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Abstract

We analyze the e¤ect of parameter estimation error on the size of unconditional pop-
ulation level tests of predictive ability when they are implemented under a class of loss
functions we refer to as �discrete functions�. The analysis is restricted to linear models
in stationary variables. We obtain analytical results for nonnested models guaranteeing
asymptotic irrelevance of parameter estimation error under a plausible predictive en-
vironment and three subsets of discrete loss functions that seem quite appropriate for
many economic applications. For nested models, we provide some Monte Carlo evidence
suggesting that the asymptotic distribution of the Diebold and Mariano (1995) test is
relatively robust to parameter estimation error in many cases if it is implemented under
discrete loss functions, unlike what happens under the squared forecast error or the
absolute value error loss functions.

1 Introduction

Evaluating forecasting performance requires the use of a statistical test under a speci�c
loss function. Most often, the squared forecast error (SFE) or the absolute forecast error
(AFE) loss functions are assumed, even when applying the popular test introduced in Diebold
and Mariano (1995) (DM test) that allows for a general loss function to be de�ned on the
(data,forecast)-pair. However, there are many situations in which these functions may not be
a good choice or even a valid option. An obvious one is decision-making environments, where
the economic bene�ts or losses produced by the use of forecasts are given by the nature of
the decision problem. Then, an economic evaluation of forecasts is appropriate, and the loss
function is explicitly determined so as to re�ect these economic values.
Even when forecasts are made for an unspeci�ed use and the loss function is viewed

as a purely statistical measure of the quality of forecasts, SFE or AFE functions may be
inadequate. In forecasting situations often encountered in economics and �nance, the analyst
is just interested in anticipating one among a �nite set of categories for the data, even if
that requires the prediction of a continuous underlying variable. Pesaran and Timmermann
(2009) o¤er several examples: macroeconomic survey participants are often asked about the
most likely range of values for GDP growth, changes in interest rates or in�ation. Financial
analysts often categorize stocks into "buy", "strong buy", "hold", "sell" or "strong sell" on
the basis of a prediction of future price changes. In these directional forecasting situations,
the sign of the forecast is essential, while it is unclear that the size of the forecast error
should be assigned a continuous valuation like SFE or AFE which, in contrast, incorporates
a high sensibility to outliers in either the data or the forecasts. Another situation would be
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qualitative forecasting, when the space of observed events cannot unambiguously be reduced
to real numbers.
For such situations, a loss function can be de�ned on a �nite partition of the domain of

(data,forecast)-pairs into n2 quadrants, with a speci�c cost or utility function assigned to each
quadrant. A simple application with n = 2 is discussed in Granger and Pesaran (2000), with
more general versions being mentioned in McCracken (2004) and Blaskowitz and Herwatz
(2011), among others. Our work deals with this class of loss functions when the utility
associated to each (data,forecast)-pair is a real number, which we will refer to as discrete loss
functions. Such functions are the natural criterion to evaluate forecasts in some decision-
making problems, and have advantages as a statistical criterion for forecast evaluation: i)
they can be used in situations when the information provided by the (data,forecast)-pair
cannot be summarized by their di¤erence, like in qualitative forecasting, ii) asymmetries in
the evaluation of forecasts can be easily incorporated; iii) they can place a bound on the
potential distortion in forecast evaluation due to an occasional extreme prediction error or
data outlier; iv) the sign of the forecast can be easily taken into account for its evaluation, as
it is needed for directional forecasts. As an alternative to AFE loss function in many contexts,
we speci�cally propose the SDAFE function, which is a discrete version of the former with
the properties iii and iv mentioned above.
Considerable e¤ort has been devoted to characterizing the e¤ects of parameter error

estimation (PEE) on tests of forecasting performance like DM, a major issue when assessing
the performance of a forecasting model.1 The main contribution of this paper is to show,
�rstly, that the properties of these tests are robust to the presence of PEE under a variety of
classes of discrete loss functions, when certain plausible forecasting conditions are satis�ed,
and, secondly, that the distortion caused by PEE on the properties of the tests in other
forecasting frameworks can be far less important under discrete loss functions than under
standard continuous loss functions as SFE or AFE.
Our analysis is restricted to the following framework: we examine tests of forecasting

performance following the unconditional population level approach, that tests the hypothesis
E(f(��)) = Ef , where �� denotes the stacked parameter vectors of the l models and f =
(f1; :::; fl) with fi being the loss function used to evaluate the i-th model forecasts. We discard
the alternative �nite sample approach because results in Giacomini and White (2006), a key
reference, do not hold for the recursive forecasting scheme, the most common in practice
and the one we consider throughout the paper, as opposed to the �xed or rolling forecasting
schemes. Furthermore, we focus on analyzing the size of the tests rather than their power.
Finally, our results are restricted to linear models in stationary variables.
When comparing nonnested models in our framework, the basic references regarding

the e¤ect of PEE on the distribution of the test statistic are West (1996) and McCracken
(2000). McCracken (2000) extends the results in West (1996) to loss functions that are
non-di¤erentiable in the model parameters, as it is the case of discrete loss functions. Both
authors characterize a Normal limiting distribution for the sample mean f with a variance

covariance matrix that involves an F matrix, de�ned as F = E
h
@f(�)
@�

i
�=��

, whose analytical

expression depends on the speci�cation of the loss function f . A central part of our paper
consists precisely in characterizing this matrix for a discrete f . For nested models, results are
much less general. They are speci�c to each particular test and most of them hold only for the
SFE loss function, with non-standard limiting distributions for the test statistic. McCracken

1The properties of the DM test were originally derived in Diebold and Mariano (1995) without taking
into account PEE. Later work has described how to incorporate PEE in the DM test (through its asymptotic
distribution) in di¤erent forecasting frameworks. Some authors use di¤erent notation to refer to the original
version of the test, as opposed to the PEE version. In contrast, we will regularly refer to the DM test, making
explicit in each occasion whether PEE is being taking into account.
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(2007) is a very relevant reference for the comparison of nested models using the DM test
under an SFE loss. There are no results in the literature applying to nested forecasting
models under discrete loss functions.
Unfortunately, even the results in West (1996) and McCracken (2000) may be di¢ cult to

incorporate to a forecasting test in practice, at a di¤erence of what happens when PEE is
not taken into account. First of all, because derivation of the analytical expression for the
F matrix can be rather complicated when f is not di¤erentiable (see McCracken (2004));
secondly, because estimating the variance covariance matrix may be too complex for not spe-
cialized practitioners; thirdly, because such estimation requires the knowledge of estimation
details of the competing forecasting models, which is not always available.
It is therefore very fortunate that, in the context of West (1996) and McCracken (2000),

there are situations in which PEE is irrelevant in terms of statistical inference, so that the
tests can be implemented with the original asymptotic variance and critical values for the
test statistic. We denote this circumstance by AIPEE (asymptotic irrelevance of parame-
ter estimation error). Other than in setups characterized by the length of the sample and
forecasting period, AIPEE arises for nonnested models when F = 0, a condition which can
hold for speci�c loss functions in certain estimation and forecasting situations. For instance,
it holds for SFE and AFE under quite plausible conditions. However, as McCracken (2004)
and West (2006) state, it is not easy to �nd additional loss functions for which AIPEE holds.
The results of the paper can be summarized as follows:
i) in the case of nonnested models, we �nd three sets of su¢ cient conditions under which

the F matrix in McCracken (2000) turns out to be a matrix of zeroes for discrete loss
functions, so that the AIPEE property holds. The �rst two theorems require conditions
related to the models which are quite plausible in practice and analogous to those imposed
in McCracken (2000) for an AFE loss. Simpler versions of the SDAFE loss function verify
our �rst theorem whereas many other interesting versions of SDAFE verify the second one.
Our third theorem requires a relatively restrictive assumption on the explanatory variables
of the models and it is valid for a subset of discrete loss functions which includes the function
used in the decision environment example in Section 3. These three theorems are the main
results in the paper.
ii) we obtain simulation results on the distortions in the size of tests implemented under

discrete loss functions when AIPEE does not hold, but that fact is ignored. We perform
exercises for non-nested models in cases where F 6= 0; as well as for nested models. We
focus on the DM test and a recursive forecasting scheme. Our results suggest that the size
of the DM test is more robust to the presence of PEE in most predictive setups if it is
implemented under a discrete loss function than under more standard loss functions. Given
the inconvenience and complexity of incorporating PEE in the implementation of tests of
forecasting ability, this is also a valuable conclusion.
The paper is organized as follows. Sections 2 and 3 introduce and motivate the use

of discrete loss functions when evaluating forecasting ability. In Section 4 we review the
literature. In Sections 5 and 6 we present the results. Section 5 contains the theorems on
AIPEE. Section 6 presents the results of the simulation exercises mentioned above, as well
as their sensitivity to the speci�c discrete loss function used. Additional analysis on this
sensitivity is carried out in Section 7. The main conclusions are summarized in Section 8.

2 Discrete loss functions

There are many forecasting environments for which evaluating forecasts is naturally de�ned
on a �nite partition of the data-forecast domain with a utility function Ujk(:) associated
to each of the resulting (j; k)-quadrants. Granger and Pesaran (2000) introduce this type
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of loss functions for two-state, two-action decision problems and McCracken (2004) and
Blaskowitz and Herwatz (2011) consider alternative versions of these functions. We focus on
the particular case when Ujk are constants, which we will refer to as �discrete loss functions�.
If yt+h denotes the data at time t + h and byt+h the forecast made at time t for yt+h, a

formal de�nition of a discrete loss function f is given by:
(a:1) establishing a partition of the data domain into n <1 intervals: fl0; l1; l2; :::; ln�2; ln�1; lng,

where li < li+1 for i = 0; :::; n� 1 with l0 = �1 and ln =1. Without loss of generality, we
assume that the partition of the forecast domain is the same as that of the data domain.
(a:2) assigning to each (j; k)-quadrant a real number ajk :2

f(yt+h; byt+h) = ajk <1, lj�1 < yt+h � lj ; lk�1 < byt+h � lk: (1)

The discrete loss function f can be summarized in matrix form:

byt+h
(l0; l1] (l1; l2] ::: (ln�1; ln)

(l0; l1] a11 a12 ::: a1n
yt+h (l1; l2] a21 a22 ::: a2n

::: ::: ::: :::
(ln�1; ln) an1 an2 ::: ann

The use of a discrete loss function as an alternative to SFE and AFE for forecast evaluation
requires the choice of penalties into the quadrants de�ned by the partition chosen for the
data space. In cases when the sign is relevant for evaluating forecasting performance, zero
will be an ls-point in the partition, and we propose the SDAFE (�Signed Discrete Absolute
Forecast Error�) function, a discrete version of AFE that takes into account whether the sign
of forecast is correct while minimizing the impact of outliers. Starting from the partition
fl0; l1; :::; ls�1; ls = 0; ls+1:::; ln�1; lng, 0 < s < n; SDAFE penalties will be given by:

~l0 = l1 � v0; ~ln = ln�1 + vn; ~li = li; i = 1:::n� 1, for some 0 < v0 <1 and 0 < vn <1;
�i = �~li�1 + (1� �)~li; � 2 (0; 1); i = 1:::n;

ajk = j�j � �kj+ �j , j = 1:::n, k = 1:::n, with
�j = 0 if sgn(byt+h) = sgn(yt+h)
�j � 0 otherwise,

(2)

where sgn(x) is a function taking the value 1 if x is positive, and �1 else.
Rede�ning the extreme points of the partition ~l0 and ~ln prevents the subsequent loss

function to take an in�nite value, while �i selects a representative point in the (li�1; li]
interval and �j re�ects the extra penalty when the forecast has a di¤erent sign than the
data. In the special case when forecasting the sign of the data has no value, the SDAFE
function could be used with �j = 0 for every j , thereby approximating a discrete version
of the standard AFE function. More generally, the extra loss �j may be constant or change
with the level of the data. A reasonable option is to choose �j to guarantee that for each
data category, any forecast with the correct sign gets assigned a lower loss than any forecast
with the wrong sign. One such possibility would be to de�ne �j by:

2A natural convention would be ajj = 0 for j = 1; :::; n, but this is not necessary for any of the results in
the paper.
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�j = 0 if sgn(byt+h) = sgn(yt+h) and �j = max
k
fajkj�k�j > 0g; otherwise. (3)

Along the paper we will use the SDAFE function with the particular speci�cations (3)
and (4):

� = 1=2; v0 = vn: (4)

In decision making environments, there are many situations in which a discrete loss func-
tion turns out to be the unique way to evaluate forecasts under a �decision-based loss func-
tion�approach (Granger and Machina (2006)). That is the case when the state and decision
variables can take just a �nite number of values, and the payo¤ associated to each (state,
decision)-pair is a real number that can be derived from the nature of the problem, as in
the two-state, two-action decision problem in Granger and Pesaran (2000). We now present
another decision problem, potentially representative of many other forecasting situations in
practice. This example is specially interesting for our work because we will show later that
AIPEE is guaranteed under a class of discrete loss functions with a structure like the loss
function in the example.

