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Abstract

There has been several attempts to introduce formal methods in the devel-
opment of medical computer systems. Fuzzy automata provide a way to
cope with imprecision, which appears in almost every biological or medical
system. In this Thesis, we improve and extend a previous formalism, based
on fuzzy automata, and develop tools to facilitate the definition of models
using our formalism and its practical use. We have applied our formalism
and tools to analyze heart data to detect and prevent arrhythmia.

Key Words: Formal methods; Fuzzy automata; Development of soft-
ware tools.
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Resumen

Existen varios intentos de usar los métodos formales en el desarrollo de sis-
temas informáticos médicos. Los autómatas difusos ofrecen la posibilidad de
tener en cuenta la imprecisión, una característica que está presente en casi
cualquier sistema médico o biológico. En este trabajo extendemos y adapta-
mos un formalismo existente, basado en autómatas difusos, y desarrollamos
herramientas para facilitar tanto la definición de modelos que usan nuestro
formalismo como su uso. Hemos aplicado nuestro formalismo y herramientas
al análisis de datos cardiacos para detectar y prevenir arritmias.

Palabras Clave: Métodos formales; Autómatas difusos; Desarrollo de
herramientas software.
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Chapter 1

Introduction

In this initial chapter of the Thesis we present a brief introduction to our
work. The rest of the chapter is structured as follows. First, in Section 1.1
we present the motivation of our work and review previous work on the topic.
In Section 1.2 we briefly describe the goals that we set when we started the
work in this Thesis. Finally, in Section 1.3 we present our Work Plan where
we provide some key dates and describe the main activities.

1.1 Motivation and previous work

The use of formal methods in the development of complex systems improves
their reliability and it has been advocated that they should be used in the
same way as blueprints are used in other Engineering fields Lamport (2015).
Actually, the use of models as a basis to develop and analyze systems can be
found in other scientific fields Magnani y Bertolotti (2017). Unfortunately,
there are several obstacles, mainly associated with their complexity and the
lack of tools to support them Gogolla (2004); Bjørner y Havelund (2014), to
achieve a widespread use of formal methods. In addition, general purpose
formalisms are not suitable to be used in specific fields. This is the case of
the main application area considered in this Thesis: modeling and analyzing
the behavior of the heart.

There are several approaches to formally model the heart Hunter et al.
(2003); Jiang et al. (2010); Méry y Singh (2012); Chen et al. (2014) but they
fail to take into account common characteristics in biological systems such
as uncertainty and imprecision. If we use inaccurate models to analyze a
system (whether biological or not), then we will not be able to obtain useful
results. Fuzzy logic Zadeh (1965, 1996) has a well established mathematical
theory and it can be appropriately used to model real systems because it
allows us to use a degree of imprecision. Actually, the literature has several
proposals to fuzzify automata Wee y Fu (1969); Mraz et al. (1999); Morde-
son y Malik (2002); Doostfatemeh y Kremer (2005). Moreover, it is worth
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2 Chapter 1. Introduction

noting that fuzzy logic has been previously used to model the behavior of
the heart Wojtasik et al. (2004); Dorn (2007).

This thesis takes as starting point a variant of fuzzy automata Andrés
et al. (2011) oriented to the specification and testing of systems with un-
certain information about time. This initial formalism has been slightly
reformulated since its initial definition and used in different application ar-
eas Boubeta-Puig et al. (2017a,b); Camacho et al. (2017). This recent work
has shown some of its weaknesses, in particular, while modeling and analyz-
ing information about the heart.

1.2 Goals of our work

The main goal before we started the work in this Thesis was to introduce a
new formalism that can be used to formally specify complex systems where
uncertainty plays an important role. We wanted to provide an improved
version of the previously mentioned formalisms, fuzzy versions of finite au-
tomata, and define its syntax and semantics.

Strongly related to the first goal, a second goal of the work was to ap-
ply the formalism to a non-trivial case study. Building on top of previous
work developed in the research group, we wanted to apply our formalism to
define and analyze information extracted from ECGs (electrocardiograms).
Actually, it is specially interesting to model the behavior of the heart by
taking into account some specific data extracted from ECGs such as BPM
(heartbeats per minute) and RR intervals (interval between two consecutive
R waves in the electrocardiogram). In this line, we considered normal val-
ues of ECGs as provided by the study of numerous patients Rijnbeek et al.
(2014); Haarmark et al. (2010). In order to assess the usefulness of the model,
we should use existing databases, including information of real patients, to
check whether our model detects existing illnesses.

The last goal of our work was to provide a tool supporting our formal
framework. Once we had a running version of our tool we should use it to
review our previous model and analyze, again, heart data to detect anomalies
associated with arrythmia.

1.3 Work Plan

There are two major lines of work that we considered during the development
of this Thesis. First, we have a theoretical line of work where we defined
the syntax and (operational) semantics of our formalism and analyzed a
case study. This language is a revised and improved version of a previous
language Camacho et al. (2017) in which the supervisors of this Thesis were
heavily involved. The work in the first part of the Thesis started in the



1.3. Work Plan 3

beginning of July 2017 and finished in mid October 2017. The results of our
work were compiled in a research paper and submitted to the 10th Asian
Conference on Intelligent Information and Database Systems, ACIIDS 2018.
The paper was accepted Calvo et al. (2018a). We continued polishing the
formalism and the code used in the case study until we submitted the camera-
ready of the paper in mid December 2017. Chapter 2 of this Thesis includes
an extended version of our paper Calvo et al. (2018a) including, in particular,
some of the procedures used to compute the results. The Python scripts used
to compute these results are available at https://github.com/FINDOSKDI/
heartdiagnosis.

The end of the first phase, including a complete revision of the code
used in our experiments, led us to the beginning of the second major line
of work, a more practical one, considered in this Thesis. This line of work
consisted in the development of AUNTY: a tool to AUtomatically aNalyze
daTa using fuzzY automata. We were able to have an operational version of
our tool by the end of February 2018 and prepared a submission to the 3rd
International Conference on Computational Intelligence and Applications,
ICIIA 2018. The paper was accepted Calvo et al. (2018b). Chapter 3 takes
as starting point our paper but it includes new material such as the formal
syntax of the internal languages used in the representation of models based on
our formalism. The Python code of AUNTY is available at https://github.
com/FINDOSKDI/AUNTY.

The following table contains the main information related to our Work
Plan (some dates are approximate):

Initial date End date Description of the work
July 1, 2017 Sep. 30, 2017 Study of previous formalisms and def-

inition of new one
Oct. 1, 2017 Oct. 15, 2017 Preparation of submission to ACIIDS

2018
Nov. 15, 2017 Dec. 15, 2017 Polish formalism and improve code;

towards AUNTY
Feb. 1, 2018 Feb. 28, 2018 First version of AUNTY
Mar. 1, 2018 Mar. 15, 2018 Preparation of submission to ICIIA

2018
Apr. 15, 2018 May 28, 2018 Final version of AUNTY
May 3, 2018 May 28, 2018 Preparation of this manuscript

https://github.com/FINDOSKDI/heartdiagnosis
https://github.com/FINDOSKDI/heartdiagnosis
https://github.com/FINDOSKDI/AUNTY
https://github.com/FINDOSKDI/AUNTY




Chapter 2

Formalism and model of the
heart

In this chapter we introduce our formalism by defining a syntax and an op-
erational semantics. In order to show its usefulness we tackle a case study
where we model part of the behavior of the heart. Specifically, we try and
detect anomalies, associated with arrythmia, when analyzing data concern-
ing BPM and duration of RR intervals. The contents of this chapter are
based on our ACIIDS 2018 publication Calvo et al. (2018a).

