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Maximum latent heat of neutron star matter independent of general relativity
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We establish bounds on the maximum possible specific latent heat of cold neutron-star matter derived from
hadron physics alone. Existing chiral perturbation theory computations for the equation of state, together with
perturbative quantum chromodynamics (QCD), relevant at highest densities (even if they would turn out not to be
physically realizable) bind the maximum latent heat which is possible in actual neutron stars. Because these are
already near gravitational collapse in general relativity, no denser form of cold matter can exist: thus, the bounds
are a generic physical limit. Even in scenarios that modify the theory of gravity, the existence of a family of
latent-heat maxima is relevant to diagnose progress in the knowledge of the equation of state of neutron matter,
by quantifying the maximum possible (presumed) phase transition that its error bands would allow. Thus, latent
heat is a natural benchmark for the equation of state in cold QCD.
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Within the context of latent heat of first-order phase tran-
sitions, one usually ignores, at present, whether neutron-star
matter undergoes a first-order phase transition to an exotic,
perhaps nonhadronic phase, which is of great interest to
nuclear and particle physics [1]. Many phases have been
proposed, such as color-superconducting phases [2], inhomo-
geneous (crystalline-like) phases [3] or flavored [4] or mixed
phases [5] among many examples; but whether any phase is
physically realized in neutron stars remains an object of both
theoretical and observational investigation [6].

Possible (one or more) first-order phase transitions would
leave distinct observable traces, such as a kink in the mass-
radius diagram (accessible when neutron star radii become
more routinely measured). They would be characterized by
a jump in energy density εE − εH between the hadronic (H)
and exotic (E ) phases, as a discontinuity in the free energy
presents itself upon changing a thermodynamic variable such
as temperature or density [7]. A way to quantify the leap is the
specific latent heat of the transition L, normalized to the unit
mass. With mechanical dimensions E/M, it is a pure number
in natural units with c = 1; Table I shows a few cases, from
condensed matter [8] to nuclear physics [9].

In this Letter we discuss the room for a possible first-order
phase transition at zero temperature T in neutron-star matter.
The Gibbs thermodynamic-equilibrium condition determines
at what critical chemical potential μc will the pressure of the
two phases be equal:

TH = TE = 0, μ = μc, PH = PE := Pc. (1)

In the low-density regime the starting point is

L|n := �E

NMN
, (2)

a latent heat per nucleon normalized to the vacuum neutron
mass of 940 MeV, computed from �E := EE − EH , and to

which we have added a subindex n to distinguish it from L|ε
defined shortly in Eq. (6).

To obtain L|n from the equation of state (EoS) P(ε) we
integrate the first law of thermodynamics in terms of the
pressure, the number density n (baryon number is conserved),
and the energy per nucleon (E = ε/n),∫

1

P(E )
dE =

∫
dn

n2
(3)

with limits extending from the transition point ntr = nH

(where the phase H is pure) to that nE where the medium is
completely in the presumed exotic phase.

Other research [10,11], instead of L (be it L|n or L|ε),
often discusses the difference of the energy densities between
the two phases, �ε. While natural in treating the relativistic
stress-energy tensor T 00 = ε, this makes comparing phenom-
ena across physics domains difficult, so we adopt the wider
convention using (specific) L instead of �ε. To relate them,
note that the difference of energies per nucleon EE − EH

directly follows from Eq. (3), because P is constant over the
transition. Then,

�E = PH
(nE − nH )

nE nH
(4)

with Eq. (2) yields L|n.
Closer in spirit to existing work in the field is the natu-

ral relativistic modification of Eq. (2) to include the nuclear
(anti)binding energy, B. Through

ε = n(MN c2 + B/A) (5)

and Eq. (4), a relativistic definition for the latent heat follows,
that can be directly evaluated from the EoS P(ε) as read off in
T μν ,

L|ε = PH
(εE − εH )