3 A discrete decision problem

Consider a �rm that produces an item which is a continuous variable, but it is sold in packs of
r units of the item. For instance, each pack could be a bottle of r liters of milk. The potential
weekly demand of the �rm (measured in liters of milk) is an stationary variable xt whose
mean is rqm and takes values in the range (0; 2rqm]. At the beginning of each week t + 1,
the �rm decides the number of bottles to produce, denoted by qt+1, with 1 � qt+1 � 2qm.3
Each bottle has a production cost of a and its price is p, generating a revenue of either p
or 0 depending on whether the demand xt+1 is large enough to sell the bottle. We denote
by b = p � a the bene�t per bottle, when sold. To produce a number of bottles above qm,
the �rm would need to rent some additional equipment, whose cost is A � 0. If it turns out
that xt+1 > rqm and so the equipment is used, there is a revenue for the �rm of A+B, with
B � 0.4
Since xt+1 is unknown, the �rm takes its decisions on the basis of a point forecast bxt+1;

so that the number of bottles to produce is given by bqt+1 = dbxt+1=re, where dze denotes the
smallest integer larger or equal to z. This would be the �optimal action function�, in terms
of Granger and Machina (2006). The states of the decision problem are the ((q � 1)r; qr]
intervals of values of xt+1, for q = :::; qm � 2; qm � 1; qm; qm + 1; qm + 2; :::.
The weekly cost function of the �rm is C(bxt+1) = abqt+1+Abst+1, where bst+1 = 1 fbxt+1 > rqmg

is an indicator function which is equal to one if the �rm demand forecast is larger than rqm;
so that the �rm rents the new equipment to produce above qm bottles. The weekly revenue
function is I(xt+1; bxt+1) = min(bqt+1; q�t+1)p + (A + B)bst+1s�t+1, where q�t+1 = dxt+1=re and
s�t+1 = 1 fxt+1 > rqmg would represent the optimal decisions if xt+1 was known. Finally,
the utility function of the decision problem is the weekly pro�t of the �rm U(xt+1; bxt+1) =
I(xt+1; bxt+1)� C(bxt+1).
The problem can be rewritten in terms of the deviation of the demand around its mean,

i.e., yt = xt�rqm, whose mean is zero. Then the decision variable would be wt+1 = qt+1�qm,
taking integer values between 1� qm and qm, and consequently the optimal action function

3When (q � 1)r < xt+1 < qr, we will assume that the �rm could sell q packs. This arbitrary convention
is not qualitatively relevant for the analysis.

4This can occur because of the positive e¤ect in workers of managing a new equipment, because of
marketing e¤ects for the owner of the equipment, etc.
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would be bwt+1 = bqt+1 � qm. The states of the problem are now the intervals ((w � 1)r; wr]
of values of yt+1, for w = :::;�2;�1; 0;+1;+2; ::: It is straightforward to see that the weekly
pro�t of the �rm would be U(yt+1; byt+1) = bqm + min( bwt+1; w�t+1)p + bnt+1(n�t+1(A + B) �
A)�a bwt+1, being w�t = q�t �qm, bnt+1 = 1 fbyt+1 > 0g and n�t+1 = 1�y�t+1 > 0	. For instance,
if qm = 2, the payo¤ matrix of the problem can be written as follows:

byt+1
(�1;�r] (�r; 0] (0;+r] (+r;+1)

States

#

Actions ! bwt+1 = �1bnt+1 = 0 bwt+1 = 0bnt+1 = 0 bwt+1 = +1bnt+1 = 1 bwt+1 = +2bnt+1 = 1
(�1;�r] w�t+1 = �1

n�t+1 = 0
bqm � b bqm � p

bqm � b
�2a�A

bqm � b
�3a�A

yt+1 (�r; 0] w�t+1 = 0
n�t+1 = 0

bqm � b bqm
bqm � a
�A

bqm � 2a
�A

(0;+r]
w�t+1 = +1
n�t+1 = 1

bqm � b bqm
bqm + b
+B

bqm + b
�a+B

(+r;+1) w�t+1 = +2
n�t+1 = 1

bqm � b bqm
bqm + b
+B

bqm + 2b
+B

(5)

Following Granger and Machina (2006), the �decision-based loss function� is de�ned by
the di¤erence between the optimal utility level, i.e., the utility obtained if the forecast had
been equal to the realized value, and the realized utility. In our context, the optimal utility
U� is obtained under byt+1 = yt+1; so that U� = U(yt+1; yt+1) = bqm + bw

�
t+1 + n

�
t+1B,

and the discrete loss function f(yt+1; byt+1) = U�(yt+1)� U(yt+1; byt+1) corresponding to the
payo¤ matrix (5) is:

byt+1
(�1;�r] (�r; 0] (0;+r] (+r;+1)

(�1;�r] 0 a 2a+A 3a+A
yt+1 (�r; 0] b 0 a+A 2a+A

(0;+r] B + 2b B + b 0 a
(+r;+1) B + 3b B + 2b b 0

(6)

Because of the nature of the problem, the loss function is necessarily �discrete�, as de�ned
by (a:1)� (a:2). Moreover, the partition is symmetric around zero. We will later show that
the AIPEE property holds for discrete loss functions based on a symmetric partition around
zero for given patterns of the penalty values, provided some conditions on the forecasting
model are satis�ed. One of such patterns is (6). This is an interesting result because this
pattern for the payo¤matrix and the associated loss function appears in many other decision
problems, maybe with A = B = 0. Indeed, for industrial production decisions where the
item is sold in indivisible units, the demand for the next period is unknown, while prices are
given and the cost of each aditional unit produced is constant.
In this example we assume that the decision is made on the basis of point forecasts, fol-

lowing Blaskowitz and Herwatz (2011), among many others. This assumption is maintained
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throughout the paper. Alternatively, the decision making environment suggested in Granger
and Pesaran (2000) and Pesaran and Skouras (2002) considers an optimal action that max-
imizes expected utility computed under the probability distribution forecast on the set of
states.

4 Review of theory

Let Mi be a forecasting model yt+h = 'i(�
�
i ; Zit) + uit+h that generates forecasts byi;t+h for

yt+h at time t , with �i being the parameter vector in the model and �
�
i its true value, and

Zit a vector of variables known at time t. Variables in Z can either be exogenous regressors
or lags of y. By uit+h we denote the forecast error at time t + h that would arise if �

�
i was

known. We will assume we have a sample of size T + h for y and Z; although just T data
points will be used in estimation. The forecast byi;t+h is obtained as byi;t+h = 'i(

b�it; Zit),
where b�it denotes the estimate of �i from a set of in-sample observations up to time t. There
are three common forecasting schemes: �xed, rolling and recursive, and we focus on the last
one: the �rst forecast is made at t = R for yR+h, estimating �i with the sample up to t = R;
each period we add a new data point in estimation and compute the h-step ahead forecast.
We repeat the exercise up to period T , the last one used for forecasting. The total number
of forecasts will be P , with P +R = T + 1.
Given that we have l forecasting models, we would stack all the �i parameter vectors in

a single vector � = (�01; �
0
2; :::; �

0
l)
0 with dimension K � 1; whose true value will be denoted

by ��. We would also stack the estimates b�it and regressors Zit into vectors b�t and Zt. We
de�ne a l�1 vector function ft+h(yt+h; �; Zt), whose i-th component is the value at time t+h
of the loss function associated to model Mi. The parametric estimation of ft+h(yt+h; �

�; Zt)

will be ft+h(yt+h; b�t; Zt). To simplify notation, we denote ft+h(yt+h; �; Zt) by ft+h(�).
We focus on unconditional population-level tests of predictive ability, as described in Clark

and McCracken (2010), that test for the unconditional value of E(ft+h(�
�)) and only require

the asymptotic distribution of the estimator f � E(ft+h(��)), with f = P�1
TP
t=R

ft+h(b�t).
Many tests for the adequacy of a single model or for comparing the forecast accuracy of
several models belong to this category, the DM being the best known test in that class.

4.1 Nonnested models. Di¤erentiable loss

For nonnested models, West (1996) obtains the analytical expression for the variance covari-
ance matrix for the f � E(ft(��)) statistic under PEE. Assuming di¤erentiability of ft(�)
with respect to �, stationarity of the variables in the model,5 convergence of � = lim

T!1
P=R

and a speci�c assumption on the estimation method,6 West (1996) shows:

p
P (f � E(ft+h (��)))

a� N(0;
); (7a)


 = Sff +�(FBS
0
fh + SfhB

0F 0) + 2�FV�F
0; (7b)

where Sff =
+1P
j=�1

�ff (j), �ff (j) = E [(ft � E(ft))(ft�j � E(ft))0] is the variance-

covariance matrix when �� is known, i.e., in the absence of PEE. Matrix F = E
h
@f(�)
@�

i
�=��

5For integrated and possibly cointegrated variables, see Corradi, Swanson and Olivetti (2001) and Rossi
(2005).

6For details on the speci�c assumptions see pages 1070-1071 in West (1996).
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plays a very relevant role in our work: V� is the asymptotic variance covariance matrix ofp
T (b�T � ��), while � is an increasing function of �, bounded between 0 and 1. Hence,

the higher is �, the larger is the divergence between the variance covariance matrix under
PEE, 
, and the component associated to sampling error, Sff . Finally, matrices B and Sfh
are determined by the estimation method, the characteristics of the forecasting model and
the loss function.7 The second and third terms in 
;�(FBS0fh + SfhB

0F 0) and 2�FV�F 0,

capture the covariance between f and the estimation error associated to b�t and the variance
due to estimation error of ��, respectively.
A specially important situation arises when parameter estimation is irrelevant for statis-

tical inference, i.e., when 
 = Sff , which we de�ne as AIPEE. That is the case if � = 0 or
F = 0.8 The �rst condition holds when the number of available data points for estimation
is arbitrarily large in relation to the number of forecasts, so that we can treat �� as known.
The second condition is more relevant, and it can be obtained for speci�c combinations of
forecasting models and loss functions. As shown in West (1996), a situation of this type arises
if the SFE function is used to evaluate forecasts of nonnested models when the probability
distribution of forecast errors conditional on regressors has a zero mean.