The rest of this chapter is structured as follows. In Section 2.1 we intro-
duce some preliminary notions concerning fuzzy relations and constraints.
Section 2.2 presents the syntax of our formalism and its operational seman-
tics. Section 2.3 presents our case study. We give our model of the behavior
of the heart concerning BPM and duration of RR intervals, we review the
methods used to prepare the dataset and to compute the values given by the
model and provide some implementation details.

2.1 Preliminaries

The first concept that we need to present is fuzzy relations. They are similar
to boolean relations but instead of returning true or false, they return a real
value in the interval [0, 1]. The idea is that if we are sure that something holds
then we have confidence equal to 1; otherwise, we will have a confidence less
than 1, in particular, if we are sure that the relation does not hold then we
have confidence equal to 0. There are a number of standard fuzzy relations
(the obvious adaptations of classical numerical relations such as equality, less
than or equal to, etc). In our work we need a fuzzy relation to classify values
in intervals. In other words, we use this fuzzy relation to classify values with
respect to normal behavior. For example, consider that the normal number
of BPM of a healthy person must be between 63 and 70. If we observe that a
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6 Chapter 2. Formalism and model of the heart

person always shows measures in this interval, then we can assume a normal
behavior. If another patient sometimes shows values out of the interval but
close to it then we can assume that with a high likelihood the patient is ok.
However, if the patient shows many values out of the interval and relatively
far from it, then we might order further experiments to try and detect a
potential illness.

We define the relation α ≤ · ≤ βδ such that

α ≤ x ≤ βδ =



1 if α < x < β
0 if x ≤ α− δ ∨ x ≥ β + δ
0 if β < α

1 +
x− α
δ

if α− δ < x ≤ α

1−
x− β
δ

if β ≤ x ≤ β + δ

Intuitively, if a value x is such that α ≤ x ≤ β then we claim that the
relation holds with confidence 1. If this is not the case and the distance from
x to α or β is less than δ then we have a positive confidence (the confidence
diminishes when the distance increases). Finally, if x /∈ [α, β] and it is far
from the interval then we have confidence 0 on x belonging to the interval.
A simple example is 60 ≤ x ≤ 69

13. The idea is that if a patient is in the
expected age range, that is [60, 69], then the confidence on the obtained
results is equal to 1. Otherwise, if the distance to the interval is more than
13 then the confidence is equal to zero. Finally, if the age is close to the
interval, then the confidence linearly increases when the distance is reduced.

We combine confidence values by using t-norms.

Definition 1 Let T : [0, 1]× [0, 1] −→ [0, 1] be a function such that it satis-
fies:

• Commutativity: T (a, b) = T (b, a).

• Associativity: T (a, T (b, c)) = T (T (a, b), c).

• Identity element: T (1, a) = T (a, 1) = a.

• Monotonicity: T (a, b) ≤ T (c, d) when a ≤ c and b ≤ d.

Then we say that T is a t-norm or triangular norm.

First, note that the definition implies T (a, 0) = 0 for all a, since we
have T (a, 0) ≤ T (1, 0) = 0. Associativity allows us to easily consider n-ary
versions of t-norms. Monotonicity will allow us to efficiently compute the
maximum combined confidence. Next we give some examples of t-norms that
can be found in the literature.
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1. Gödel t-norm: T (δ1, δ2) = min(δ1, δ2). We represent this t-norm with
the symbol Z.

2. Hamacher product t-norm: T (δ1, δ2) =
δ1 · δ2

δ1 + δ2 − δ1 · δ2
. We represent

this t-norm with the symbol >.

3. Łukasiewicz t-norm: T (δ1, δ2) = max(0, δ1+ δ2− 1). We represent this
t-norm with the symbol f.

4. Product t-norm: T (δ1, δ2) = δ1 · δ2. We represent this t-norm with the
symbol F.

2.2 Fuzzy automata formalism

This section represents the bulk of the chapter. We present our formalism
and its operational semantics. First, we define some notions that will be
used in the definition of our automata.

In order to track some relevant data during the traversal of an automaton,
we need notation to deal with variables and variable transformations.

Definition 2 Let X be a set of variables taking values in R. We define the
set of variable transformations VT as the set of expressions assigning a value
to each variable of the set. We will use the following notation

[y1/x1, . . . , ym/xm]

where each yi is a real valued expression over the set of variables X and each
xi is a variable in X. The semantics of this transformation is that each xi
takes the value obtained after evaluating yi (possible taking into account the
current values of the variables in X); if a variable xi does not appear in the
expression then we have that the variable does not change its value after the
transformation.

Transitions in our automata will be parameterized by a fuzzy constraint.
Intuitively, a transition can be fired only if the grade of confidence of the
constraint with respect to the provided parameter is greater than 0. The
bigger this grade of confidence is, the higher our confidence in the results
obtained by following this transition is.

Definition 3 A fuzzy constraint is a formula where fuzzy relations are used
instead of boolean relations and t-norms are used to combine relations instead
of boolean operators. We denote by FC the set of fuzzy constraints. Let C be
a fuzzy constraint with n parameters and x = (x1, . . . , xn) ∈ Rn. We have
that µC(x) denotes the satisfaction degree or grade of confidence (GoC) of
C for x.
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The main component of the transitions of our automata is the action
labelling them. We distinguish between inputs and outputs. In general,
inputs will be used to receive information about the state of the environment.
We will use outputs to send messages back to the environment. For example,
we can issue an alarm indicating that a potential problem has been found at
a certain minute and with a certain GoC.

Definition 4 Let Acts be a finite set of actions (they will be used to model
the actions that a system can perform). We will distinguish between inputs,
preceded by ?, and outputs, preceded by !.

Finally, we introduce notation to define the set of all tuples of real num-
bers.

Definition 5 Let R be equal to
⋃
i≥1R

i, that is, R is a set containing all
the tuples, of any arity, with real number values.

Next we introduce our notion of fuzzy automata, a revised version of
previous work Camacho et al. (2017). Next we briefly discuss the main
improvements with respect to the original formulation. We have included a
tuple of variables as a parameter of the actions. This fact strongly simplifies,
while keeping the same expressive power, the previous framework based on
fields. We have simplified the operational semantics, removing a clause that
gave priority to inputs over outputs. This was found to be both unnecessary
and potentially problematic. We have clarified the way in which we obtain
and process the data that we feed to the automaton. Moreover, the infor-
mation returned for each patient after processing their data is structured in
a more useful way. Specifically, we have disaggregated the obtained data
and we currently provide different alternatives (together with its associated
GoC).

Definition 6 A fuzzy automaton is a tuple (S,Acts, X, s0, T ) where:

• S is a finite set of states.

• Acts is a finite set of actions, partitioned into a set of inputs I and a
set of outputs O.

• X is a set of variables ranging over R. The set includes a variable
GoC, which will be used to store the Hamacher grade of confidence
associated with sequences of transitions. We assume that the initial
value of GoC is 1.

• s0 is the initial state.

