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Abstract 

The behaviour of the kurtosis parameter of a partially coherent beam that freely propagates is investigated. A general 
classification scheme of light beams is given in terms of the number of extremals of the kurtosis in free space. Propagation 
through ABCD optical systems is also considered and a number of general properties of the kurtosis parameter are provided 
concerning the relationship between the extmmals of the kurtosis and the position of the beam waist. 

1. Introduction 

As is well known, a number of global beam parameters have recently been introduced in the literature to 
characterize the spatial behaviour of arbitrary laser profiles [l-14]. This parameter has revealed to be useful 
to evaluate in a quantitative way the laser capabilities in a number of laser material processings [ 141, such 
as welding, cutting or hole drilling. Among them the degree of flatness (or sharpness) of the beam intensity 
distribution has been described by means of the so-called kurtosis parameter [9,13]. In the present work 
attention will be concentrated on this shape parameter and several properties will be derived. Thus in the next 
section, after defining the kurtosis for an arbitrary partially coherent beam, a general classification scheme of 
light beams will be given in terms of the kurtosis behaviour under free propagation. Some kinds of. beams 
of special interest will also be considered. In section 3, propagation through ABCD optical systems will be 
analysed and a number of general properties of the kurtosis parameter concerning the relationship between the 
extremals of the kurtosis and the position of the beam waist will be shown. 

2. Definitions and classification scheme 

To handle partially coherent beams, the Wigner distribution function (WDF) of the field is specially suitable. 
As is well known [ 31, it can be defined in terms of the cross-spectral density function r as 

+oO 
h(x,u,z) = J r( x + s/2, x - s/2, z > exp(ikm) ds, 

-co 

(1) 
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where, for simplicity, we have considered the bidimensional case. In Eq. ( I), x denotes the spatial coordinate 
transversal to the propagation direction z, and ku is the wavevector component along the x-axis (hence u would 
represent an angle of propagation, without taking the evanescent waves into account). Integration of function h 
over the angular variable u gives the beam intensity, and its integral over the spatial variable x, is proportional 
to the radiant intensity of the field. Averages (x”u”) of the function h are defined in the form 

17’ x u”h(x,u,z)dxdu, (2) 

where P = ss_‘,” h( x, u, z) dxdu is the total irradiance of the beam. In particular, (x2) and (u2) represent, 
respectively, the (squared) beam width and the (squared) far-field divergence (angular spread). As is well 
known [ 1,9-121, these averages propagates through ABCD optical systems according to the following law 

(XmU”)~ = ((AX + Bu)“‘( Cx + Du)“)i, (3) 

where the subscripts ‘0’ and ‘i’ refer to the output and input planes of the optical system characterized by the 
ABCD matrix whose elements are A, B, C and D (within the Fresnel approach). Eq. (3) follows from the 
corresponding propagation law of the WDF, namely [ 1,5,8,11,12] 

hi(x,u) = h,(Ax+ Bu,Cx + Du). (4) 

In terms of higher-order averages, the kurtosis parameter, K, is defined as 

K = (x~)/(x~)~ (2 1). 

As it was previously pointed out before [9,13], this parameter is closely related with the flatness of the 
intensity distribution, since the moments that appear in the above equation depend on z, consequently, K 
will be, in general, a z-function. The evolution of this shape parameter under free propagation (in the Fresnel 
approximation) would then be characterized by the number of extremals of the function K( z ) , closely connected 
with the number of planes in which the beam becomes sharper or flatter. 

As we will next show a general classification scheme of light beams follows from the analysis of such 
extremal values. It can be shown that the condition for the extremals of the kurtosis, namely, 

aK/dz = 0, (6) 

becomes (see appendix A) 

moz4 + poz3 + qoz2 + roz + so = 0, (7) 

where 

m = (u4) (nu) - (u2) (xu3), (8) 

p = (u4)(x2) + 2(xu3)(xu) - 3(u2)(x2u2), (9) 

q=3(xu3)(xZ) - 3(X3U)(U2), (10) 

r= 3(x%2)(x2) - 2(X3U)(XU) - (2)(x4), (11) 

s = (x2) (x3u) - (x4) (xu), (12) 

and the subscript ‘0’ in Eq. (7) refers to the values of the moments at the initial plane z = 0. By using Eq. 
(A.2), we can conclude from Eq. (8) that the coefficient m does not depend on the choice of the initial plane 
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(this means that it can be measured at any plane). In an analogous way, the dependence of the remaining 
coefficients at such a plane is given by the following relations: 

dp/dz = 4m, (13) 

dq/dz = 3p, (14) 