4.2 Nonnested models. Non-di¤erentiable loss

Theorem 2.3.1 in McCracken (2000) extends the theorem in West (1996) to non-di¤erentiable
loss functions, obtaining the same expression for the asymptotic distribution of the test

statistic as in West (1996), with F = E
h
@f(�)
@�

i
�=��

replaced by F =
h
@Ef(�)
@�

i
�=��

. That is

the theorem that applies to discrete loss functions. McCracken (2000) derives the expression
for F in nonnested linear models under a typical non-di¤erentiable loss, the AFE function:
F = �E

�
sgn(ut+1)Z

0
t+1

�
. Consequently, F = 0 in this case if the probability distribution

of errors ut+1 conditional on regressors Zt+1 has a zero median. When F 6= 0, estimation
of F under an AFE loss function is simple, which is unfortunately not the case for most
non-di¤erentiable loss functions.
Application of theorems in West (1996) and McCracken (2000) to the DM test is straight-

forward. Then, l = 2, ft = (f1t; f2t)0 and the loss functions f1t and f2t are the same for both
models. The test statistic is d = f1 � f2, so that the version of the DM test under PEE is:

p
P (d� E(dt))

a� N(0;
d); (8)


d = 
11 +
22 � 2
12; (9)

with 
ij being the (i; j)-element in the 2 � 2 matrix 
 de�ned in (7b). Therefore, 
d
is the correct asymptotic variance covariance matrix under PEE for the DM test, while
Sd = Sff 11 + Sff 22 � 2Sff 12 is the variance-covariance matrix presented in Diebold and
Mariano (1995) under the assumption that �� is known.

4.3 Nested models

When l = 2 and the models are nested, theorems in West (1996) and McCracken (2000) are no
longer valid because 
d then becomes zero. The main result for unconditional population-
level equal forecast accuracy tests under a recursive sampling scheme is obtained by Mc-
Cracken (2007), who derives the asymptotic distribution for a restricted version of the DM

7See West (1996) for a detailed de�nition of these matrices.
8Actually, there is a third condition for AIPEE: �(FBS0fh + SfhB

0F 0) = �2�FV�F 0, an infrequent
situation, although West (1996), pgs. 1073-4, characterizes some forecasting setups in which such condition
holds.

8



test (OOS-t test). The restrictions refers to a case in which forecast errors are serially un-
correlated and conditionally homoskedastic, and the objective function that characterizes
the estimation method is the same as the loss function ft(�) used to evaluate the set of
forecasts, with that loss function ft(�) being di¤erentiable in the parameters �. Under this
set of assumptions, McCracken (2007) obtains an asymptotically limiting distribution for the
p
Pdb
�1=2d statistic free of nuisance parameters, where b
d = P�1 TP

t=R

(f1t(b�1t)� f2t(b�2t))2.
The resulting distribution has a representation as functionals of Brownian motions. Mc-

Cracken (2007) tabulates critical values as a function of � and the di¤erence k2 in the number
of parameters between the two models. The asymptotic distribution di¤ers notably from a
N(0; 1), having a negative mean. Numerical results in that paper suggest that the mathe-
matical expectation of the limiting distribution decreases with � and k2, while the variance
increases with �. It is only when � = 0 that the DM test for nested models keeps its as-
ymptotic Normality in a setup with PEE, provided the conditions in McCracken (2007) hold.
The limitations of the result in McCracken (2007) refer to the fact that the resulting distrib-
ution is not standard, which is inconvenient for the practical implementation of the test, and
also that the assumptions about the loss function are rather restrictive. Essentially, the test
in McCracken (2007) can be applied in practice only under an SFE loss function, provided
models are estimated by linear or nonlinear least squares, and forecasts are made one step
ahead.
There are other relevant results related to the use of the SFE loss in this framework. Clark

and McCracken (2001) establish results for tests of forecast encompassing when comparing
two nested models. Clark andWest (2007) propose testing for equal forecast accuracy through
an �adjusted-MSE� statistic. Even though the limiting distribution of this statistic is not
Normal, the use of standard critical values yields little size distortion.
Unfortunately, there does not exist an analogous literature for nested models under non-

di¤erentiable loss functions and a recursive sampling scheme.

5 Analytical results

Let us consider l forecasting models for yt+h. Model Mi is yt+h = 'i(�
�
i ; Zit) + uit+h, where

��i denotes the true value of vector �i (Ki�1) and uit+h is the theoretical forecasting error for
Mi. Vectors �i and their true values are stacked into the K�1 vectors � and ��, respectively.
We start by providing the analytical expression for matrix F in McCracken (2000) under

a general discrete loss function, as de�ned in (a:1) � (a:2). We will obtain the expression
for the generic element in F =

h
@Ef(�)
@�

i
�=��

for any model Mi and for each parameter in

�. Obviously, if the parameter does not appear in the speci�cation of Mi, the corresponding

element of the derivative in F will be zero, so we will focus on
h
@Efit+h(�)

@�i;r

i
�=��

, with �i;r

being the r-th element in �i. Let us write model Mi as: yt+h = 'i(zirt; �
�
i;r; Z

0
i(r)t; �

�
i;(r)) +

uit+h, where Z 0i(r)t represents the Ki � 1 vector made up by the regressors in Mi except
zirt, while �

�
i;(r) are the true values of the corresponding parameter vector. Let gx(x) denote

the marginal density function of vector x, gx1jx2(x1jx2) the density of x1 conditioned on
x2, Gx(x) the distribution function for x and Gx1jx2(x1jx2) the distribution function for x1
conditioned on x2:9

We will restrict our results to forecasting models Mi verifying the following assumptions:10

9To ease the lecture, we skip the time indices in the density and distribution functions for uit+h, zirt+h
and Zi(r)t+h .
10Except for Theorem 6, which explicitely requires linearity in model Mi, all the results on
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(b:1) The model is linear, i.e., yt+h = Z 0it�
�
i + uit+h.

(b:2) The distribution of any explanatory variable, conditional on the other explanatory
variables, has a �nite variance.
(b:3) The probability distribution of the theoretical forecasting error uit+h , conditional

on the explanatory variables, is continuous. The probability distribution of any explanatory
variable, conditional on the rest, is also continuous.11

We start with a lemma that is valid under no assumptions on the discrete loss function.

Lemma 1 Let Mi be a forecasting model satisfying assumptions (b:1) � (b:3), and let fi be
a discrete loss function as de�ned in (a:1) � (a:2). For each element �i;r in the parameter
vector �i we have:

�
@Efit+h(�)

@�i;r

�
�=��

= �
Z
Zi(r)

�
n�1P
k=1

H�
kQ

�
k

�
gZi(r)(Zi(r))dZi(r), (10)

with

Q�k =
nP
j=1

B�(j; k)(ajk � ajk+1); H�
k = gzirjZi(r)(d

�
kjZi(r))

d�k
��i;r

(11a)

B�(j; k) = G�(j; k)�G�(j � 1; k); G�(j; k) = Guijzir;Zi(r)(lj � lkjd
�
k; Zi(r)); (11b)

d�k =
lk � Z 0i(r)t�

�
i;(r)

��i;r
: (11c)

Proof. See Appendix A.
The general expression (10) could be used to particularize the theorem in McCracken

(2000) to tests under a discrete loss function. But it would not be simple to implement it
in practice, since it requires assumptions on the probability distribution of the error term
conditional on the set of explanatory variables, as well as on the probability distribution of
each regressor conditional on the rest.

5.1 AIPEE under discrete loss functions

To provide su¢ cient conditions for AIPEE we will need one of the following two assumptions
on the distribution function Guijzir;Zi(r) :
(b:4) The probability distribution of the theoretical forecast error uit+h conditional on

the regressors Zit = (zirt; Z 0i(r)t)
0 has a zero median.

(b:40) The probability distribution of the theoretical forecast error uit+h conditional on
the regressors Zit = (zirt; Z 0i(r)t)

0 is symmetric around zero.

For forecasting models verifying conditions (b:1)� (b:3) and either (b:4) or (b:40); we show
that AIPEE holds for three types of discrete loss functions. The �rst type are those functions
satisfying:

the paper can be shown analogously for non linear models as long as they verify the condition

lim
lk!+1;�1

gzirjZi(r) (d
�
kjZi(r))

h
@dk
@�i;r

i
�=��

= 0, where dk = '�1i;zir (lk; �i;r; Z
0
i(r)t

; �i;(r)), with '
�1
i;zir

be-

ing the inverse function of 'i with respect to zir; provided this inverse function exists, and d
�
k = dk(�

�).
Assumptions (b:1) and (b:2) are su¢ cient conditions for it.
11This assumption is made just for analytical convenience. The results would still be true under discrete

distributions, but the proof becomes notationally burdensome.
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(a:3) ajk � ajk+1 =
+ck if j � k
�ck if j > k:

Assumption (a:3) restricts the change in the loss function when we move from left to right
to have the same absolute value in all rows in a given column.

Theorem 2 Let Mi be a forecasting model satisfying assumptions (b:1) � (b:4). Let fi be
a discrete loss function de�ned by (a:1) � (a:2) and satisfying assumption (a:3). Then,h
@Efit+h(�)

@�i;r

i
�=��

= 0, r = 1; :::;Ki. Hence, the i-th row in matrix F in McCracken (2000)

is Fi = 01�K .

Proof. See Appendix B.

Corollary 3 Let us consider l nonnested forecasting models, each one verifying conditions
(b:1)� (b:4). Let f be a discrete loss function de�ned by (a:1)� (a:2) satisfying assumption
(a:3). Then, the matrix F in McCracken (2000) is F = 0l�K . Consequently, under the
conditions in Theorem 2.3.1 in McCracken (2000), AIPEE holds.

It is straightforward to show that the use of SDAFE with �j = � � 0 for every j satis�es
(a:3) for any partition of the data space if there exists an element ls = 0; 0 < s < n.12

The statement is shown in Appendix D. Hence, in this case, the use of SDAFE guarantees
AIPEE.

