . Ž .C q q

22 2l g z lŽ .
1 ˆ ˆ ˆs lim I h y2 I h , X y I h qOOŽ . Ž . Ž .2 ž /4p f z 4ph™` Ž .

with zsm2hrT 2,

h1 1 2Î h , X s dq dt log Q q yq ,t ytŽ . Ž .H H1 1 1 1
h 0 0

2q2h log2yph q2p q hyqŽ .

and

z d 2
Xf z s I z ,Ž . Ž .02 dz z

23z d 2
g z s . f zŽ . Ž .ž / ž /2 dz z

ˆ ˆŽ . Ž .In the thermodynamic limit h™`, it is easy to check that I h, X ™ I h because of
Ž . Ž .translation invariance, and that g z rf z ™zr2, so that the relative error for small l
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Ž .tends to zero for TRm . Again, asym means the same as for the qy correlator, i.e.
replacing the Q’s by their asymptotic values only inside the integrals, but not for the

2l r4p2 Ž .Q q ,t factor in A.5 .Ž .
Finally, we will consider T4m for this correlator. We have now

l2r2 pF 2Z T T r 2Ž .0 l r4p2²² ::T s X s 0 s Q XŽ . Ž . Ž .C q q ž /ž /Z T r 2Ž .MT

=

221yl r8p 22 8yl rp1 m m
qqf l, X OOŽ .22 ž /ž /2 TT

with

f qq l, XŽ .2

h1
s dt dt dq dqH H1 2 1 2

0 0

=

2l r4p2Q q yq ,t ytŽ .1 2 1 2
.2 2 2 2Q q yq ,t yt Q q yq ,t yt Q q ,t Q q ,tŽ . Ž . Ž . Ž .1 1 2 2 1 1 2 2

Notice that there is an important difference between this correlator and the previous
cases we have analysed, namely, that the difference between the actual value and the
asymptotic limit shows up already to leading order in the mrT expansion, which is now
Ž .4yl2 r2p Ž .OO mrT rather than OO 1 . That means that the relative error for the correlator

qqŽ . Ž .f l, X starts now at OO 1 , and therefore is not bounded. To check that this is indeed2

the case, it is enough to take the dominant contribution to the integral by picking up the
different poles, as we did before with the qy correlator. One easily finds now

2yl r4p 2qq 2f l, X ; Q X f l dominant contribution .Ž . Ž . Ž . Ž .2 2

Notice that in this correlator there is no disconnected contribution, which is consistent
with the fact that its large T expansion begins at NLO whereas that of the partition

Ž . qq Ž .function starts at OO 1 . In other words, f l, X is finite as h™`. On the other2

hand, the asymptotic contribution yields

2 2yl q yl qr22 e e2qq, asym yl qf l, X sy 2 qe q3 y4 .Ž .2 2 2 2l l l

qqŽ . Ž .Therefore, one readily checks that the relative error for f l, X is indeed OO 1 for2

arbitrary q, so that we cannot bound it in the T4m limit.
Ž . Ž .Summarising, the structure of the correlators 4.8 , 4.9 makes it possible to reduce

them dimensionally in the small l limit but not in the large T one. As commented
2Ž .above, DR will also work for the factors Q X outside the integral in the limit

q4br2p .
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