&-/Liz = 29, (15) 

ds/dz = r. (16) 

To classify an arbitrary beam according to the number of extremals of function K(z) it would be useful to 
define 

A=4R3-S2, (17) 

and 

Al = 9p2q2 - 32mq3 - 27p3r + 108mpqr - 108m2r2, (18) 

where 

R = q2 - 3pr + 12ms, (19) 

S = 2q3 - 9pqr - 72qms + 27mr2 + 27~~s. (20) 

It can be shown by performing the corresponding derivatives with respect to z that A, AI, R, and S remain 
constant under free propagation. Taking this into account, since Eq. (7) is a fourth-order polynomial, any 
partially coherent beam can be classified according to the following scheme (see appendix B) 
- Type I: Those beams whose kurtosis function K(z) exhibits two maxima and two minima belong to this 

type. This occurs when m # 0 and A > 0. Moreover, there exists at least one plane zo such that 

K(zo) = (u4)/(u2)2 = K(z -+ Ittoo) f Km, (21) 

where K, denotes the value of the kurtosis at the far-field. Note that K, also characterizes the behaviour 
of the kurtosis at the focal plane of any (converging) lens. 

- Type II: K( z ) exhibits one maximum, one minimum and one inflexion point. The simultaneous conditions 
needed for this to occur are (i) m # 0, (ii) A = 0, and (iii) AI # 0. 

Since K(z) is a continuous function, which exhibits a maximum and a minimum and tends to the 
asymptotic value K, when z --+ &too, there should therefore exist a unique plane za such that K( zo) = K,. 

- Type III: K(z) has either (a) two maxima and one minimum, or (b) two minima and one maximum. 
The conditions here are m = 0, p + 0 and A > 0. 

- Type IV K(z) exhibits one maximum and one minimum. This occurs when either (i) m = p = 0, q + 0, 
or (ii) m # 0 and A < 0, or (iii) m # 0, A = 0 and Al = 0. Then we can infer in an analogous way to that 
shown above that there exists a unique plane za such that K(a) = K,. 

- Qpe Vr K( z ) has either (a) one maximum and one inflexion point, or (b) one minimum and one inflexion 
point. 

This occurs when m = 0, ‘p # 0, A = 0 and q2 > 3pr. 
- Type VI: K( z ) exhibits either a unique maximum or a unique minimum. 

The conditions needed for this to occur are either (i) m = 0, p # 0 and A < 0, or (ii) m = 0, p f 0, 
A = 0, and q2 = 3pr, or (iii) m = p = q = 0. 

In the last case (iii), the extremal would be placed at the beam waist. 
- Type VII: K( z ) is a constant. This would occur if m = p = q = r = s = 0. 
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Type II Type 111 Type IV 

Fig. 1. The different types of the general classification scheme. The dashed line corresponds to the value of the kurtosis at the far-field. 

The above seven types of beams cover all the possibilities of behaviour of function K( z ) , and, consequently, 
provide a classification scheme for any field according to its degree of flatness (see Fig. 1) . 

As particular examples of interest we should mention that Hermite-Gauss beam modes and Gauss-Schell 
mode fields belong to type VII, and any Gaussian beam at the output of a quartic-phase transmittance belongs 
to type IV [ 131. And finally, let us consider a supergaussian field distribution proportional to exp[ -(x/a) 2n], 
n= 1,2,3 ,.... It can then be shown that the cases n = 1 (Gaussian beam), n = 2 and IZ > 3 are related with 
fields belonging to types VII, III and VI, respectively. 

3. Propagation through first-order optical systems 

To control the sharpness of the beam profile by designing suitable optical systems, it would be useful to 
know what would be the change (if any) of the kurtosis behaviour of a beam after propagating through a 
general ABCD optical system. Thus we could determine from the measurements of parameters m, p, 4, I and 
s the modification of the type of the beam (according to the above classification scheme) when it travels along 
an arbitrary first-order system. To do this let us define the following 5 x 1 matrix, 

(22) 

which will be called the kurtosis propagation vector. Since function K(z) can be inferred from the values of 
parameters m, p, 4, Y and s at some initial plane, it is clear from Eq. (22) that to analyse the type of the beam 
after crossing an ABCD system it will suffice to know the kurtosis propagation vector at the output of such 
system. Then, denoting by at and (Y, these vectors at the input and output planes, respectively, it can be shown 
after lengthy calculations (by using Eqs. (3) and (8) -( 12) ) that the relationship between them is 