While the result on AIPEE is clearly very relevant, the assumption (a:3) that we have
imposed on the structure of the loss function excludes a class of situations that may be
important in practice. Let us consider a partition separating positive from negative values,
with the same number of regions in the negative as in the positive zone, i.e., ln=2 = 0, and
with the (data,forecast)-pairs classi�ed into di¤erent regions according to size:

byt
L� M� S� S+ M+ L+

L� 0 1 2 3 4 5
M� 1 0 1 2 3 4

yt S� 2 1 0 3 4 5
S+ 5 4 3 0 1 2
M+ 4 3 2 1 0 1
L+ 5 4 3 2 1 0

(12)

where L,M,S, refer to "large, "medium", or small" when referring to either data or fore-
cast, while their sign is indicated next to the L,M,S symbols.
It would then look natural to desire that "given some data, forecasts which have the right

sign receive a lower (or at least not larger) penalty than any forecast with the wrong sign".
The loss matrix (12) has been constructed with ck = �1 for all k except for the (n=2; n=2+1)
and (n=2 + 1; n=2) quadrants. The greatest loss in row 3 associated to forecasts with the
right sign is 2, in quadrant (3,1). Therefore, for the previous principle to hold, we need losses
in the quadrants to the right of the main diagonal in that row to be larger than 2, as it
is the case in the matrix, even though (a:3) would have imposed the (3,4), (3,5) and (3,6)
quadrants to be equal to 1,2,3, respectively. This example suggests that it might be desirable

12This is not too restrictive, since it can be extended to a classi�cation around a value ls = y, with data
and forecasts then being transformed into yt+h � y and byi;t+h � y, respectively.
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to allow for changes in penalties from the n=2-th to the n=2+1-th columns to be speci�c for
each row. For a discrete function satisfying ln=2 = 0 these are the two columns in which the
forecast moves from having the right sign to missing it.
To allow for that possibility, we consider a more general version of assumption (a:3) for

discrete loss functions with a partition verifying ln=2 = 0:

(a:4) ajk � ajk+1 =

+cj;n=2 if k = n=2 and j � k
�cn�j+1;n=2 if k = n=2 and j > k
+ck if k 6= n=2 and j � k
�ck if k 6= n=2 and j > k:

We now provide an alternative set of su¢ cient conditions, including (a:4); under which
we again show AIPEE. We also need to incorporate the assumption that the partition is
symmetric around zero:

(a:5) ln=2 = 0 and ln=2�i = �ln=2+i; for i = 1; :::; n=2:

Theorem 4 Let Mi be a forecasting model satisfying assumptions (b:1) � (b:3) and (b:40).
Let fi be a discrete loss function de�ned by (a:1) � (a:2) and satisfying assumptions (a:4)
and (a:5). Then,

h
@Efit+h(�)

@�i;r

i
�=��

= 0, r = 1; :::;Ki. Hence, the i-th row in matrix F in

McCracken (2000) is Fi = 01�K .

Proof. See Appendix B.

Corollary 5 Let us consider l nonnested forecasting models, each one verifying conditions
(b:1) � (b:3) and (b:40). Let f be a discrete loss function de�ned by (a:1) � (a:2) and satis-
fying assumptions (a:4) and (a:5). Then, the matrix F in McCracken (2000) is F = 0l�K .
Consequently, under the conditions in Theorem 2.3.1 in McCracken (2000), AIPEE holds.

Theorem 2 and Corollary 3 apply under no restriction on the partition used to de�ne
the discrete loss function, so long as the matrix of losses satis�es (a:3). On the other hand,
Theorem 4 and Corollary 5 apply to discrete functions de�ned on a symmetric partition of
the data space around zero, but they can accommodate any loss function satisfying (a:4), a
more appropriate assumption when the sign of the forecast is relevant.
It is not di¢ cult to show that, under a partition satisfying (a:5), the SDAFE loss function

with speci�cations (3)-(4) veri�es (a:4) and, consequently, Theorem 4 and Corollary 5 then
hold. See Appendix D for a proof.
McCracken (2000) showed that the AFE loss function veri�es the AIPEE property in

the same forecasting context considered in Corollary 3. On the other hand, the SFE loss
guarantees F = 0 whenever E(ut+hjZt) = 0. However, it is hard to show that F = 0 for any
other statistical criterion for forecast evaluation, so that our results for discrete loss functions
characterized by either (a:3) or by (a:4)� (a:5) are very relevant.
Besides their use as statistical measure of forecast accuracy, discrete loss functions may

become the natural way to evaluate forecasts in the basis of their economic value in many
applications, as it was explained in Section 3. The example introduced there required a loss
function characterized by a symmetric partition around zero while penalties would be under
the following pattern, which may appear in many other problems similar to that in Section
3:

(a:6) ajk � ajk+1 =

cn=2 if k = n=2 and j � k
c0n=2 if k = n=2 and j > k
c if k 6= n=2 and j � k
c0 if k 6= n=2 and j > k:
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Assumption (a:6) restricts the change in the loss function when we move from the (j; k)
quadrant to the (j; k+1) to take the same value in the cells above the main diagonal and again
the same value in the cells below it. Besides, these two values must be the same for every
column, except the n=2-th column. In contrast to the pattern in (a:3) and (a:4), assumption
(a:6) does not restrict the changes between two adjacent columns to have the same absolute
value for all rows, so that (a:6) is more general than (a:3) and (a:4) in that sense. However,
while those changes can be speci�c to each column in the case of (a:3) and (a:4), they must
be the same for every column except the n=2-th column in the case of (a:6).
The loss function (6) in Section 3 satis�es (a:6),with c = �a, c0 = b, cn=2 = �a� A and

c0n=2 = B + b. Moreover, many decision problems on how many units to produce along a
period of an indivisible item will verify the assumption (a:6) if prices can be considered �xed
and the cost of each aditional unit produced is constant, often with A = B = 0.
To obtain an alternative set of su¢ cient conditions for AIPEE to hold for the class of

discrete loss functions given by (a:5) and (a:6), we need to impose a new condition on the
forecasting model:

(b:5) The probability distribution of any explanatory variable, conditional on the rest, is
symmetric around zero. The probability distribution of any subset of explanatory variables
is radially symmetric around zero.

Theorem 6 Let Mi be a forecasting model satisfying assumptions (b:1) � (b:5). Let fi be
a discrete loss function de�ned by (a:1) � (a:2) and satisfying assumptions (a:5) and (a:6).
Then,

h
@Efit+h(�)

@�i;r

i
�=��

= 0, r = 1; :::;Ki. Hence, the i-th row in matrix F in McCracken

(2000) is Fi = 01�K .

Proof. See Appendix B.

Corollary 7 Let us consider l nonnested forecasting models, each one verifying the condi-
tions (b:1) � (b:5). Let f be a discrete loss function de�ned by (a:1) � (a:2) and satisfying
assumptions (a:5) and (a:6). Then, the matrix F in McCracken (2000) is F = 0l�K . Con-
sequently, under the conditions in Theorem 2.3.1 in McCracken (2000), AIPEE holds.

Notice that no assumption on the method to obtain forecasts is needed in the theorems
above, so that when F = 0, AIPEE is guaranteed not only for the recursive sampling scheme
but for the rolling and �xed forecasting schemes too (see McCracken (2000)), although we
only consider the recursive scheme.

6 Simulations

We lack analytical results on the asymptotic distribution of the test statistics under a discrete
loss function f when conditions in the corollaries above do not hold. To gain some insight
into this issue, we perform in this section some simulation exercises ignoring PEE when using
the DM test, undoubtedly the most popular test for equal forecast accuracy. All simulations
will use a recursive forecasting scheme. Our goal is to quantify the bias in the size of the tests
as a consequence of the fact that the true probability distribution of the test statistics in the
situations considered may di¤er from N(0; Sff ):We use a �rst forecasting scenario comparing
nonnested models in which there is correlation between forecast errors and regressors, and a
second scenario comparing nested models.
The experiments will consider nine loss functions: the standard SFE and AFE continuous

functions, plus seven discrete loss functions L1 to L7; all of them de�ned on partitions that are
symmetric around zero. These discrete loss functions will be of two types: on the one hand,
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L1 to L4;which belong to the SDAFE class of loss functions, used as a statistical criterion for
forecast accuracy. On the other hand, L5 to L7 are three alternative loss functions following
the pattern (6) in the example of Section 3, as if the experiments re�ected a problem of
economic evaluation of forecasts. The SDAFE losses will use four alternative partitions of
decreasing �neness, allowing us to analyze the robustness of our results to the �neness of the
partition. L5 to L7 will use the same partition but very di¤erent numerical values, so as to
check the robustness of the size of the DM test to the payo¤s of the problem.
The partition will be built with the same pattern for all seven discrete losses. The extreme

values of the partition will be l1 = �m�y and ln�1 = +m�y, where �y denotes the standard
deviation of yt, and the interval (�m�y;+m�y] will be partitioned in r equal-sized regions:

�(1;m�y] f�m�y 0g| {z }
partitioned in r=2 equal-sized regions

f0 +m�yg| {z }
partitioned in r=2 equal-sized regions

+ (m�y;1)

In the case of the SDAFE loss, r will take the values r = 80 (L1), r = 8 (L2), r = 4 (L3)
and r = 2 (L4). The loss functions L5 to L7 use the same partition as L4:

R1 R2 R3 R4
�(1;m�y] �(m�y; 0] +(0;m�y] +(m�y;1)

(13)

Concerning numerical penalties, L1 to L4 will be directly de�ned by (2) with �j given by
(3) and �, v0, vn verifying (4), with v0 = l2 � l1 and vn = ln�1 � ln�2. Loss functions L5 to
L7 will follow the pattern (6) in the example of the Section 3, with di¤erent values for a, b,
A and B (see Table 1), re�ecting how costly is an incorrect forecast of the sign and/or the
magnitude of data.

TABLE 1. Speci�cation of discrete loss functions used for simulation exercises
R-partition Size of R2- Penalties

m r -partition

Loss

Function

Nonnested

models

Nested

models

L1 1 0.8 80 82� 82 SDAFE (2)-(3)-(4)

L2 1 0.4 8 10� 10 SDAFE (2)-(3)-(4)

L3 1 0.4 4 6� 6 SDAFE (2)-(3)-(4)

L4 1 0.4 2 4� 4 SDAFE (2)-(3)-(4)

L5 1 0.4 2 4� 4 (6) with a = b =1, A = B =11
L6 1 0.4 2 4� 4 (6) with a = b =1, A =11, B =21
L7 1 0.4 2 4� 4 (6) with a =1, b =2, A =4, B =6

As it can be seen in Table 1, the central zone of the partition ((�m�y;+m�y]) is narrower
in the experiments with nested models than in those with nonnested models. We reduce the
width of the central zone of the partition reducing the value of m, while maintaining r
unchanged. The reason is that forecasts produced by alternative nested models will be very
similar to each other and hence, it will often be desirable to use a �ner partition in order to
capture di¤erences in predictive accuracy between the competing models. In loss functions
L2 to L7 the width of the central zone for nested-models is 60% lower than in exercises for
nonnested models (m = 0:4 against m = 1). For L1, the reduction is of only 20% (m = 0:8
against m = 1), because in that case the partition is already �ne by construction.
The seven discrete loss functions verify assumption (a:5). Moreover, L1 to L4 also verify

assumption (a:4) and hence, the conditions on the loss function required in Corollary 5 hold.
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In contrast, L5 to L7 verify (a:6), so that for them the conditions relative to the loss function
required in Corollary 7 hold.

6.1 Nonnested models

We perform two simulation exercises for nonnested models. In the �rst one, all the conditions
relative to the forecasting models required in the corollaries above hold so that AIPEE is
guaranteed, and we evaluate the size of the bias in small samples. The design of our second
exercise violates conditions (b:4) and (b:40) that are required in the corollaries, so that AIPEE
cannot be shown to hold.
Experiment 1 uses:

[PGD] yt = z1t + z2t + "t, with (z1t; z2t; "t)0
iid� N(03�1; I3�3).

[M1] yt = �10 + �11z1t + u1t.
[M2] yt = �20 + �22z2t + u2t.
and parameters are estimated by OLS.
Experiment 2 is the same as in section 5.2 in West (1996):

[PGD] yt = w1t + w2t + "t, with wit = zit + "t, (z1t; z2t; "t)0
iid� N(03�1; I3�3).