• T ⊆ S × (I × X ∪ O × R) × FC × VT × S is the set of transitions.
We assume that each transition implicitly applies the following variable
transformation [µC >GoC/GoC].
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Fuzzy automata are directed graphs where transitions have an associated
condition, indicating the grade of confidence with which we can execute the
transition, and a transformation of the variables. In addition, transitions
can be labeled either by an input or by an output. Intuitively, a transi-
tion (s, (a, α), C, V, s′) ∈ T denotes that if the automaton is in state s and
receives/sends from/to the environment a(α), where a is an input/output
action and α is a variable/tuple of positive real values, then the previous
transition can be triggered if µC(α) > 0, the new values of the variables will
be given by V , and the automaton will move to state s′ . Usually, transitions
labeled with an output will have a trivial fuzzy constraint (that is, it will be
True).

Next, we are going to define the operational behavior of fuzzy automata.
This operational semantics will be used to obtain their (fuzzy) traces. We
start in the initial state of the automaton, produce actions and trigger a
transition labelled by the action if the attached value is included in the
fuzzy relation induced by the constraint. We decorate transitions with a real
number ε ∈ [0, 1] indicating its certainty. First, we define a single transition
and then we concatenate transitions to conform traces.

Definition 7 Let A = (S,Acts, X, s0, T ) be a fuzzy automaton and 4 be
a t-norm. Given states s1, s2 ∈ S, we have a transition from s1 to s2,
after performing the action a ∈ Acts for α with confidence ε, denoted by

s1
(a(α),V )
−−−−−−−→ε s2, if the following conditions hold:

• There exists C ∈ FC such that (s1, (a, α), C, V, s2) ∈ T .

• µC(α) = ε and ε > 0.

• The new values of the variables belonging to X are given by V ∈ VT .

We say that a sequence s0
(a1(α1),V1)−−−−−−−−−→ε1s1

(a2(α2),V2)−−−−−−−−−→ε2 · · ·
(an(αn),Vn)−−−−−−−−−−→εnsn

of consecutive transitions starting in the initial state of the automaton A is
a 4-trace of A if ε = 4{ε1, . . . , εn} is greater than zero and the values of
the variables of X are the result of sequentially applying the variable trans-
formations V1, . . . , Vn to X. We call this composed variable transformation

V . In this case we write s0
(a1,...,an,α1,...,αn,V )
−−−−−−−−−−−−−−−−−→ε sn.

Intuitively, a transition (s, (a, α), C, V, s′) denotes that if the automaton
is in state s and receives/sends from/to the environment a(α), where a is an
input/output action and α is a variable/tuple of positive real values, then
the previous transition can be triggered if µC(α) = ε > 0, the new values of
the variables will be given by V , and the automaton will move to state s′.
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2.3 Case Study

In this section we present the application of our fuzzy automata in a real
scenario: prediction of heart problems. We define the automaton Heart,
which is able to alert about the level of risk of a patient. In order to produce
a diagnosis, we use the available information and physical evidence collected
from ECGs. The information managed by the automaton is:

• Gender. We have 2 groups: Men and Women.

• Age. We have 8 groups of age.

• Heartbeats. The range of correct beats per minute (BPM) for healthy
patients, according to their gender and age.

• RR intervals. The range of correct RR interval duration (measured in
milliseconds) for healthy patients, according to their gender, age and
BPM.

Additionally, we consider that our set of actions consists of the following
operations:

• ?checkGender(gen). It reads the gender of the patient.

• ?checkAge(age). It reads the age of the patient.

• ?minute(m). It reads the current minute of the recording.

• ?readBPM(bpm). It reads the amount of beats in the current minute.

• ?readRR(rr). It reads the next RR interval in the current minute.

• ?noMorePendingRR(·). It receives a notification that there are no
more RR intervals in the current minute.

• ?endOfRecord(·). It receives a notification to denote that there are
no more minutes in the analyzed record.

• !recordAgeRange(x, y). It indicates that the data will be analyzed in
the age group of patients between x and y years. Note that a patient
can be analyzed, with different grades of confidences on the obtained
results, in different age groups.

• !recordAlarm(min,GoC). It indicates, with a GoC equal to GoC,
that an alarm will be raised in the current minute.

• !ok(min,GoC). It indicates, with a GoC equal to GoC, that no alarm
will be recorded for the current minute.
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First, the automaton receives the gender and age of the patient. Next, for
each minute, the environment sends a sequence of values and the automaton
produces a diagnosis (ok or alarm). These sequences are formed by the
actual number of beats recorded in the minute (BPM, one value per minute)
followed by the length of each RR interval. Therefore, for each patient we
obtain a sequence of n ok/alarm messages, being n the number of minutes in
the record, labeled with the associated minute and the grade of confidence
on the validity of the result.

Example 1 Consider the component of the automata Heart given in Chap-
ter 3 Figure 3.4 where we assume that the value 0 denotes males and 1
denotes females. For example, we could observe a trace such as

(?checkGender(0)), (?checkAge(65)), (!recordAgeRange(60, 69)),
(?minute(1)), (?readBPM(62)), (?readRR(977)), (?readRR(968)),
(· · · ), (?noMorePendingRR()), (!ok(1, 1.0))

as the result of having the automaton working during a minute by analyzing
a sample of a 65 years old male patient. As usual, inputs are preceded by
?, outputs are preceded by ! and (· · · ) indicates that some ?readRR actions
have been omitted from the trace due to presentation purposes.

Initially, our automaton has two transitions: one per gender. After that,
each branch has 8 transitions, one per age group. Each of these age groups
has an associated sub-automaton with 8 states and a transition to a com-
mon final state (the state q115 in Figure 3.4) to denote that all the data for
this patient have been processed. Each minute, the automaton checks if the
number of beats falls within the normal amount of beats per minute in the
age range. If it does, then the automaton does not take into account the RR
intervals in that minute and signals that minute to be ok. Otherwise, the
automaton processes each RR interval. If there is at least one interval out of
range, an alarm is raised (with a certain grade of confidence). As previously
commented, we use variables to track some data. More specifically, in ad-
dition to the built-in variable GoC, we use a variable called branchGoC. In
every transition entering an age branch, the recently computed GoC value
is saved in the branchGoC variable. At the end of each minute, that value
is stored in the GoC variable. Therefore, the GoC values associated with
each minute are not affected by the values corresponding to the previous
minutes. The value received when performing a ?minute input action is also
stored, in the variable min, and returned after processing the corresponding
minute data. If at any moment of the study the state q41 is reached, then
the automaton will record the current state of the patient as a case in which
he suffers the risk of having a heart problem. For each minute, we process
data until we find a potential problem during that minute slot (that is, the
state q41 is traversed), having the samples a duration of around 30 minutes.
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Therefore, for each patient, the number of alarms that the automaton can
raise is bounded by the number of minutes in the recording.

The values used to define our fuzzy constraints are taken from previous
work. Normal ranges for heartbeats per minute, classified by gender, have
been gathered from the work of Rijnbeek et al. Rijnbeek et al. (2014). In
the case of the age, the δ value is obtained from the 20% of the highest
value of each age range. The idea is that it is possible to wrongly classify a
patient according to their age. For example, if we have a 53 years old male
patient then we should classify him in the age group between 50 and 59. In
addition, it may happen that the patient has a very healthy life style and,
therefore, their heart is younger. Therefore, we should also classify them in
the previous age group and decide whether their recorded data fits better in
their real age group or in the closer one to the real one.