εEεH
. (6)
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At low ε, Eq. (6) is equivalent to Eq. (2) save for the binding
energy 0 � (B/A) << MN , introducing a few percent error
quantified below. Near the density allowing maximum L,
Eq. (6) is a very practical definition of L. Nevertheless we
will offer a comparison with the quantity most directly related
to the nonrelativistic limit, the L|n from Eq. (2) with Eq. (4)
substituted therein.

a. Equations of state for neutron stars valid for both
general relativity and modified gravity. General relativity
(GR) is widely accepted as the correct theory of gravity
inside neutron stars. But this requires further testing: Ein-
stein’s equations Gμν = κT μν have not been exhaustively
constrained at such high ε. For example, solar-system, binary
pulsar, and gravitational-wave propagation tests are basically
in vacuo [6,12]. Several constraints on P(ε) coming, for ex-
ample, from the maximum mass of a neutron star or its tidal
deformability, are obtained within GR. However, testing the
theory of gravity in the presence of matter requires prior
knowledge of the EoS. For this purpose, earlier work was
dedicated to the nEoS sets [13].1 They systematically map
out the uncertainty in the EoS coming from hadron physics:
perturbative quantum chromodynamics (pQCD) and the var-
ious existing chiral perturbation theory (ChPT) computations
at low density as well as first principles (thermodynamic sta-
bility and causality) alone. The nEoS sets are less constrained
than others in the recent literature [15], but more reliable for
testing gravity.

Figure 1 is a sample of zero-charge EoS for β-stable
neutron-star matter. At low number density n � 0.05nsat nu-
clear data directly constrains the crustal EoS [16,17]. (The
saturation density is nsat � 0.16/fm3 that, depending on the
order of perturbation theory matched to at low ε, corresponds
to B/A � 16 ± 1 MeV added to the nucleon mass, and to
ε � 153 MeV/fm3.)

Low 0.05 � n � 2nsat densities are reasonably taken care
of by ChPT. We have exhaustively explored the systemat-
ics due to the various groups trying different many body
techniques, momentum cutoffs for Feynman diagrams, and
orders in perturbation theory. Shown here are the next-to
next-to next-to leading order bands of [18,19] up to nm =
1.3nsat (systematic checks with nm = 2.0nsat returned only
small L|n differences, although the energy density ε allowing
the maximum transition does increase). The highest densi-
ties, at baryon chemical potential μ � 2.6 GeV and above
(corresponding to ε � 15 GeV/fm3), can be studied with
pQCD [20]. Such high densities are probably not reachable in
neutron stars within GR, but do provide a powerful constraint
to the actual physical EoS.

The big unknown is the EoS for intermediate ε, ex-
tending to a maximum P = 4680 MeV/fm3 or about εE =
15 GeV/fm3 (where pQCD is naturally assumed to hold).
Unlike in earlier works, this region depends on the precise
QCD matching-point pressure, whether at the top or at the
bottom of the allowed interval [22] (we depict these two
extremes with different tonalities in the figure). They have

1At [14] the reader can download several thousand equations of
state.

FIG. 1. nEoS [13] theoretically allowed EoS of neutron matter
from hadron physics alone. Between low-ε ChPT and high-ε pQCD
[only the matching points are shown at the upper right corner, with
ε = 1.5 GeV/fm3 and P ∈ (1.65, 4.7) GeV/fm3] [18,20,21] we ex-
tend uncertainty bands. The foreground and background (tile-red
online) areas correspond to the constraints from imposing simulta-
neously the limit for n and μ at the high-ε pQCD and the low-ε
pQCD point, respectively. Top: Example EoS inside the band are
ordered upwards by increasing c2

s at the ChPT matching point. The
low-density ChPT approximation is used up to 1.3ns, just above the
nuclear saturation density. Bottom: The extreme case with maximum
latent heat (leftmost dashed grey line) and a softer EoS with matching
c2

s = 0.1 that will be used for later comparison. The dotted lines
correspond to the same EoS without constraints from the (n, μ)
plane).