[M1] yt = �10 + �11w1t + u1t.
[M2] yt = �20 + �22w2t + u2t.

In this latter case, E(uitjwit) = wit [see Appendix C], so that forecast errors uit are
correlated with the wit regressors through "t and therefore, conditions (b:4) and (b:40) in our
corollaries fail to hold. For the same reason, the conditions required to guarantee AIPEE
under the SFE or the AFE loss functions also fail to hold in this experiment. West (1996)
showed that PEE is very relevant in this setup regarding the properties of the DM test
under a SFE loss function, so we can use Experiment 2 to check the e¤ect of PEE on test
size. Estimation of parameters �i0 and �ii will be made by 2SLS using Ait = (1; zit)

0 as
instruments to avoid the inconsistency of OLS.
We perform P one-period ahead forecasts with models M1 and M2, starting at t = R;

following the recursive scheme. In both experiments we will assume that the values of zit+1
and wit+1; respectively, are known at time t. We use the same values for R and P as in
West (1996), with the P=R ratio oscillating between 0:25 and 7, to perform 5000 repetitions
of each forecasting exercise. In each repetition, we implement the DM test for the null
hypothesis: E(f1t) = E(f2t), which is clearly true by construction in both experiments. The
signi�cance level is � = 5% in all cases, and the test is applied using standard critical values,
i.e., with the asymptotic variance in Diebold and Mariano (1995) rather than the variance
in West (1996) and McCracken (2000). This procedure will not produce a signi�cant bias
in size in Experiment 1 as long as the asymptotic results in Corollary 5 and Corollary 7 are
approximately true in �nite samples. On the other hand, the result in West (1996) for the
SFE loss showed that the bias in size of the DM test could be high in Experiment 2.
Simulation results are summarized in Tables 2 and 3. Table 2 illustrates the fact that

the AIPEE property shown in Corollary 5 and Corollary 7 holds as a good approximation in
�nite samples. On the other hand, the results in Table 3 suggest that the e¤ect on the DM
test of ignoring PEE when it is relevant is smaller under a discrete loss than under the AFE
or SFE loss functions, even though it remains sizeable in most cases. For R = 100, it might
be considered admissible to implement the DM test under a discrete loss f ignoring PEE,
as it is usually done, so long as we use a partition that is not too �ne (like in L4 to L7), with
only a small bias in size. This is a very convenient result, since the condition R � 100 is
likely to hold in many practical forecasting exercises. In Section 7 we illustrate the reasons
for the lower impact of PEE under a discrete loss function. Results in Table 3 suggest that
the �neness of the partition plays a key role in the bias of the size of tests (the �ner the
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partition, the bigger the bias), unlike the numeric values of penalties, whose e¤ect on the size
of the test is minor.
Our simulation results suggest that with small samples in forecasting environments where

the conditions in our corollaries do not hold, the test should be implemented with the as-
ymptotic variance in McCracken (2000), using expression (10) to estimate matrix F . The
problem is that such expression requires some assumptions on the probability distributions
of the forecast errors and the explanatory variables in the models. The alternative is to apply
the numerical methods proposed in McCracken (2004) for estimating F .

TABLE 2. Size of DM Test, ignoring PEE. Experiment 1; Nominal Size: 5%
R P � L1 L2 L3 L4 L5 L6 L7 SFE AFE

25 25 1 7.6 7.2 7.0 7.0 6.7 6.8 6.7 6.6 6.8
50 2 6.8 6.8 6.4 6.4 6.3 6.2 6.5 6.5 6.2
100 4 5.7 5.8 5.6 5.2 5.2 5.3 5.3 6.0 6.0
150 6 5.9 6.0 5.5 5.5 5.5 5.2 5.2 5.6 5.9
175 7 5.6 5.7 5.8 5.6 5.1 4.9 5.3 5.3 5.6

50 25 0.5 7.2 7.4 7.2 6.6 6.8 6.7 6.7 6.2 7.3
50 1 6.2 6.3 6.3 6.0 5.9 6.2 6.1 5.4 6.1
100 2 5.6 5.7 5.9 5.6 5.3 5.6 5.7 5.9 6.0
150 3 5.5 5.4 5.5 5.5 5.5 5.6 5.6 5.4 5.7

100 25 0.25 6.7 6.8 6.8 6.9 6.9 6.7 6.9 6.0 7.0
50 0.5 6.4 6.4 6.4 6.4 6.4 6.0 5.9 5.9 6.1
100 1 5.9 6.0 6.0 6.1 6.0 5.8 5.9 5.4 5.6

P : number of forecasts; R: starting sample size for estimation; � = P=R.
The table shows relative frequencies over 5000 repetitions.

SFE: squared forecast error; AFE: absolute forecast error. See Table 1 for de�nition of losses L1-L7 .

TABLE 3. Size of DM Test, ignoring PEE. Experiment 2; Nominal Size: 5%
R P � L1 L2 L3 L4 L5 L6 L7 SFE AFE

25 25 1 27.0 26.1 23.2 19.0 17.5 16.8 18.0 38.1 36.0
50 2 28.4 27.7 24.9 18.8 16.4 15.2 16.1 44.0 41.2
100 4 30.0 28.9 25.2 17.1 14.1 13.4 14.6 49.8 45.7
150 6 29.8 28.6 24.8 15.5 11.4 11.3 12.4 51.5 46.9
175 7 29.9 28.4 24.2 14.5 11.1 10.6 11.8 52.5 48.0

50 25 0.5 18.2 16.8 15.5 11.9 11.2 10.5 10.9 29.1 27.6
50 1 20.7 19.6 16.8 11.6 10.2 9.8 10.3 36.8 33.5
100 2 21.9 20.5 17.9 11.1 8.9 8.1 9.0 43.8 39.1
150 3 23.4 22.0 19.2 10.8 8.3 8.3 9.3 46.9 41.9

100 25 0.25 12.3 11.6 10.4 8.0 7.5 7.1 7.4 20.6 19.1
50 0.5 13.3 12.2 10.7 7.4 6.3 6.9 7.3 28.2 25.0
100 1 15.2 14.6 12.1 7.3 6.1 6.2 6.4 36.0 31.6

See notes for Table 2.
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6.2 Nested models

Under a recursive forecasting scheme, the asymptotic distribution of the DM test statistic is
known only under certain conditions on the loss function13 and the forecasting environment.
The distribution is non standard except if � = 0 and the needed conditions can be summarized
in practice as i) the loss is a SFE function, ii) the model is estimated by least squares and iii)
forecasts are made one-period ahead. These results and the percentiles for the implementation
of the test are obtained by McCracken (2007). There does not exist a parallel literature for
discrete loss functions, and our goal in this section is to produce some simulation evidence
for such a case.
We speci�cally want to know how the asymptotic distribution of the DM test looks like

under a discrete loss function in the presence of PEE for nested models. To that end, we
use again the DM test with the standard critical values, under the same loss functions as in
the previous section. Experiment 3 considers the same design as an exercise used in Clark
and McCracken (2001) to evaluate the properties of tests of equal forecast accuracy in this
framework, one of them being precisely the DM test under an SFE loss. The DGP is:�

yt
xt

�
=

�
0:3 ��

0 0:5

��
yt�1
xt�1

�
+

�
uy;t
ux;t

�
;

with (uy;t; ux;t)
0 iid� N(02�1; I2�2).

We just want to forecast the variable yt using two models: an AR(1) for yt (M1, restricted
model) and a VAR(1) for vector (yt; xt)0 (M2, unrestricted model). The null hypothesis is
H0 � E(f1t(��1)) � E(f2t(��2)), and the alternative, H1 � E(f1t(��1)) > E(f2t(��2)), with �1
and �2 being the parameter vectors to be estimated in M1 and M2 , respectively. They di¤er
just in the presence of � in �2: These hypothesis can also be written as H0 � �� = 0 and
H1 � �� 6= 0. We will restrict �� = 0, so that the null hypothesis is true by construction.
Parameters are estimated by least squares, and P one-period ahead forecasts are produced

using the recursive scheme, starting at t = R. The implementation of the DM test under
a discrete loss function is subject to the following problem: since M1 and M2 make similar
forecasts then, for small values of P we sometimes have realizations for which the P loss
di¤erentials dt = f2t(b�2)�f1t(b�1) turn out to be equal to zero. Then, both the numerator and
denominator of the DM test statistic will be equal to zero. We will discard these realizations.14

We perform two types of exercises. On the one hand, the standard exercise of estimating
the size of the DM test in �nite samples, ignoring PEE. Sample sizes, P and R, will then be
exactly equal to those in McCracken (2007), covering values of � usually found in practical
applications, between 0:1 and 2.15 The results of this experiment are shown in Table 4.16 On
the other hand, we want to produce some evidence on the asymptotic distribution of the DM
test statistic applied to competing nested models under discrete loss functions when there is
PEE. To that end, we repeat Experiment 3 using su¢ ciently large values of P and R so as to
have a good approximation to the asymptotic distribution of the DM test. We will use the
same values of � as before. In this exercise, we estimate the asymptotic size of the test under

13The functional form of the loss function must be the same as the one that de�nes the optimization
criterion on which the estimator is based.
14An alternative way to deal with these realizations would be to not reject the null hypothesis in these cases.

For very small forecast samples, then the empirical size would be lower than that obtained under discarding
these realizations. Results obtained under this method are available from the authors upon request.
15Some of the � values used by Clark and McCracken (2001) are unusual in practice, so we prefer using

those in McCracken (2007).
16We use now a signi�cance level � = 10%, while in the experiments with nonnested models, we used

� = 5%. This change is in coherence with the design of the simulation exercises in the literature in each case.
Experiment 3 replicates the exercise of Clark and McCracken (2001), who use � = 10%, whereas Experiment
2 is the same as in West (1996), where � = 5%.
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the seven discrete loss functions as well as under the SFE and AFE loss functions (Table
5). We also estimate the empirical density functions for the DM test statistic (Figure 1), to
check for deviations with respect to a N(0; 1) distribution.

TABLE 4. Size of DM Test, ignoring PEE. Experiment 3; Nominal Size: 10%
R P � L1 L2 L3 L4 L5 L6 L7 SFE AFE

50 5 0.1 13.8 14.1 12.3 9.2 7.2 7.0 9.9 13.2 12.6
20 0.4 6.8 7.3 8.3 8.4 8.3 8.6 8.4 5.1 4.9
50 1.0 5.0 5.1 5.8 6.5 7.2 7.8 7.2 2.3 2.7
100 2.0 4.1 4.0 4.5 5.6 7.0 7.3 6.7 1.0 1.5

100 10 0.1 9.5 10.6 10.6 9.8 7.8 7.9 9.5 9.1 8.8
40 0.4 6.5 7.2 8.1 8.8 8.8 8.9 8.7 4.5 4.5
100 1.0 5.6 5.7 6.5 7.0 8.0 8.3 7.7 2.1 2.7
200 2.0 5.1 5.2 5.6 6.9 7.4 7.7 7.4 1.3 2.0

150 15 0.1 8.3 9.7 10.0 9.7 7.6 7.7 8.8 8.1 8.0
60 0.4 6.4 7.4 8.0 9.3 8.4 8.8 8.7 3.7 4.5
150 1.0 5.4 5.8 6.6 7.6 8.1 8.3 7.9 1.9 2.5
300 2.0 4.9 5.0 5.6 6.2 7.6 7.4 7.0 0.9 1.7

200 20 0.1 8.2 9.9 10.3 10.5 8.6 9.0 9.3 7.4 7.0
80 0.4 7.2 7.4 7.9 9.0 9.6 9.7 9.2 3.5 4.3
200 1.0 5.9 6.1 6.8 7.7 8.6 8.9 8.2 1.6 2.5
400 2.0 5.9 5.6 6.3 7.7 8.4 8.0 8.2 0.7 1.7

See notes for Table 2.