In the case of heartbeats, we had the median, 2nd percentile and 98th
percentile from the database, but they were not applicable as limits for our
automaton because they are not characteristic data of the sample of patients.
For that reason, we applied the estimations made by Hozo et al. Hozo et al.
(2005): if the size of a sample exceeds 25 then the median itself is the best
estimator for the mean and the best estimator for the standard deviation is

σ ≈ b− a
6

where a is the smallest value of the sample (the 2nd percentile in our case)
and b is the largest value of the sample (the 98th percentile in our case).
Fortunately, the database that we use Rijnbeek et al. (2014) has information
from 13354 patients and, therefore, we can base our limits on the median of
each range while δ is based on the standard deviations of each range.

Concerning RR intervals, we have used the data from the work of Haar-
mark et al. Haarmark et al. (2010). The problem in this case was that we
only had the information of the RR intervals duration for the patients of the
age range [30− 39]. So, if we had used these limits for all the patients, then
the prediction would have been erroneous. Therefore, we also considered an-
other related work Khachaturian et al. (1972) where the duration of the RR
intervals is derived from data corresponding to heartbeats. So, our limits
are based on the application of the following formula

RRms ≈
60000

bpm

to the BPM data obtained from the work of Rijnbeek et al. Rijnbeek et al.
(2014).

2.3.1 Methodology and results

Next, we review the main implementation details behind our case study.
In order to obtain the data that we feed to our automaton, we used the
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WFDB Software Moody (2016) to extract Inter-beat (RR) intervals from the
dataset that we consider in our case study Moody y Mark (2001). We in-
cluded calls to the functionalities sqrs and ann2rr in our patient data load-
ing script. We obtain several csv (comma-separated values) files for each
patient’s header and record files. These two files are later used by our trace
generating script, which produces the data sent to the automaton. Essen-
tially, we format the data in a way that can be easily processed by our
automaton.

In order to assess the usefulness of our automaton, we used the MIT/BIH
Arrhythmia Database Directory Moody y Mark (2001) https://physionet.
org/physiobank/database/mitdb/. This study includes 48 ECGs record-
ings with a duration of 30 minutes from the Massachusetts Institute of Tech-
nology - Beth Israel Hospital arrhythmia database. All of them present some
heart pathology. Specifically, 48% of the samples have been annotated in the
database as representative cases of routine clinical recordings while the re-
maining 52% reflect uncommon cases of arrhythmias. As an example of the
obtained results, in Appendix B we show minute data from each applicable
age branch of the patients 100 and 104. Each cell contains two numbers: the
first one is the Hamacher GoC of sending an ok signal while the second one
is the Hamacher GoC of raising an alarm, both referring to that minute and
age/gender branch. This table clearly shows why our new approach repre-
sents a big step forward with respect to previous work of the research group
concerning the analysis of heart data Camacho et al. (2017): we are able to
produce and appropriately process several dozens of ok/alarm signals.

Let us remark that these two patients are interesting because they show
characteristics of an age group different to the one that their age shows.
Specifically, patient 100 is male, between 60 and 69 years, but we obtain
relevant grades of confidence for values in the age range of the 70s. This
might imply that the patient is suffering premature aging of the heart tissue
because his ECGs represent patterns of older people. On the contrary, pa-
tient 104 is a female between 60 and 69 years with high grades of confidence
correspond to a woman on her 50s. This might indicate that the patient is
a sport female that, regardless of having a healthy life style, suffers some
heart pathologies corresponding to a younger person. In both cases, the
value of the corresponding ?checkAge constraint is positive for four branches:
(50 ≤ age ≤ 59), (60 ≤ age ≤ 69), (70 ≤ age ≤ 79) and (age > 80). The
table is formed by four columns for patient 100 and four columns for patient
104. Each row contains the GoC obtained in a minute. The record from pa-
tient 100 is 30 minutes long while the record from patient 104 is 29 minutes
long. Let us briefly comment on the results obtained for these two patients.
First, we notice that in both cases the maximum confidence is obtained in
the 60− 69 branch. This means that there are not many RR or BPM values
close to the limit of the normal range. The only case in which there is more

https://physionet.org/physiobank/database/mitdb/
https://physionet.org/physiobank/database/mitdb/


14 Chapter 2. Formalism and model of the heart

confidence outside the 60− 69 age branch is in the !ok results of the patient
100. We can see that the columns corresponding to the age ranges 70 − 79
and > 80 present higher confidence in these cases. These values can indicate
that the values observed from the heart of patient 100 could be normal for
a much older person. This idea is reinforced by the observation that in the
> 80 branch the confidence in the !ok case is higher that the confidence
in the !alarm case. The most relevant difference we observe between these
two patients is that patient 100 is outside his normal parameters in every
minute, while patient 104 is showing a normal behavior most of the time,
having some eventual alerts.

2.3.2 GoC computations

In this section we describe some of the technical aspects behind the process
of the data. First, we show the part of the csv (comma separated values) file
that we used to populate the automaton:

pe r c en t i l , gender , 10 s , 20 s , 30 s , 40 s , 50 s , 60 s , 70 s , 80 s
50 , male , 73 , 65 , 65 , 66 , 67 , 67 , 67 , 74
2 , male , 49 , 45 , 46 , 47 , 48 , 48 , 50 , 40
98 , male , 107 , 94 , 95 , 95 , 94 , 95 , 99 , 97
50 , female , 72 , 67 , 66 , 67 , 69 , 71 , 72 , 72
2 , female , 47 , 48 , 47 , 47 , 52 , 53 , 55 , 50
98 , female , 105 , 98 , 95 , 90 , 94 , 94 , 98 , 102

This csv file was firstly processed using the python script given in Fig-
ure 2.1. Essentially, this script produces the ranges of values for healthy
patients. A file named patients.csv was composed with the number of each
patient, his/her age and his/her gender. The Python script given in Fig-
ures 2.2 and 2.3 generates the GoC for each patient in the file. We used two
additional scripts, fuzzyRestrictions.py and tnorms.py, to compute the rela-
tions and the t-norms used in the model. They can be found in Figure 2.4.
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f = open( ’ s t anda rd l im i t s /bpm. csv ’ , ’ r ’ )
extremos = [ ]
medianas = [ ]
f . r e ad l i n e ( )
#mascul inos
medianas += f . r e ad l i n e ( ) . s p l i t ( ’ , ’ ) [ 2 : ]
aux1 = f . r e ad l i n e ( ) . s p l i t ( ’ , ’ ) [ 2 : ]
aux2 = f . r e ad l i n e ( ) . s p l i t ( ’ , ’ ) [ 2 : ]
extremos += zip ( aux1 , aux2 )
#femeninos
medianas += f . r e ad l i n e ( ) . s p l i t ( ’ , ’ ) [ 2 : ]
aux1 = f . r e ad l i n e ( ) . s p l i t ( ’ , ’ ) [ 2 : ]
aux2 = f . r e ad l i n e ( ) . s p l i t ( ’ , ’ ) [ 2 : ]
extremos += zip ( aux1 , aux2 )
f . c l o s e ( )
medianas = [ f loat ( i ) for i in medianas ]
extremos = [ ( f loat ( i ) , f loat ( j ) ) for i , j in extremos ]
d e s v i a c i on e s = [ ( b−a )/6 for a , b in extremos ]
deltasBPM = [ i /2 for i in de sv i a c i on e s ]
supsBPM = [ i+d for i , d in zip ( medianas , deltasBPM ) ]
infsBPM = [ i−d for i , d in zip ( medianas , deltasBPM ) ]
#apl icamos aqui datos de [ 2 0 ]
deltasRR = [ 8 4 . 5 for i in range ( 8 ) ] + \