LY, = Mai, (23) 

where M is the 5 x 5 matrix 
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D4 CD3 C2D2 C3D c4 
4BD3 3BCD2 + AD3 2ACD2 + 2BC2D 3AC2D + BC3 4AC3 
6B2D2 3B2CD + 3ABD2 (AD + BC)2 3ABC2 + 3A2CD 6A2C2 
4B3D B3C + 3AB2D 2AB2C + 2A2BD 3A2BC + A3D 4A3C 

B4 AB3 A2B2 A3B A4 
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1 (24) 

and A, B, C and D are the elements of the ABCD matrix of the system, which, as usual, satisfy the simplecticity 
condition [ 11,12,16] AD - BC = 1. 

A number of general conclusions can be inferred from the above. First, since, as one can check, detM # 0, 
a beam of type VII remains of the same type after propagating through any first-order optical system. In other 
words, for these kind of fields, ABCD systems are of no use in changing the kurtosis behaviour. 

Another interesting consequence refers to the relative position of the extremals of the kurtosis with respect 
to the beam waist. In this sense, it would be particularly useful that the kurtosis reaches an extremal value at 
the waist plane, becomes the beam energy is focused on such a plane. From the definitions (8)-( 12), it can 
be shown (see appendix C) that the kurtosis reaches an extremal at the waist plane if and only if s = 0 at 
this plane. This is also equivalent to saying that (x3u) = 0 at such plane (note that beams of type VII should 
be excluded from this statement). In particular, beams taking real values at the waist plane would fulfil this 
condition. Moreover (see also appendix C), if r > 0 the extremal would be a minimum, whereas if r < 0 the 
kurtosis would reach a maximum. 

We then have that those beams for which (x~u) # 0 at the waist do not have any extremals of the kurtosis 
at such plane. This is, in a sense, a somewhat surprising conclusion, because it differs from the usual (but 
incorrect) idea that any beam is sharper at its waist. 

Let us then consider a beam whose kurtosis does not reach an extremal value at the waist. Then we will next 
show that such beam can be transformed (by means of certain ABCD systems) into another beam now having 
an extremal of the kurtosis at its new waist if and only if m = 0 for the input field (again, beams of type VII 
are excluded). 

To prove this, note first that if we take as input and output waist planes the input and output planes of 
an optical system, the elements of the ABCD matrix representing such a system should fulfil either (a) 
A = D = 0, BC = - 1, (this corresponds to an optical Fourier transformer [ 161) or (b) B = C = 0, AD = 1 
(this corresponds to a magnifier [ 161) . But the parameter s at the output is (according to Eqs. (23) and (24) ) 

s = miB4 + piAB3 f qiA2B2 + riA3B + A4si, (25) 

where the subscript ‘i’ denotes the values at the input (waist) plane. Consequently, to get s = 0 (with Si f 0) 
we must use an optical system of the type (a). Eq. (25) then becomes 

miB4 = 0, (26) 

which implies rni = 0, and the converse is also true, Q.E.D. In summary, a beam whose parameter m difers 
from zero cannot be transformed by means of first-order optical systems into another beam whose kurtosis 
reaches an extremal value at the waist plane. 
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Appendix A 

With respect to Eqs. 

R. Martinez-Herrero et al. /Optics Communications 115 (199~) 225-232 

7) and (13)-( lo), note that the kurtosis parameter can be written out in the form 

.3u)oz + 6(x2u2)oz2 + ~(xu~)~z~ + (u~)~z~ 
((x2)0 + 2(xu)oz + (u2)oz2>* 

(A.11 

where the subscript 0 refers to the value of the moments at the initial plane z = 0. To write Eq. (A. 1) we have 
applied the ABCD law to the moments (x2) and (x4) in the particular case of free propagation (A = 1, B = z, 
C = 0, D = 1). On the other hand, to get Eqs. (7)-( 12) we have used the well-known relation [ 1,9] 

a(x%“), /a2 = m(X(m-‘w+‘))z. (-4.2) 

Appendix B 

In order to obtain the extremal of the kurtosis, we have to find the roots of the following polynomial 

P(z)=mz4+pz3+qz2+rz+s. (B.1) 

We first consider that m f 0 (the case m = 0 will be analysed later). Following the standard procedure 
described, for example, in Ref. [ 151, (p. 288), let us define 

A= 

and 

mp q r s 00 
0 mp q r SO 
0 0 m p 

4m 3p 2q r ii ; s, 
0 4m 3p 2q r 0 0 
0 0 4m 3p 2q r 0 
0 0 0 4m 3p 2q r 

(B.2) 

D = m6(u - u)~(u - w)~(u - t)2(o - w)~(u - t)*(w - t)*, 

where U, u, w and t denote the roots of the polynomial P (z > . 
It can be shown [ 151 that 

A=mD. 