TABLE 5. Size of DM Test, ignoring PEE. Experiment 3; Nominal Size: 10%
R P � L1 L2 L3 L4 L5 L6 L7 SFE AFE

10000 1000 0.1 9.3 9.2 9.0 9.5 10.1 9.8 9.6 5.4 5.6
2500 1000 0.4 8.3 8.4 8.5 9.0 9.4 9.3 9.4 2.9 3.8
1000 1000 1.0 6.7 6.8 7.4 8.6 8.9 8.8 8.7 1.4 2.6
500 1000 2.0 5.8 5.4 6.6 7.0 7.6 7.7 7.3 0.9 1.6

See notes for Table 2.

Results in Tables 4 and 5 for the SFE loss are in line with Clark and McCracken (2001) and
McCracken (2007), respectively. McCracken (2007) had already shown that the asymptotic
distribution of the DM statistic in this context is not Normal. However, for a discrete loss
function, the e¤ects on the size of the DM test of ignoring PEE in nested models are less
important than if we ignore PEE under the SFE or AFE loss functions. Indeed, the bias in
size of the DM test implemented with a discrete loss f is relatively small in cases which are
most frequent in practice, those with R large and P small (R � 100, � � 0:4). This result is
encouraging, since we lack analytical results on the asymptotic distribution of the DM test
statistic under any loss function other than SFE, and using the standard critical values is
the only simple procedure for the user to implement the test in those cases.
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McCracken (2007) showed analytically that the DM test satis�es AIPEE under an SFE
loss when � = 0, but the results in Table 5 for � = 0:1 do not con�rm it. The observed
pattern is consistent with the percentiles in McCracken (2007) and it is due to the fact that
� = 0:1 is still too large for the theoretical results obtained under � = 0 for an SFE loss
function to apply. On the contrary, results in Table 5 suggest that the AIPEE property is
satis�ed by the DM test under discrete loss functions too. In these cases, the result holds
with su¢ cient approximation even for � = 0:1, in contrast to what happens for the SFE loss.
The empirical density functions obtained for large samples throw some light on the as-

ymptotic distribution of the DM statistic for nested models under discrete loss functions. In
order to make the picture as clear as possible, we just show the empirical densities for L1
(82� 82), AFE and SFE loss functions. As shown in Figure 1 for the L1 loss, the empirical
distribution for discrete loss functions resembles a N(0; 1) in most cases,17 at a di¤erence of
the empirical densities obtained under SFE and AFE losses. McCracken (2007) had already
shown that the asymptotic distribution is not standard in the case of SFE, with its shifting
to the left increasing with �, as shown by our empirical densities. Under a discrete loss, the
distribution of the DM test in that context shifts to the left for � � 1, but the shifting is
much lower than under SFE and AFE losses. This explains the acceptable results shown in
Tables 4 and 5 for discrete losses, in spite of the fact that the test was implemented using
the standard critical values.
17Graphs for other simulation cases are available from the authors upon request. The similarity to N(0; 1)

is still clearer for discrete losses with a coarser partition than L1, but we prefer to show the least favourable
of our results.
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Figure 1. Empirical asymptotic density of DM statistic under PEE.
Nested Models. Experiment 3. Loss functions: SFE, AFE and 82� 82 SDAFE.
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In consistency with the conclusions obtained for nonnested models, distortions in the size
of the DM test increase with the �neness of the partition de�ning the discrete loss, although
not as much as in the nonnested framework, and they depend very little on the numerical
values of penalties.

7 Why is the distribution of the test statistic more ro-
bust to PEE under a discrete loss function?

The results from Monte Carlo experiments presented in Section 6 suggest that the e¤ect of
PEE on the asymptotic distribution of the test statistic is lower under a discrete loss than
under SFE and AFE loss functions. Intuitively, the reason is that under a discrete loss,
changes in the numerical value of the estimate a¤ect the value of f only if the implied
changes in forecasts move the (data,forecast)-pair to a di¤erent quadrant in the partition of
R2. At a di¤erence of what happens under the SFE or AFE loss functions, there will be just
a few points in the space of � for which an in�nitesimal change in the estimate will imply a
change in f , although these changes will be larger than under standard continuous losses.
This argument can be seen analytically in the case of nonnested models, for which only

the asymptotic variance (7b), obtained by West (1996) and McCracken (2000), is a¤ected by
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PEE. Essentially, PEE a¤ects the variance of f through F , the gradient of E(f(�)) evaluated
at ��.18 Under a discrete f , f(�) will be a �at function in in�nitely many points, with a
zero gradient except in points of the space of � that imply a change in the (data,forecast)-
quadrant. As a consequence, even when the su¢ cient conditions for AIPEE do not hold and
F is not a zero matrix, F will easily be smaller under a discrete f than under the standard
SFE and AFE loss functions and hence the discrepancy between 
 and Sff will also be
smaller.
Let us illustrate this argument with an example. The correct asymptotic variance under

PEE can be decomposed in three terms: 
 = Sff +T1+T2, with T1 = �(FBS0fh+SfhB
0F 0)

and T2 = 2�FV�F
0 [see (7b)]. In the case of a test comparing the predictive ability of

two models, 
, Sff , T1 and T2 will be scalars that we can denote as 
d, Sd, T1d and
T2d. 
d was de�ned in (8)-(9) and the other three elements are de�ned accordingly, verifying

d = Sd+T1d+T2d. In this section we proceed to estimate them as well as matrix F using the
same design and loss functions as in Experiment 2, a case when AIPEE does not hold. Since
we want to estimate the asymptotic variance of the test statistic, we will use large values of
P and R in the simulations. We will focus on the case � = 1, with P = R = 500.19 Estimates
for matrices B, Sfh, V� , Sff and for the parameter � are the same as in the exercise in
section 5.2 in West (1996) and do not require any special discussion. Furthermore, matrix F
is estimated following the analytical expression corresponding to each of the loss functions
considered. The expression for F under SFE and AFE loss functions is well known in linear
models, while for discrete losses, we will use (10). Details of these estimates can be seen in
Appendix C. Due to the chosen design, the matrix F resulting from any f -function in this

experiment, can be written as: F = kF

�
0 1 0 0
0 0 0 1

�
; which makes our exposition easier.

Results are shown in Table 6.
The bias of the test size depends on the ratio of variances that arise depending on whether

PEE is taken into account or it is ignored, which can be written: 
d=Sd = 1+T1d=Sd+T2d=Sd.
The main in�uence of F on the bias arises through the T2d term, a quadratic function of F ,
while the T1d term is linear in F , and the e¤ect of F on the bias through the T2d term can
be approximated by jkF j =S1=2d . As an example, jkF j =S1=2d is 0:59 in the case of an AFE
loss and then T2d=Sd is 1:73. In contrast, for the SDAFE loss function, even when used with
a very �ne partition (L1), the value of jkF j =S1=2d falls to 0:28 and then T2d=Sd is only 0:38.
Since the T1d term is close to zero in all cases, the �nal result is that under an AFE loss, the
parameter estimates add to the variance a term T1d + T2d which is equal to 1:75 times the
variance Sd, while the addition to the variance using L1 is of only 0:39 times Sd. For the
case of an SFE loss, the T1d+T2d amounts to 2:26 times the variance Sd: As results in Table
6 show, as we move from L1 to L4; the coarser the partition of the discrete loss, the smaller
is jkF j =S1=2d and so is the bias in test size, in consistency with results in Table 3.

18This de�nition of F is also valid for a di¤erentiable loss f , since the continuity of f guarantees the

identity: F = E
h
@f(�)
@�

i
�=��

=
h
@Ef(�)
@�

i
�=��

.
19The results of the analysis would be qualitatively similar for alternative values of �.

21



TABLE 6. Variance estimates for DM statistic under PEE.
Experiment 2. Case � = 1; P = R = 500:

Loss functions kF jkF j = S1=2d T1d = Sd T2d = Sd 
d = Sd
L1 -0.65 0.28 0.01 0.38 1.39
L2 -0.68 0.27 0.00 0.36 1.36
L3 -0.70 0.24 0.00 0.29 1.29
L4 -0.37 0.10 0.00 0.05 1.05
L5 -0.12 0.02 0.00 0.00 1.00
L6 -0.12 0.01 0.00 0.00 1.00
L7 -0.17 0.04 0.00 0.01 1.01
SFE -4.01 0.67 0.06 2.20 3.26
AFE -0.71 0.59 0.02 1.73 2.75

Sd, 
d: asymptotic variance of DM statistic in the absence of PEE and under PEE, respectively.

d = Sd + T1d + T2d; T1d and T2d are products of matrices involving F .

In this experiment, F can be written as a product of kF and a 2�4 matrix of zeroes and ones.

8 Conclusions

We have analyzed the e¤ect of parameter estimation error (PEE) on the size of tests of
predictive ability of linear models with stationary variables under a recursive forecasting
scheme. Our analysis has focused on discrete loss functions, which have a wide range of
economic applications in decision making frameworks as well as for forecast evaluation under
a statistical approach. In the latter case, we have suggested a particular class of discrete loss
functions, the SDAFE ("Signed Discrete Absolute Forecast Error"), as an alternative to SFE
and AFE loss functions.
For the setups considered byWest (1996) and McCracken (2000) for non nested models, we

have found three sets of su¢ cient conditions guaranteeing the asymptotic irrelevance of PEE
(AIPEE) for discrete loss functions. Two of them only require quite plausible conditions on
the forecasting models, like a zero median (for the �rst set of conditions) or symmetry around
zero (for the second one) for the distribution of forecast errors conditional on regressors, and
hold for di¤erent loss structures. Most interesting versions of the SDAFE loss function have
a structure that leads to AIPEE. The third result is valid for a class of discrete loss functions
that may arise in many decision making problems like the one presented in Section 3 of this
paper, but it requires an additional condition on the explanatory variables of the forecasting
models.
Our result is of considerable practical value, because it is not known whether AIPEE holds

for continuous loss functions other than the mean square forecast error (SFE) and the mean
absolute forecast error (AFE), and it is rather di¢ cult to estimate the asymptotic variance
of the test statistics under PEE. Such estimation is rather complicated, specially if the loss
function is not di¤erentiable, and it may even be unfeasible if we do not know the details of
the estimation methods used for the competing forecasting models. We also present Monte
Carlo experiments suggesting that the AIPEE property holds approximately in �nite samples
under the conditions speci�ed in our three analytical results.
Our second analysis has consisted on simulation exercises to check the e¤ects of PEE in

forecasting frameworks where AIPEE does not hold, with a focus on the DM test. First,
under correlation between forecast errors and regressors in non nested models. Secondly,
for the comparison of two nested forecasting models. Both cases produce similar evidence,
suggesting that the distortion in the size of the test is sensibly lower under a discrete loss
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function than under SFE or AFE loss functions. The magnitude of the distortion depends
very much on the �neness of the partition on which the discrete loss is based (the �ner the
partition, the bigger the size distortion), as well as on the values of P (number of forecasts)
and R (the number of in-sample observations used to obtain the �rst forecast). In contrast,
the in�uence on the size of the test of the numerical values chosen for the discrete loss function
is minor. For some of the discrete loss functions we have examined, we have found simulation
situations for which the DM test could be applied even in a standard fashion, ignoring PEE,
with a negligible bias in size.
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A Appendix: Proof of Lemma 1