[ 7 4 . for i in range ( 8 ) ]
infsRR = [60000/ i − d
for i , d in zip ( medianas , deltasRR ) ]

supsRR = [60000/ i + d
for i , d in zip ( medianas , deltasRR ) ]

Figure 2.1: Python script to generate intervals
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import f u z z yRe s t r i c t i o n s as f r
import con f idenceL imi t s as c l
import tnorms as tn

pat = open( "mitdb/ pa t i en t s . csv " , " r " )

for l i n in pat . r e a d l i n e s ( ) :
t r = open( " t r a c e s /" + l i n . s p l i t ( ’ , ’ ) [ 0 ] + \

" con f idence . csv " , "w" )
gend = int ( l i n . s p l i t ( ’ , ’ ) [ 2 ] [ : − 1 ] ) ∗ 8

for j in range ( 8 ) :
i f j == 0 :
a g e i n t e r v a l = f r . f u z zy l eq (19 , 4)

e l i f j == 7 :
a g e i n t e r v a l = f r . fuzzygeq (80 , 16)

else :
a g e i n t e r v a l = f r . f u z z y i n t e r v a l (19+ j ∗10 ,

10+ j ∗10 ,0.2∗(19+ j ∗10))
i f ag e i n t e r v a l ( int ( l i n . s p l i t ( ’ , ’ ) [ 1 ] ) ) > 0 :
t r . wr i t e ( str (19+10∗ j i f j < 7 else 80)+" ,

"+str ( a g e i n t e r v a l ( int ( l i n . s p l i t ( ’ , ’ ) [ 1 ] ) ) )+ "\n" )
else :
continue

supBPM = c l . supsBPM [ gend+j ]
infBPM = c l . infsBPM [ gend+j ]
deltaBPM = c l . deltasBPM [ gend+j ]
supRR = c l . supsRR [ gend+j ]
infRR = c l . infsRR [ gend+j ]
deltaRR = c l . deltasRR [ gend+j ]

r r f i l e = open( "mitdb/" + l i n . s p l i t ( ’ , ’ ) [ 0 ] + \
" r r . csv " , " r " )

Figure 2.2: Python script to process patients (1/2)
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time = 0
for i in [ i+1 for i in range ( 3 0 ) ] :
beats = 0
RRs = [ ]
e n d o f f i l e = 0
while time < 60000∗ i :
beats += 1
aux = r r f i l e . r e ad l i n e ( ) . r s t r i p ( )
i f aux == "" :
e n d o f f i l e = 1
break

RRs += [ int ( f loat ( aux )∗1000 ) ]
time += RRs[−1]

i f e n d o f f i l e == 1 :
break

t r . wr i t e ( "m"+str ( i ) )
t r . wr i t e ( "\n" )
t r . wr i t e ( str ( f r . f u z z y i n t e r v a l (supBPM,

infBPM , deltaBPM )( beats ) ) )
t r . wr i t e ( " , " )
t r . wr i t e ( str ( f r . f u z z y a n t i i n t e r v a l (supBPM,

infBPM , deltaBPM )( beats ) ) )
t r . wr i t e ( "\n" )
for r r in RRs [ : − 1 ] :
t r . wr i t e ( str ( f r . f u z z y a n t i i n t e r v a l (supRR ,

infRR , deltaRR ) ( r r ) ) )
t r . wr i t e ( " , " )

t r . wr i t e ( str ( f r . f u z z y a n t i i n t e r v a l (supRR ,
infRR , deltaRR ) (RRs[ −1 ] ) ) )

t r . wr i t e ( "\n" )
t r . wr i t e ( str ( tn . hamacher ( [ f r . f u z z y a n t i i n t e r v a l (supRR ,

infRR , deltaRR ) ( r r ) for r r in RRs ] ) ) )
t r . wr i t e ( "\n" )

r r f i l e . c l o s e ( )
t r . c l o s e ( )

pat . c l o s e ( )

Figure 2.3: Python script to process patients(2/2)
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def f u z zy l eq (y , d e l t a ) :
return lambda x : 1 i f x <= y else \

0 i f x > y + de l t a else \
1 − ( x − y ) / de l t a

def fuzzyor ( lam1 , lam2 ) :
return lambda x : max( [ lam1 (x ) , lam2 (x ) ] )

def fuzzyand ( lam1 , lam2 ) :
return lambda x : min ( [ lam1 (x ) , lam2 (x ) ] )

def fuzzynot ( lam1 ) :
return lambda x : 1 − lam1 (x )

def fuzzygeq ( z , d e l t a ) :
return fuzzynot ( f u z zy l e q ( z−de l ta , d e l t a ) )

def f u z z y i n t e r v a l (y , z , d e l t a ) :
return fuzzyand ( fu z zy l e q (y , d e l t a ) ,

fuzzygeq ( z , d e l t a ) )

def f u z z y an t i i n t e r v a l (y , z , d e l t a ) :
return fuzzyor ( fuzzygeq (y , d e l t a ) ,

f u z zy l eq ( z , d e l t a ) )

def hamacher ( a r r ) :
r e s = 1 .
for i in ar r :
i f i == 0 . or r e s == 0 . :
return 0 .

r e s = ( r e s ∗ i ) / ( r e s + i − r e s ∗ i )
return r e s

Figure 2.4: Python script to process fuzzy constraints and t-norms



Chapter 3

AUNTY: AUtomatically aNalyze
daTa using fuzzY automata

In this chapter we introduce our AUNTY tool. The main purpose of our tool
is to fully support the framework to specify and analyze complex systems
where information has to be treated in a fuzzy way that we presented in
Chapter 2 of this Thesis. We will shown its internal architecture and briefly
described its GUI so that potential users can use this chapter as a small
tutorial. Some of the material presented in this chapter has been taken from
our paper Calvo et al. (2018b) published in the proceedings of ICIIA 2018.

The rest of the chapter is structured as follows. In Section 3.1 we de-
scribe how AUNTY was born and we give a high-level enumeration of its main
features. In Section 3.2 we present the (software) architecture of AUNTY and
review its features as included in the GUI of the tool. Section 3.3 gives the
BNF (Backus-Naur form) definitions of the most relevant concepts used in
AUNTY. Finally, in Section 3.4 we review the internal format used to represent
automata in AUNTY.

3.1 Description of AUNTY

When the software that we implemented to perform the experiments in our
ACIIDS 2018 paper Calvo et al. (2018a) became stable, we decided to develop
a tool supporting the specification and analysis of systems described by using
our version of fuzzy automata. Actually, although our case study was fully
supported by a dedicated computer program, we thought that it would be
much more useful to have a generic tool where all the current and future case
studies could be performed under a common umbrella. The main features of
the tool are:

• AUNTY allows users to graphically represent systems where fuzzy logic
is used to take decisions.

19
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• AUNTY provides a framework to automatically analyze whether a dataset
shows some abnormal behavior.

• AUNTY can be used to specify a system that gives alternative explana-
tions to a particular behavior.

• AUNTY is built in a modular and extensible way, facilitating the task of
dealing with diverse datasets and models.

Regarding the last point, AUNTY processes data expressed in its inter-
nal formats, so the first layer between the tool and the data source must
transform raw data into a sequence of actions that is recognizable by the
automaton.