U3.3) 

(B.4) 

Moreover, 

A = (m/27)A, (B.5) 

where A has been defined in Eq. ( 17). From Eqs. (B.4) and (B.5) it follows that sgn( A) = sgn( 0). Therefore, 
from Eq. (B.3) three cases can be distinguised: 

(i) A > 0: A general fourth-order polynomial would then have either four real roots or four complex roots. 
But in our case, the second possibility should be excluded because if all the roots were complex then 
P( z ) f 0 for any z real, and therefore K(z) would be a monotonically increasing (or decreasing) 
function, which is incompatible with the asymptotic behaviour of K when z = foe (see Eq. (21) ) . In 
conclusion, the four roots of P (z ) must be real, which would imply that K exhibits two maxima and two 
minima. 
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(ii) A < 0: P( z ) has two simple real roots (the complex roots can be disregarded because z is a distance 
and takes real values only). Therefore, in this case K( z ) exhibits a minimum and a maximum. 

(iii) A = 0: P(z) has multiple roots. In this case, since K’(z) = 4 P(z)/(x*)~, the following analysis applies 
(by using the subsequent derivatives of K(z)): 
(a) P(z) has one cuadruple root. In this case it can be shown that the first non-zero derivative of the 

kurtosis at this point is odd, and therefore it must be an intlexion point. But this situation is not 
compatible with the asymptotic behaviour of K. 

(b) P( z ) has both a triple and a simple root. K( z ) would then exhibit a maximum and a minimum. 
(c) P(z) has two double roots, which implies that K(z) exhibits two inflexion points. But again this is 

not compatible with the far-field behaviour of K. 
(d) P(z) has two simple roots (a maximum and a minimum) and a double one (an inflexion point). 

Cases (b) and (d) can be distinguished by applying an analogous procedure to that used to analyse the roots 
of P( z ) . Thus, it can be shown that the number of roots of the derivative of P( z ), namely, P’( z ), is given in 
terms of the sign of Al, defined in Eq. ( 18). We have then that, in (b) P’( z ) becomes 

P’(z) = (z -Id* [3(z -u) + (z - u)] , u3.6) 

which implies that P’ has a double root and a simple one. This is fulfilled when AI = 0. On the other hand, in 
Cd) 

P’(z>=(z -u){2(z-u)(z-w)+(z-u) [(z-u)+(z-w)]}. (B.7) 

In this case P’(z) does not have multiple roots. This occurs when Al f 0. 
Let us now consider the case m = 0 in Eq. (B. 1). It can then be shown that the analysis of the roots of 

P (z ) is again given in terms of the sign of A after substitution of the value m = 0. Accordingly we have that 
(i) if A > 0, P( z ) has three real roots, 
(ii) if A < 0, P (z ) has one simple real root only, 
(iii) if A = 0, P (z ) has multiple roots. 

In case (iii), by using the higher-order derivatives of K(z), it can be shown that 
- if q* > 3pr, then K( z ) has an inflexion point and a minimum or a maximum (note that P( z ) would then 

have both one simple root and one double root) ; 
- if q* = 3pr, then K( z ) has a maximum or a minimum (in this case, P( z ) would have a triple root). 

Note that the inequality q’ < 3pr is not compatible with the previous conditions m = 0 and A = 0 (as 
follows from Eqs. ( 17), ( 19) and (20)). 

From this appendix the general classification scheme shown in section 2 can be inferred. 

Appendix C 

In this appendix we will show that the kurtosis reaches an extremal at the waist plane if and only if s = 0 
(or, equivalently, when (x3u) = 0). 

Let us choose the plane z = 0 as the waist plane. At this plane Eq. (7) then becomes s = 0. Moreover, since, 
at the waist, (XU) = 0 [ 3,9], then Eq. ( 12) implies (x3u) = 0. The converse is also true (if s = 0 - or (x3u) = 0 
- then Eq. (7) is fulfilled). 

Note that, if the beam is real at the waist plane, then (x3u) = 0 at such a plane, and the kurtosis would reach 
an extremal at the waist. Moreover, in this case 

K” = 4r/(x2)3 (C.1) 

at the waist plane. Accordingly, the extremal of K would be a maximum or a minimum depending on the sign 
of r. 
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