For the ease of exposition, we eliminate the subindex i that indicates the forecasting model
and substitute subindices r and (r) by 1 and 2. Hence, we use the equivalent expressions:

z1t = zirt; Z2t = Zi(r)t; ut+h = uit+h; �1 = �i;r; �2 = �i;(r):

Then, under assumption (b:1), the de�nition of a discrete loss f is:

ft+h(�) = ajk, if lj�1 < yt+h � lj ; and lk�1 < byt+h � lk ,
, lj�1 < z1t�

�
1 + Z

0
2t�

�
2 + ut+h � lj , and lk�1 < z1t�1 + Z 02t�2 � lk ,

, bj�1 < ut+h � bj and dk�1 < z1t � dk;
where

bj = lj � z1t��1 � Z 02t��2 and dk =
lk � Z 02t�2

�1
: (14)

Before we move to the proof of Lemma 1, we must obtain the analytical expression for
E(ft+h(�)). For cdfs and pdfs we keep the notation introduced at the beginning of Section
5. Furthermore, in what follows, we eliminate the time subindices in byt+h; yt+h; z1t, Z2t,
ut+h; ft+h; to obtain:

E(f(�)) =
nP
k=1

nP
j=1

ajkP (lj�1 < y � lj ; lk�1 < by � lk) =
=

nP
k=1

nP
j=1

ajk
R
Z2

"
dk(�1)R
dk�1(�1)

"
bjR
bj�1

gujz1;Z2(ujz1; Z2)du
#
gz1jZ2(z1jZ2)dz1

#
gZ2(Z2)dZ2 =

=
nP
k=1

nP
j=1

ajkS(j; k);

where

S(j; k) =
R
Z2

"
dk(�1)R
dk�1(�1)

�
Gujz1;Z2(bj jz1; Z2)�Gujz1;Z2(bj�1jz1; Z2)

�
gz1jZ2(z1jZ2)dz1

#
gZ2(Z2)dZ2:

Lemma 1 deals with the analytical expression for the generic element in matrix F in

McCracken (2000)
h
@Ef(�)
@�1

i
�=��

, whose analytical expresion holds in this context because of

the di¤erentiability of E(ft+h(�)), condition guaranteed by assumption (b:3).

Proof of Lemma 1. We �rst apply Leibniz�s rule to the S(j; k)-terms:
@
@�1
S(j; k) =

R
Z2
[Gujz1;Z2(lj � dk�

�
1 � Z 02��2jdk; Z2)�Gujz1;Z2(lj�1 � dk�

�
1 � Z 02��2jdk; Z2)]

gz1jZ2(dkjZ2) @dk@�1
gZ2(Z2)dZ2

�
R
Z2
[Gujz1;Z2(lj � dk�1�

�
1 � Z 02��2jdk�1; Z2)�Gujz1;Z2(lj�1 � dk�1�

�
1 � Z 02��2jdk�1; Z2)]

gz1jZ2(dk�1jZ2)
@dk�1
@�1

gZ2(Z2)dZ2 =

= �
R
Z2
[B(j; k)Hk �B(j; k � 1)Hk�1] gZ2(Z2)dZ2;

where

Hk = gz1jZ2(dkjZ2)
dk
�1
, B(j; k) = G(j; k)�G(j � 1; k) (15)

and G(j; k) = Gujz1;Z2(lj � dk�
�
1 � Z 02��2jdk; Z2):

So the generic element @Ef(�)@�1
can be written as:

@Ef(�)

@�1
= �

Z
Z2

n�1P
k=1

Hk

 
nP
j=1

B(j; k)(ajk � ajk+1)
!
+Hn

nP
j=1

B(j; n)ajn�H0
nP
j=1

B(j; 0)aj1 gZ2(Z2)dZ2;
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But, since l0 = �1 and ln = +1; we have that d0 = �1 and dn = +1 and, consequently,
from assumption (b:2), we have: Hn = lim

x!+1
Hx = gz1jZ2(xjZ2) x�1 = 0 and H0 = lim

x!�1
Hx =

gz1jZ2(xjZ2) x�1 = 0.
20 Hence, since B(j; k) is a bounded function, we have:

@Ef(�)

@�1
= �

Z
Z2

�
n�1P
k=1

HkQk

�
gZ2(Z2)dZ2, with Qk =

nP
j=1

B(j; k)(ajk � ajk+1); (16)

where B(j; k), Hk , dk are given by (15), (15) and (14), respectively.

When we evaluate this derivative at � = ��; we obtain:

d�k = dk(�
�) =

lk�Z02�
�
2

��1
;

lj � d�k�
�
1 � Z 02��2 = lj �

lk�Z02�
�
2

��1
��1 � Z 02��2 = lj � lk;

G�(j; k) = Gujz1;Z2(lj � lkjd�k; Z2);
B�(j; k) = G�(j; k)�G�(j � 1; k);
Q�k =

nP
j=1

B�(j; k)(ajk � ajk+1);

H�
k = Hk(d

�
k) = gz1jZ2(d

�
kjZ2)

d�k
��1
;

so that: �
@Ef(�)

@�1

�
�=��

= �
Z
Z2

�
n�1P
k=1

H�
kQ

�
k

�
gZ2(Z2)dZ2:

A model may be misspeci�ed by including some variable that does not enter in the true

data generating process, i.e., ��1 = 0. Even in that case, the value of
h
@Ef(�)
@�1

i
�=��

is �nite

under the assumption (b:2). This happens because G�(j; k) = Gujz1;Z2(lj � lkjd�k = �1; Z2)
is a value in [0; 1], so that Q�k remains a bounded function, and the value of

h
@Ef(�)
@�1

i
�=��

will

depend on the product
h
gz1jZ2 (dk(�1)jZ2)

dk(�1)
�1

i
�=��

: The �nite variance assumption on the

conditional distribution of z1 given Z2 guarantees that: lim
�1!0

h
gz1jZ2 (dk(�1)jZ2)

dk(�1)
�1

i
<1;

so it is fully justi�ed to consider the partial derivative
h
@Ef(�)
@�1

i
�=��

even in this case.

B Appendix: Proof of Theorems 2, 4 and 6

To proceed with the following proofs, we use again the notation introduced at the beginning
of Appendix A.
Proof of Theorem 2. Using the de�nition of Q�k and B

�(j; k) above, together with
assumption (a:3) on the discrete loss function, the expression of Q�k for 0 < k < n becomes:

Q�k =
nP
j=1

B�(j; k)(ajk � ajk+1) = ck
kP
j=1

B�(j; k)� ck
nP

j=k+1

B�(j; k): Using the de�nition

ofB�(j; k) in (11b): B�(j; k) = G�(j; k)�G�(j�1; k), and the fact thatGujz1;Z2(�1jd�k; Z2) =
0 and Gujz1;Z2(+1jd�k; Z2) = 1, we have:
20A �nite variance for the distribution of z1jZ2 guarantees that the convergence towards zero of that

conditional density at both ends of the real line is faster than linear and hence, that the product gz1jZ2 (xjZ2)x
converges to zero as x goes to �1 .
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Q�k =
nP
j=1

B�(j; k)(ajk � ajk+1) = ck
kP
j=1

B�(j; k)� ck
nP

j=k+1

B�(j; k) =

ck [G
�(1; k)�G�(0; k) +G�(2; k)�G�(1; k) + :::+G�(k; k)�G�(k � 1; k)]�

ck [G
�(k + 1; k)�G�(k; k) +G�(k + 2; k)�G�(k + 1; k) + :::+G�(n; k)�G�(n� 1; k)] =

ck (2G
�(k; k)�G�(0; k)�G�(n; k)) = ck (2G�(k; k)� 1) :

Finally, assumption (b:4) implies: G�(k; k) = 1=2 and hence, Q�k = 0, for 0 < k < n.

Therefore,
n�1P
k=1

H�
kQ

�
k = 0 )

h
@Efi(�)
@�i;r

i
�=��

= 0; for r = 1; :::;Ki. Furthermore, if the

parameter with respect to which we compute the derivative corresponds to a regressor that
is not in model Mi, the derivative of Efi(�) with respect to that parameter is zero, so that
Fi = 01�K .

Proof of Theorem 4. For k 6= n=2, the same argument above implies Q�k = 0 under
assumption (a:4): For k = n=2:

Q�n=2 =
nP
j=1

B�(j; n=2)(ajn=2 � ajn=2+1) = c1;n=2[G�(1; n=2)�G�(0; n=2)]+

c2;n=2[G
�(2; n=2)�G�(1; n=2)] + :::+ cn=2;n=2[G�(n=2; n=2)�G�(n=2� 1; n=2)]+

cn=2+1;n=2[G
�(n=2 + 1; n=2)�G�(n=2; n=2)] + cn=2+2;n=2[G�(n=2 + 2; n=2)�G�(n=2 + 1; n=2)]

+:::+ cn;n=2[G
�(n; n=2)�G�(n� 1; n=2)]:

Applying assumption (a:4) for k = n=2, the expression for Q�n=2 becomes:

Q�n=2 = c1;n=2[G
�(1; n=2)�G�(0; n=2)�G�(n; n=2) +G�(n� 1; n=2)]+

c2;n=2[G
�(2; n=2)�G�(1; n=2)�G�(n� 1; n=2) +G�(n� 2; n=2)]

+:::+ cn=2;n=2[G
�(n=2; n=2)�G�(n=2� 1; n=2)�G�(n=2 + 1; n=2) +G�(n=2; n=2)]:

We can apply assumption (a:5) together with (b:40) to conclude that the expression inside

each square bracket is zero. Hence, we also have: Q�n=2 = 0. Therefore,
n�1P
k=1

H�
kQ

�
k = 0 )h

@Efi(�)
@�i;r

i
�=��

= 0; for r = 1; :::;Ki. Besides, if the parameter with respect to which we

compute the derivative corresponds to a regressor that is not in model Mi, the derivative of
Efi(�) with respect to that parameter is zero, so that Fi = 01�K .

Proof of Theorem 6. By assumption (a:6), the expression of Q�k for 0 < k < n becomes:

Q�k = ck
kP
j=1

B�(j; k) + c0k
nP

j=k+1

B�(j; k) =

ck [G
�(1; k)�G�(0; k) +G�(2; k)�G�(1; k) + :::+G�(k; k)�G�(k � 1; k)]+

c0k [G
�(k + 1; k)�G�(k; k) +G�(k + 2; k)�G�(k + 1; k) + :::+G�(n; k)�G�(n� 1; k)]

= ck [G
�(k; k)�G�(0; k)] + c0k [G�(n; k)�G�(k; k)] ;

with ck = c and c0k = c
0 if k 6= n=2, while ck = cn=2 and c0k = c0n=2 if k = n=2, following

the notation in (a:6).