3.2 Design and main features of AUNTY

In this section we briefly describe the architecture of the AUNTY tool and
present its main features by going through its graphical interface. AUNTY has
being developed using the programming language Python. We have chosen
this programming language because its wide use allows potential users of
the tool to easily extend it with new formats to import data and with new
t-norms. In addition, the interface of the tool has been developed using
PyQt.1

3.2.1 Architecture of AUNTY

Our main concern during the development of AUNTY was that our tool could
be widely usable. Therefore, it is quite important to have a proper separa-
tion of concerns between the main components that conform the tool (see
Figure 3.1). Next, we will briefly discuss the main responsibilities held by
each component of the tool.

• Automata manager. This component is in charge of managing the in-
ternal representation of the automaton used to process the data. It also
tells the trace applicator the transitions that can be taken, if a given
action can be performed, and with which confidence. This component
uses Graphviz2 to give a graphical representation of the automaton,
transforming its internal representation to a graph expressed in the
DOT language.

• Trace generator. This component is the only one that needs to know
about the format of the data source. Its main function is to translate
that data into a sequence of input actions (that is, a trace).

1https://riverbankcomputing.com/software/pyqt/intro
2http://www.graphviz.org/

https://riverbankcomputing.com/software/pyqt/intro
http://www.graphviz.org/
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Figure 3.1: Architecture of AUNTY

• Trace decorator. The traces generated by the trace generator only have
input actions. However, systems also have output actions that will be
used, for example, to indicate that a certain result has been produced.
The process of trace decoration allows the tool to consider only those
traces that include a given output action.

• Trace application. This component manages the variable transforma-
tions and computes the highest possible grade of confidence that the
given trace could reach after traversing the automaton.

• Results presentation. This component communicates the conclusions
to the user by providing a measure of its certainty and the values
obtained in the variables. Actually, this component will facilitate that
the tool shows multiple alternatives in a tabular way.

3.2.2 Graphical user interface

Even though we would like that AUNTY is a versatile and general purpose
tool, our main priority concerning usability when we designed our tool was
that AUNTY were an intuitive and easy to use graphical user interface (see
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Figure 3.2: Graphical user interface

Figure 3.2 for a screenshot of our tool). The interface presents three distin-
guished areas:

• Automata. The automata area shows a list of loaded automata and
renders their graphs by using PyGraphviz.3 This area of the GUI shows
the loaded automata in an editable text form and offers two dialogs to
add or remove individual transitions. Automata can be loaded from a
text file and saved after editing.

• Trace generation. The trace generation area shows the list of loaded
traces corresponding to the selected automaton. Traces can be loaded
from the dataset, selecting a patient in the dialog shown in Figure 3.3.
Each trace can be applied to the corresponding automaton, recording
results in the analysis area. Trace execution can be played step by
step, fast forwarded and rewinded. The selected trace is shown in two
separated text areas. The fragment of the trace that has been already
applied to the automaton is shown in the upper one, which is not
editable. The rest of the trace is shown below and can be modified
before applying it. This second fragment of the trace may contain
unspecified actions and parameters, producing different concrete traces
when applied. Trace application can also be undone step by step,
allowing the user to modify the last applied actions.

3https://pygraphviz.github.io/

https://pygraphviz.github.io/
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Figure 3.3: Trace generation dialog

• Analysis. This region shows every state in which the automaton can
be after the current application of the trace. Each state shows both
the confidence to reach it and the variables obtained after reaching it.
Selecting a state changes the applied trace shown to the concrete one
used to reach that state with maximum confidence. Below, a list of
output actions produced during the application of the selected trace is
shown. That list included these actions even if the trace is rewinded,
showing a record of alternative executions.

3.3 Syntax of the languages in AUNTY

In this section we review the different BNF expressions used to represent
some of the concepts of AUNTY. We start with the formal syntax to define
terms and binary/ternary fuzzy relations (the definition of relations with
another arity follows the same pattern).

Definition 8 We denote by V the syntactic category of variable names. We
denote by R the syntactic category of real valued constants. We denote by
R+ the syntactic category of non-negative real valued constants. A term is
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Figure 3.4: Sub-automaton used to analyze heart data (male patients be-
tween 60 and 69 years old)

any word built from the following BNF.

< Term >::=< V > | < R >

We denote by T the set of all terms.
A binary fuzzy relation is any word built from the following BNF.

< B >::=“(” < Term > “<=” < Term > “)^” < R+ > |
“(” < Term > “>=” < Term > “)^” < R+ > |
“(” < Term > “==” < Term > “)^” < R+ >

A ternary fuzzy relation is any word built from the following BNF.

< T >::= “(” < Term > “<=” < Term > “<=” < Term > “)^” < R+ >

We denote by R the set of all binary and ternary fuzzy relations.

We also need to introduce the following notation related to terms, vari-
ables and relations.

Definition 9 Let b ∈ R and t ∈ T . We denote by FV (b) and FV (t) the set
of terms from V appearing in b and t, respectively.

Let v ∈ V and c ∈ R. We denote by b[c/v] and t[c/v] the fuzzy rela-
tion resulting from the substitution of every occurrence of v in b and t by
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q38 , ? endOfRecord ( ) , True , [ ] , q115 ;
q42 , ?noMorePendingRR ( ) , True , [ ] , q43 ;
q42 , ?readRR( r r ) , True , [ ] , q42 ;
q38 , ?readBPM(bpm) , ( 63 . 1 <= bpm <= 70 . 9 )^3 . 9 , [ ] , q42 ;
q0 , ? checkGender ( gen ) , ( gen == 0)^0 , [ ] , q1 ;
q37a , ! recordAgeRange60to69 ( ) , True , [ ] , q37b ;
q1 , ? checkAge ( age ) ,(60<=age<= 69)^13 , [GoC/branchGoC ] , q37a ;
q37b , ?minute (m) , True , [m/min ] , q38 ;
q38 , ?readBPM(bpm) , (bpm >= 70 .9 )^3 . 9 , [ ] , q39 ;
q38 , ?readBPM(bpm) , (bpm <= 63 .1 )^3 . 9 , [ ] , q39 ;
q39 , ?readRR( r r ) , ( r r >= 980)^84 .5 , [ ] , q40 ;
q39 , ?readRR( r r ) , ( r r <= 811)^84 .5 , [ ] , q40 ;
q39 , ?readRR( r r ) , True , [ ] , q39 ;
q43 , ! ok (min ,GoC) , True , [ branchGoC/GoC] , q37b ;
q41 , ! recordAlarm (min ,GoC) , True , [ branchGoC/GoC] , q37b ;
q40 , ?noMorePendingRR ( ) , True , [ ] , q41 ;
q40 , ?readRR( r r ) , True , [ ] , q40 ;
q39 , ?noMorePendingRR ( ) , True , [ ] , q43 ;

Figure 3.5: Code corresponding to the sub-automaton given in Figure 3.4

the constant c, respectively. We use b[c1/v1, . . . , cn/vn] as a shorthand for
b[c1/v1] . . . [cn/vn].

We consider the four t-norms defined in Section 2.1 but more t-norms
can be easily added.

Definition 10 The syntactic category of t-norms is given by the following
BNF.

< Tnorm >::= “Luka” | “Gode” | “Prod” | “Hama”

Finally, the syntax to define fuzzy constraints is given in the following
definition.

Definition 11 A fuzzy constraint is any word built from the following BNF.