been obtained by enforcing that the derivative of the EoS
curves satisfy 0 � P′(ε) := c2

s � 1 = c2 (that is, respecting
monotony and causality). Changes in respect to earlier works
are due to new integral constraints from causality in the (n, μ)
plane [21]. These make a planar representation difficult, since
those constraints depend on the chemical potential at the
pQCD matching point and are laborious to bring to the (ε, P)
plane shown here and natural for the stress-momentum tensor
T μν . But broadly speaking, and referring to the bottom plot
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of Fig. 1, either the gray band (for EoS entering pQCD at the
highest point in the upper right corner) or the tile-red band (for
those entering at the lowest point, red online) can contain the
(unknown) physical EoS.

We sample the contained region with a 5002 grid. Any P(ε)
in this region is matched to ChPT at a number density nm, with
slope P′ = c2

s,m ∈ (0, 1) (given in the figure legends). At each
successive grid point, a random-slope step within those limits
is taken.

Additionally to the different ChPT matching point, the few
curves selected for the top and bottom plots of Fig. 1 can
be distinguished by their slope P′. In the top plot ones, this
increases up to c2 = 1, they then flatten to P′ = 0 as if a first
order phase transition took place. Typically, maximum L will
be found among this class.

The bottom plot displays the transition with the largest
possible latent heat (dashed line to the left, following the
causality limit c = 1 to the maximum point allowed by the
n, μ constraints for low-ε pQCD [21] or red area). The softer
EoS to its right (red online) has a less extreme L value that
resembles those in other works [23].

With the EoS set up, we can proceed to compute bounds
on the latent heat of neutron stars.

b. Numerical computation of L|ε from Eq. (6). The tools
are ready to discuss numerical values for the specific latent
heat L, starting by the simpler L|ε. We follow each EoS that is
compatible with all theoretical requirements (monotony and
causality at every point, and satisfaction of both ChPT and
pQCD constraints in their domains of validity), one at a time,
from lower to higher ε.

At each grid point we ask ourselves what is the maximum
stretch of P′ = 0 (first order phase transition) that could take
place without violating any of those requirements, that is, we
momentarily assume that very grid point to be the lower end
of a phase transition, (εH , PH ).

The latent heat for such phase transitions, extending in εE

as far as possible towards high-density pQCD or the causality
band limit in Fig. 1 (note that its apparent occasional steepness
is due to the different OX and OY axes log scales), are calcu-
lated and taken to Fig. 2. The largest maximum latent heat
that we find possible with the current QCD understanding,
L � 0.7, would be reached for ε � 5εsat, (for an EoS matched
to nuclear matter with maximum slope c2

s � 1 at 1.3 nsat).
But if the phase transition is specified to trigger at an

energy density εH (number density nH ) by whatever physi-
cal mechanism, the maximum possible L|ε will be one point
along the top curve (and thus, smaller than the maximum). If,
moreover, P at the transition point is also specified, such as,
e.g., because it must lie on a specific low-density EoS, then
the maximum L|ε that QCD theory allows lies on one of the
lower curves.

Because of simplicity, the literature often discusses a max-
imum “critical” discontinuity in the energy density, the length
of a zero-slope stretch in the (ε, P) diagram. Seidov’s small-
core approximation [11] would yield

�ε := εE − εH = εH

(
1

2
+ 3

2

PH

εH

)
, (7)

FIG. 2. Maximum specific L|ε with EoS fitting within the grey
nEoS band of Fig. 1. The OX axis (energy density at which the
transition triggers) extends to 100nsat (at chemical potential μB =
2.6 GeV), where pQCD is matched. An absolute maximum L|ε � 0.7
is reached for ε � 5εsat .

whose maximum possible value, for comparison with that
body of work, is shown in Fig. 3. The EoS correspond to those
in Fig. 1 that were also used for Fig. 2, focusing on the region
of interest for neutron stars in GR.