Finally, the properties of a probability distribution function imply G�(0; k) = 0 and
G�(n; k) = 1, whereas G�(k; k) = 1=2 by assumption (b:4). So:

Q�k =
1=2(c+ c0) if k 6= n=2
1=2(cn=2 + c

0
n=2) if k = n=2:

Hence, the expression for
h
@Ef(�)
@�1

i
�=��

becomes:
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�
@Ef(�)

@�1

�
�=��

= �1=2(c+c0)
n�1P

k=1;k 6=n=2

Z
Z2

H�
kgZ2(Z2)dZ2 � 1=2(cn=2+c0n=2)

Z
Z2

H�
n=2gZ2(Z2)dZ2:

(17)

Let us denote Ek =
R
Z2
H�
kgZ2(Z2)dZ2; so that:

h
@Ef(�)
@�1

i
�=��

= �1=2(c+c0)
n�1P

k=1;k 6=n=2
Ek

� 1=2(cn=2 + c0n=2)En=2. Applying the de�nition of H�
k ;H

�
k = Hk(d

�
k) = gz1jZ2(d

�
kjZ2)

d�k
��1
; we

get, for k = 1; :::; n=2� 1:

Ek =

Z 0

�1
:::

Z 0

�1
gz1jZ2(

lk�Z02�
�
2

��1
jZ2) lk�Z

0
2�

�
2

(��1)
2 gZ2(Z2)dZ2

+

Z 1

0

:::

Z 1

0

gz1jZ2(
lk�Z02�

�
2

��1
jZ2) lk�Z

0
2�

�
2

(��1)
2 gZ2(Z2)dZ2

=

Z 1

0

:::

Z 1

0

gz1jZ2(
lk+Z

0
2�

�
2

��1
jZ2) lk+Z

0
2�

�
2

(��1)
2 gZ2(�Z2)dZ2 ! I1k

+

Z 1

0

:::

Z 1

0

gz1jZ2(
lk�Z02�

�
2

��1
jZ2) lk�Z

0
2�

�
2

(��1)
2 gZ2(Z2)dZ2 ! I2k

= I1k + I
2
k :

Taking into account that ln�k = �lk for k = 1; :::; n=2 � 1 by assumption (a:5), the
expression for En�k, k = 1; :::; n=2� 1 can be written as:

En�k =

Z 0

�1
:::

Z 0

�1
gz1jZ2(

�lk�Z02�
�
2

��1
jZ2)�lk�Z

0
2�

�
2

(��1)
2 gZ2(Z2)dZ2

+

Z 1

0

:::

Z 1

0

gz1jZ2(
�lk�Z02�

�
2

��1
jZ2)�lk�Z

0
2�

�
2

(��1)
2 gZ2(Z2)dZ2

=

Z 1

0

:::

Z 1

0

gz1jZ2(
�lk+Z02�

�
2

��1
jZ2)�lk+Z

0
2�

�
2

(��1)
2 gZ2(�Z2)dZ2 ! I1n�k

+

Z 1

0

:::

Z 1

0

gz1jZ2(
�lk�Z02�

�
2

��1
jZ2)�lk�Z

0
2�

�
2

(��1)
2 gZ2(Z2)dZ2 ! I2n�k

= I1n�k + I
2
n�k:

Assumption (b:5) guaranteeing symmetry around the zero vector for the distribution of
vector Z2 as well as symmetry around zero for the conditional distribution z1jZ2 implies that
I1k = �I2n�k and I2k = �I1n�k and so Ek + En�k = 0 for each k = 1; :::; n=2� 1.
Finally, the expression for En=2 can be written as:

En=2 =

Z 0

�1
:::

Z 0

�1
gz1jZ2(

�Z02�
�
2

��1
jZ2)�Z

0
2�

�
2

(��1)
2 gZ2(Z2)dZ2

+

Z 1

0

:::

Z 1

0

gz1jZ2(
�Z02�

�
2

��1
jZ2)�Z

0
2�

�
2

(��1)
2 gZ2(Z2)dZ2 =

=

Z 1

0

:::

Z 1

0

gz1jZ2(
Z02�

�
2

��1
jZ2)Z

0
2�

�
2

(��1)
2 gZ2(�Z2)dZ2 ! I1n=2

+

Z 1

0

:::

Z 1

0

gz1jZ2(
�Z02�

�
2

��1
jZ2)�Z

0
2�

�
2

(��1)
2 gZ2(Z2)dZ2 ! I2n=2

= I1n=2 + I
2
n=2:

Again, under assumption (b:5), I1n=2 = �I2n=2 and so En=2 = 0. Consequently, expression
(17) is equal to zero )

h
@Efi(�)
@�i;r

i
�=��

= 0; for r = 1; :::;Ki. Besides, if the parameter with

respect to which we compute the derivative corresponds to a regressor that is not in model
Mi, the derivative of Efi(�) with respect to that parameter is zero, so that Fi = 01�K :
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C Appendix: Estimation of matrix F for the example in
Section 7

In the example described in Section 7 we used numerical estimates for matrix F under the
SFE and AFE loss functions as well as under a discrete loss function. We now describe the
details of the estimation of matrix F .
In that exercise, � = (�10; �11; �20; �22)

0 so that F is a 2 � 4 matrix with zeroes in all
positions except for F1;2 =

h
@Ef1(�)
@�11

i
�=��

and F2;4 =
h
@Ef2(�)
@�22

i
�=��

. As obtained by West

(1996) for a SFE loss, the expressions for those derivatives are F1;2 = �2E(u1t+1w1t+1) and
F2;4 = �2E(u2t+1w2t+1). On the other hand, McCracken (2000) shows that if f is the AFE
loss function, then F1;2 = �E [sgn(u1t+1)w1t+1] and F2;4 = �E [sgn(u2t+1)w2t+1]. There-
fore, the estimation for these elements of matrix F in the case of SFE and AFE loss functions

are, respectively, bF1;2 = �2P�1 TP
t=R

bu1t+1w1t+1 an bF1;2 = �P�1 TP
t=R

sgn(bu1t+1)w1t+1. The es-
timation bF2;4 is obtained analogously.
On the other hand, the estimation of F1;2 and F2;4 in the case of a discrete loss f is given

by (10). In this case, each model Mi employs a single regressor in addition to a constant
term, so that the variables in that expression are zir = wi and Zi(r) = 1 . Therefore, F1;2

reduces to F1;2 = �
nP
k=1

H�
kQ

�
k, with H

�
k = gw1(d

�
k)

d�k
��11
, d�k =

lk���10
��11

, Q�k =
nP
j=1

B�(j; k)(ajk �

ajk+1), B�(j; k) = Gu1jw1(lj � lkjd�k) � Gu1jw1(lj�1 � lkjd�k) (see (11a)-(11c)). Given the
design of the forecasting exercise, gw1 corresponds to the density of a N(0; 2). On the
other hand, since u1 and w1 follow Normal distributions, the distribution of Gu1jw1 will
be N(b(w1); �2u1(1 � �

2
u1w1)), with b(w1) = �u1 + (w1 � �w1)�u1w1

�u1
�w1

; where �x, �x; �xy
denote the population mean and standard deviation of x, and the correlation coe¢ cient
between x and y, respectively. Substituting for the parameter values in the exercise, we

get: �u1 = �w1 = 0, �u1 =
p
5, �w1 =

p
2 and �u1w1 =

q
2
5 , so that the distribution of

Gu1jw1 is N(w1; 3): To compute B
�(j; k) that distribution becomes N(d�k; 3) since it must be

evaluated at w1 = d�k, as indicated by the expression for B
�(j; k). To estimate F1;2, we use

the mentioned distributions, together with the expressions for H�
k and Q

�
k, once we substitute

��11 by its 2SLS estimation in t = T . The estimation of F2;4 is obtained analogously.

D Appendix: SDAFE properties

In this Appendix we provide su¢ cient conditions for the discrete loss function SDAFE [de�ned
by (2), in Section 2] to verify properties (a:3) and (a:4) introduced in Section 5. Such
properties are conditions needed for Theorems 2 and 4, respectively, to apply.

Proposition 8 Let us consider a partition with (a:5) ln=2 = 0 and ln=2�i = �ln=2+i; for
i = 1; :::; n=2. If the SDAFE loss function veri�es: (3) �j = 0 when sgn(byt+h) = sgn(yt+h)
and �j = max

k
fajkj�k�j > 0g; otherwise, and (4) � = 1=2; v0 = vn, then, SDAFE satis�es

(a:4):

We start by showing some auxiliary lemmas that will be used to show the proposition:

Lemma 8.1 j�j � �kj � j�j � �k+1j =
�k � �k+1 if j � k
�k+1 � �k if j > k:
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Proof. Since the �i function given in (2) [Section 2] is monotonically increasing, we have:
i) If j � k, then �j � �k < �k+1. Consequently, j�j � �kj � j�j � �k+1j = �(�j � �k)�

(�(�j � �k+1)) = �k � �j + �j � �k+1 = �k � �k+1.
ii) If j > k, then �j � �k+1 > �k. Consequently, j�j � �kj � j�j � �k+1j = (�j � �k)�

(�j � �k+1) = �k+1 � �k.

Lemma 8.2 Under conditions (4) and (a:5), �i = ��n�i+1, i = 1; :::; n=2.

Proof. Given (4) and (a:5), we have:

�i =
l1 � 1=2v0 = �(ln�1 + 1=2vn); i = 1
1=2li�1 + 1=2li = �(1=2ln�i + 1=2ln�i+1); 1 < i < n
ln�1 + 1=2vn = �(l1 � 1=2v0); i = n

= ��n�i+1.

Proof of Proposition 8. Given ls = 0; we have from the de�nition (2) of the SDAFE loss
function [Section 2]:

ajk =
j�j � �kj if either (j � s; k � s) or (j > s; k > s)
j�j � �kj+ �j otherwise,

and

ajk+1 =
j�j � �k+1j if (j � s; k + 1 � s) or (j > s; k + 1 > s)
j�j � �k+1j+ �j otherwise.

Therefore:
a) If k 6= s, then either both, ajk and ajk+1 include �j ; or neither one of them does.

Hence, applying Lemma 8.1, we have:

ajk � ajk+1 =
�k � �k+1 = �ck if j � k
�k+1 � �k = +ck if j > k:

b) If k = s: we have:

ajs � ajs+1 =
�s � �s+1 � �j if j � s
�s+1 � �s + �j if j > s:

If s = n=2, assumption (a:4) holds if and only if �j = �n�j+1, for j = 1:::n=2. So we just
need to show that SDAFE veri�es this condition under (3), (4) and (a:5).
From (3), we take as �j and �n�j+1 the highest penalties received by forecasts having

the same sign as the data in rows j and n � j + 1, respectively: �j = maxAj , where Aj =
faj1; :::; ajn=2g and �n�j+1 = maxAn�j+1, where An�j+1 = fan�j+1;n=2+1; :::; an�j+1;ng.
All these penalties are de�ned by ajk = j�j ��kj. But under (4) and (a:5), Lemma 8.2 holds
so that, ajk = an�j+1;n�k+1. Therefore the sets Aj and An�j+1 contain exactly the same
elements and hence, �j = �n�j+1.

Proposition 9 The SDAFE loss function veri�es assumption (a:3) if �j = � � 0 for all j,
under a partition that veri�es ls = 0 for some 0 < s < n.

Proof. The same proof as for Proposition 8 applies here up to point b). Now, for the case

k = s we have: ajk � ajk+1 =
�k � �k+1 � � = �ck if j � k
�k+1 � �k + � = +ck if j > k:
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