< C >::= “True” | < C >< Tnorm >< C > | < B > | < T >

Over this syntactic category, and in the standard way, we compositionally
define the set of free variables, the grade of conficence degree and variable
substitution. Note that since two different t-norms may not be mutually
associative, the concrete syntax of constraints may need to use parenthesis
to disambiguate the order of application of t-norms.
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grammar = """
Automaton : t r∗= Transic ion ;
Transic ion : s1=ID ’ , ’ ac t=Action args=Va r l i s t ’ , ’

cons t r=C ’ , ’ v t ran=VT ’ , ’ s2=ID ’ ; ’ ;

Term : V | R;
V : name=ID ;
R : va lue=FLOAT;
B : Bleq | Bgeq | Beq ;
Bleq : ’ ( ’ t1=Term ’<=’ t2=Term ’)^ ’ d e l t a=FLOAT ;
Bgeq : ’ ( ’ t1=Term ’>=’ t2=Term ’)^ ’ d e l t a=FLOAT ;
Beq : ’ ( ’ t1=Term ’==’ t2=Term ’)^ ’ d e l t a=FLOAT ;
T : ’ ( ’ t1=Term ’<=’ t2=Term ’<=’ t3=Term ’)^ ’ d e l t a=FLOAT;
Tnorm: ’Luka ’ | ’Gode ’ | ’ Prod ’ | ’Hama ’ ;
C : ’True ’ | c1=C tnorm=Tnorm c2=C | B | T;

VT : ’ [ ’ head=Trans t a i l ∗=TransTail ’ ] ’ | ’ [ ] ’ ;
TransTail : ’ , ’ head=Trans ;
Trans : c=Term ’/ ’ v=V;

Va r l i s t : ’ ( ’ head=V t a i l ∗=VarTail ’ ) ’ ;
VarTail : ’ , ’ head=V;

Con s t l i s t : ’ ( ’ head=R t a i l ∗=VarTail ’ ) ’ ;
ConstTai l : ’ , ’ head=R;

Action : ’? ’ ID | ’ ! ’ ID ;

"""

Figure 3.6: Code used to generate the grammar

3.4 Automaton definition language

In order to construct a new model, the users may define its automaton
by providing a textual representation of its transitions. The user does not
need to explicitly enumerate the sets of states and actions because they are
automatically extracted from the set of transitions. As an example of the
aspect of this representation, in Figure 3.5 we show the code that defines the
subautomaton of the Heart automaton that appears in Figure 3.4.

AUNTY uses textX Dejanović et al. (2017) to parse this language. This
Python library is called to construct a metamodel from a given grammar,
which is used to construct syntax trees, represented as a hierarchy of Python
objects, from strings accepted by the grammar. The code given in Figure 3.6
shows how the language is defined.

One of the nice features of AUNTY is its ability to show a graphical repre-
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digraph automata {
"q38" −> "q115" [ l a b e l="?endOfRecord ( )\ nTrue" ]
"q42" −> "q43" [ l a b e l="?noMorePendingRR ()\ nTrue" ]
"q42" −> "q42" [ l a b e l="?readRR( r r )\ nTrue" ]
"q38" −> "q42" [ l a b e l="?readBPM(bpm)\n(63.1<=bpm<=70.9)^3.9" ]
"q0" −> "q1" [ l a b e l="? checkGender ( gen )\n( gen == 0 .0 )^0 . 0 " ]
"q37a" −> "q37b" [ l a b e l=" ! recordAgeRange60to69 ( )\ nTrue" ]
"q1" −> "q37a"
[ l a b e l="?checkAge ( age )\n(60<=age <=69)^13\n [GoC/branchGoC ] " ]
"q37b" −> "q38" [ l a b e l="?minute (m)\nTrue\n [m/min ] " ]
"q38" −> "q39" [ l a b e l="?readBPM(bpm)\n(bpm >= 70 .9 )^3 . 9 " ]
"q38" −> "q39" [ l a b e l="?readBPM(bpm)\n(bpm <= 63 .1 )^3 . 9 " ]
"q39" −> "q40" [ l a b e l="?readRR( r r )\n( r r >= 980 .0 )^84 .5 " ]
"q39" −> "q40" [ l a b e l="?readRR( r r )\n( r r <= 811 .0 )^84 .5 " ]
"q39" −> "q39" [ l a b e l="?readRR( r r )\ nTrue" ]
"q43" −> "q37b"
[ l a b e l=" ! ok (min ,GoC)\nTrue\n [ branchGoC/GoC] " ]
"q41" −> "q37b"
[ l a b e l=" ! recordAlarm (min ,GoC)\nTrue\n [ branchGoC/GoC] " ]
"q40" −> "q41" [ l a b e l="?noMorePendingRR ()\ nTrue" ]
"q40" −> "q40" [ l a b e l="?readRR( r r )\ nTrue" ]
"q39" −> "q43" [ l a b e l="?noMorePendingRR ()\ nTrue" ]
}

Figure 3.7: DOT code automatically generated corresponding to Figure 3.4

sentation of our fuzzy automata. This is done by transforming the internal
representation of the automaton into the DOT language, which is used to
plot graphs using Graphviz (these plots look similar to the one shown in
Figure 3.4). For example, the DOT code given in Figure 3.4 is automat-
ically generated from the definition of the subautomaton corresponding to
male patients in the age range between 60 and 69 years. The transformation
from our automaton definition language into the DOT language is performed
using the functions given in Appendix A.





Chapter 4

Conclusions

In this Thesis we have introduced a variant of finite automata where con-
straints, indicating whether a certain transition can be performed, are evalu-
ated under a fuzzy point of view. We have implemented a model of the heart
that takes into account data about the beats per minute and the duration
of RR intervals. In order to decide whether potential dangers have been
observed, we used information about the gender and age of the patients. In
the latter case, we have also used a fuzzy approach because a patient can be
classified in several age groups. We have also introduced AUNTY: a tool to
fully support the formal framework. We have shown its internal architecture
and briefly described its GUI. The results of this Thesis have been published
in two international conferences Calvo et al. (2018a,b).

The rest of the chapter is structured as follows. In Section 4.1 we discuss
the contributions of the Thesis while in Section 4.2 we briefly describe some
lines for future work.

4.1 Review of the contributions

We set three main goals when we initiated the work reported in this Thesis.

1. Define a fuzzy extension of the classical finite automata formalism.

2. Show the usefulness of the formalism by using it in the analysis of a
non-trivial system.

3. Provide a tool supporting the use of the formalism.

All the goals have been achieved but the contribution of this work to
the state-of-the-art is not the same for all of them. First, we have a new
formalism. The impact of the new formalism is not big if we simply consider
the definition of its syntax and its operational semantics, although it is worth
to mention that the simplification of the operational semantics facilitates
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the definition of more difficult semantic frameworks, as discussed in the next
section. Once said this, the impact of the achievement of this goal is still
important if we consider that the information provided in the new framework
after feeding a sequence of actions to an automaton is more useful than the
one obtained in the framework that we took as starting point Camacho et
al. (2017).

The last mentioned contribution strongly influenced the impact of the
second goal. In fact, our case study confirmed that we give more useful in-
formation than the previous work Camacho et al. (2017): we return different
degrees of confidence, in an organized manner, so that the conclusions about
the analyzed data are more relevant.