Having shown what hadron physics alone can state, we can
now turn to a comparison with the traditional Seidov bound,
that assumes that GR holds (other specific theories of gravity
would provide analogous results).

This follows from Seidov’s observation that material added
to the star, while its core undergoes a phase transition, accrues
to the mass without increasing P, moving closer to black-hole
gravitational collapse. Since the EoS in the hadronic phase
relates PH and εH , we can think of Eq. (6) as providing a
function LSeidov = LSeidov(�ε, εH ).

FIG. 3. Maximum ε discontinuity of Eq. (7) allowed in GR for
phase transitions with the EoS of Figs. 1 (top) and 2.
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FIG. 4. We compare the bound on the latent heat L|ε (upper line,
dashed) from microscopic hadron physics alone (see Fig. 2) with the
maximum latent heat that a static body in equilibrium can tolerate in
general relativity, the Seidov limit [11] (bottom line, dotted).

We plot LSeidov, together with the top L|ε line of Fig. 2, in
Fig. 4. For large swaths of density (including those relevant
in GR), the purely hadronic calculation is less tight than the
Seidov limit. This, however, cannot be used with modified
gravity theories: when handling them, our less constraining
limit becomes relevant. A good diagnostic for future progress
in the EoS would be to drastically cut the separation be-
tween the two curves. A promising new approach employs the
functional renormalization group to bring down the point of
matching to QCD [24] from the high ε needed for perturbation
theory.

It should also be noted that the lower line of Seidov’s limit
entails a perturbative assumption about the exotic core of the
star being of small size, so a full numerical computation might
displace it. Our hadron limit, the upper curve, is (numerically)
exact.

c. Numerical computation of L|n. The difference between
computing L|n (shown below in Fig. 5) and L|ε (shown in
Fig. 6) grows with energy density. Around ε � 2.6εsat, the
stiffest EoS leads to a 15% change relative to L|ε; with
the softest EoS at the bottom of the allowed band, the two
heats agree within 15% all the way to ε � 5.8εsat = 5.8 ×
153 MeV/fm3. The corresponding binding energy per nu-
cleon B/A up to which the relative difference between L|n and
L|ε remains within 15% is about 20%MN (with the precise
figure depending on the EoS), still in a regime where the total
energy is mass-dominated.

Beyond such energy densities it becomes really necessary
to distinguish L|ε from L|n. To compute this second one, it is
necessary to solve for the relation between n and E in Eq. (5),
that requires the binding energy per nucleon at each point of
the grid, (B/A)i. This is explicitly known for the ChPT low-
density band due to complete nuclear calculations. For higher
densities, where we are constructing all interpolating P(ε), we
need to obtain it iteratively from its lower-density values. The

FIG. 5. Top: Maximum specific latent heat L|n fitting within the
nEoS band, with the same EoS from Fig. 3 (top), but using Eq. (4).
The OX axis (number density at which the phase transition trig-
gers) extends to 100nsat (at chemical potential μB = 2.6 GeV), where
pQCD is matched. An absolute maximum L|n � 1 is reached for
ε � 5εsat . Bottom: Effect of including (solid lines) or not including
(dashed lines) the integral constraints from the (μ, n) plane [21].

two discretized equations to be stepped forward towards larger
density (larger i subindex) are

ni = εi

MN + (B/A)i
, (8)

Pi = n2
i

(B/A)i+1 − (B/A)i−1

ni+1 − ni−1
. (9)

We use these two equations to solve for (B/A)i+1 and ni+1

given their values at the earlier two points i, i − 1 and having
our entire P(ε) equation of state at hand. The system is started
with the explicit low-density data from [18], and the resulting
L|n values are plotted in Figs. 5 and 7, in the same format as
the earlier Figs. 2 and 4 for L|ε. We must take into account
new constraints derived by simultaneously imposing the high-
ε pQCD limits for the p, n and μ values, as well as causality in
the (μ, n) plane: c−2

s = (μ/n)∂n/∂μ � 1. These are denoted
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FIG. 6. Solid lines: maximum possible latent heat L|n (top) and
for a soft c2

s = 0.1 EoS in the allowed band, as function of the starting
point εH , where the transition triggers. Dashed lines: same for L|ε .
The top two lines are absolute bounds on the respective latent heats
allowed by the strong interactions.

“integral constraints” [21]. They are so named because there
is an integral relation between the changes in pressure and
number density, Eq. (4) of [21],

∫ μH

μL

n(μ)dμ = pH − pL. (10)

Incidently, to transform the Seidov limit for �ε in Eq. (7)
to a limit on the latent heat L|n as we plot it, we also need
to express the number density n = εGR

max/(MN + B/A|εGR
max

), in
terms of the maximum energy density computed within GR,
equation which is likewise iteratively stepped forward.

FIG. 7. We compare the bound on the latent heat L|n (upper line,
dashed) from microscopic hadron physics alone (see Fig. 2) with the
maximum latent heat related to the Seidov limit [11] (bottom line,
dotted), by using Eq. (4).

TABLE I. Some salient values of latent heat in natural units.

Substance/transition L

He-3 superfluid 1.5 μJ/mol = 5.5 × 10−24

NdCu3Fe4O12 perovskite 25.5 kJ/kg = 2.8 × 10−13

Ice-water 79.7 cal/g = 3.71 × 10−12

Nuclear evaporation 30 MeV/A = 3 × 10−2

Neutron star matter? > O(0.1)?

d. Discussion. The specific latent heat, be it L|n of Eq. (2)
or L|ε of Eq. (6), is a sensible quantity to characterize the
intensity of a phase transition, but by no means the only
one; for example, Lindblom [10] chooses to employ the also
dimensionless

� = εE − εH

PH + εH
. (11)

Yet a different choice is that of Seidov, who uses

q − 1 := εE − εH

εH
(12)

normalizing the discontinuity in ε to the energy density at the
low-end (hadronic) εH . Since PH � εH in the explored regime
of low-density physics, � and q − 1 are almost proportional
and not that different.

These or similar quantities share with our Eq. (6) the ad-
vantage of not being normalized to the hadron scale [unlike
the nonrelativistic limit Eq. (2) with L ∝ M−1

N ] but being
usable for any problem. The definition that we have chosen,
Eq. (6) is close to Eq. (2) for much of the span of neutron star
physics in the MeV–GeV range, which immediately connects
it with many other subbranches of physics, whereas Lind-
blom’s � in Eq. (11) is less widely used.

The reader will have noticed in Table I that the entry
corresponding to neutron star matter stands out in size: in-
deed, if a first order phase transition would be experimentally
discovered in nuclear matter under pressure, it would hold
the record across all known substances. This may happen
indirectly in neutron stars, or as seems more likely, directly
in relativistic heavy ion collisions below the presumed critical
point [25]. (There are reasons to suspect an even higher-L
phase transition above the electroweak scale [26], to provide a
nonequilibrium environment for baryogenesis, but there is at
the present time no clear experimental path to its discovery.)

The main result of this work is the specific latent heat
reported in Figs. 2 and 6. It is noteworthy that those curves
represent the maximum possible L tolerated by present theory
of nuclear strong interactions, should the phase transition to an
exotic QCD phase trigger at the corresponding ε along each
EoS of Fig. 1. Further sampling with the nEoS sets gave no
additional information.

In recent work [27] we show the effect of typical achievable
temperatures on the neutron star EoS uncertainty band. Where
those uncertainties are largest, ρ � T and temperature does
not play an important role, except for very superficial layers
(contributing little to the latent-heat bound).
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Improvements in QCD theory or its low-density effective
theory would shrink the nEoS band (gray and red shaded areas
in Fig. 1) and therefore the maximum possible latent heat. In
conclusion, we propose the function L|ε(εH ) as a diagnostic
to quickly quantify future progress in constraining the equa-
tion of state of neutron star matter from first principles.
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