Finally, the achievement of the third goal is a very important contribu-
tion because it provides a tool to specify and analyze systems where fuzzy
information must be taken into account. One of the main critics about formal
methods is that theory and practice do not usually go together. Although
the main problem is probably due to the difficulty of understanding formal
methods without the appropriate mathematical background, it is also true
that the lack of good tools is a detriment to its wide use in industry.1 There-
fore, providing a tool, although with the obvious limitations of being a tool
developed by an undergraduate student, supporting our formal framework
is one of the most relevant and interesting contributions of our work.

4.2 Future work

There is room to work on extensions of the two main lines of work reported
in this Thesis. Next, we briefly enumerate the lines that we have already
identified.

Currently, the formal framework is useful to specify systems and analyze
data but there is a line of work that we would like to continue in the near
future. Specifically, we would like to study a formal framework to test from
our fuzzy automata. The idea is to define a conformance relation to decide
whether a system under test correctly implements a specification. We will
take as starting point the work developed for the previous version of our
fuzzy automata Boubeta-Puig et al. (2017b).

Concerning AUNTY, this Thesis does not represent the end of its develop-
ment. In fact, we already contemplate several lines for future work. First, the
tool can be expanded to provide other features. For example, after adding
some capabilities, AUNTY may be transformed into a recommender system.
We still have to evaluate the usefulness of the tool with different case studies
so that we can find hidden weaknesses and fix them. We also would like to
obtain more data from patients with the aim of applying techniques, such

1There are some interesting examples of the successful use of formal methods in indus-
try Boulanger (2013); Newcombe et al. (2015).
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as evolutive algorithms, swarm intelligence and neural networks, to improve
the ability of our automata to detect illnesses. This last goal should be
pursued in cooperation with researchers in Medicine, working on alternative
models where the classification of patients considers characteristics such as
size/weight and medical record.





Appendix A

Functions to transform into
DOT code

def Tstr ( t ) :
i f tname ( t ) == ’R ’ :

return str ( t . va lue )
else :

return t . name

def v t 2 l i s t ( vt ) :
i f vt . head == None :

return [ ]
else :

return [ vt . head ]+[ a . head for a in vt . t a i l ]

def v t 2 s t r i n g ( vt ) :
return " [ "+str . j o i n ( " , " , [ Tstr ( t . c)+"/"+ \

Tstr ( t . v ) for t in v t 2 l i s t ( vt ) ] )+ " ] "

def C2str ing (C) :
i f C == ’True ’ :

return C
i f tname (C) == ’ Bleq ’ :

return ’ ( ’+ Tstr (C. t1)+ ’ <= ’ +Tstr (C. t2 ) + \
’ )^ ’ + str (C. de l t a )

i f tname (C) == ’Beq ’ :
return ’ ( ’+ Tstr (C. t1)+ ’ == ’ +Tstr (C. t2 ) + \

’ )^ ’ + str (C. de l t a )
i f tname (C) == ’Bgeq ’ :

return ’ ( ’+ Tstr (C. t1 ) +’ >= ’ +Tstr (C. t2 ) + \
’ )^ ’ + str (C. de l t a )

i f tname (C) == ’T ’ :
return ’ ( ’+ Tstr (C. t1)+ ’ <= ’ +Tstr (C. t2 ) + \

’ <= ’ + Tstr (C. t3 ) + ’ )^ ’ + str (C. de l t a )
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i f tname (C) == ’Compo ’ :
return " ( " + C2str ing (C. c1 ) + " " + \

C. tnorm + " " + C2str ing (C. c2 ) + " ) "

def v a r l i s t 2 l i s t ( v a r l i s t ) :
i f v a r l i s t . head == None :

return [ ]
else :

return [ v a r l i s t . head . name]+ \
[ a . head . name for a in v a r l i s t . t a i l ]

def v a r l i s t 2 s t r i n g ( v a r l i s t ) :
return " ( "+str . j o i n ( " , " , v a r l i s t 2 l i s t ( v a r l i s t ))+" ) "

def automata2dot ( autom ) :
r e s = "digraph automata {"
for t r in autom . t r :

r e s = r e s + ’ " ’+t r . s1+’ " −> " ’+t r . s2 + \
’ " [ l a b e l=" ’+t r . act+v a r l i s t 2 s t r i n g ( t r . a rgs )+ \
’ \\n ’+C2str ing ( t r . cons t r ) + \
( ’ ’ i f t r . vtran . head == None else

’ \\n ’ + ( v t 2 s t r i n g ( t r . vtran ) ) )+ \
’ " ] \ n ’

return r e s + "}"



Appendix B

Results corresponding to
patients #100 and #104

In the following table we show the results corresponding to patients #100
and #104. Each cell includes a pair GoC ok/GoC alarm computed from
the data observed during that minute.
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#100 #104
(50-59) (60-69) (70-79) (>80) (50-59) (60-69) (70-79) (>80)

min.
1 0.09/0.15 0.21/1.00 0.28/0.94 0.31/0.00 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
2 0.09/0.15 0.21/1.00 0.28/0.94 0.31/0.00 0.00/0.41 0.54/1.00 0.68/0.75 0.12/0.12

min.
3 0.00/0.15 0.00/1.00 0.00/0.94 0.31/0.22 0.00/0.41 0.00/1.00 0.00/0.75 0.00/0.12

min.
4 0.09/0.15 0.21/1.00 0.28/0.94 0.31/0.00 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
5 0.09/0.15 0.21/1.00 0.28/0.94 0.31/0.00 0.00/0.41 0.00/1.00 0.29/0.75 0.12/0.12

min.
6 0.00/0.15 0.00/1.00 0.04/0.94 0.31/0.14 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
7 0.00/0.15 0.00/1.00 0.00/0.94 0.28/0.31 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
8 0.00/0.15 0.00/1.00 0.00/0.94 0.28/0.31 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
9 0.00/0.15 0.00/1.00 0.00/0.94 0.31/0.22 0.20/0.41 0.83/1.00 0.75/0.65 0.12/0.12

min.
10 0.00/0.15 0.00/1.00 0.00/0.94 0.31/0.26 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
11 0.00/0.15 0.00/1.00 0.00/0.94 0.31/0.26 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
12 0.00/0.15 0.00/1.00 0.00/0.94 0.31/0.31 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
13 0.00/0.15 0.00/1.00 0.00/0.94 0.31/0.22 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
14 0.00/0.15 0.00/1.00 0.04/0.94 0.31/0.14 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
15 0.00/0.15 0.00/1.00 0.04/0.94 0.31/0.14 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
16 0.13/0.15 0.47/1.00 0.51/0.94 0.31/0.14 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
17 0.00/0.15 0.00/1.00 0.04/0.94 0.31/0.14 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
18 0.00/0.15 0.00/1.00 0.04/0.94 0.31/0.14 0.38/0.41 1.00/0.59 0.75/0.25 0.12/0.09

min.
19 0.00/0.15 0.00/1.00 0.04/0.94 0.31/0.14 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
20 0.09/0.15 0.21/1.00 0.28/0.94 0.31/0.00 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
21 0.09/0.15 0.21/1.00 0.28/0.94 0.31/0.00 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
22 0.09/0.15 0.21/1.00 0.28/0.94 0.31/0.00 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
23 0.09/0.15 0.21/1.00 0.28/0.94 0.31/0.00 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
24 0.09/0.15 0.21/1.00 0.28/0.94 0.31/0.00 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
25 0.13/0.15 0.47/1.00 0.51/0.94 0.31/0.14 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
26 0.09/0.15 0.21/1.00 0.28/0.94 0.31/0.00 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
27 0.00/0.15 0.00/1.00 0.04/0.94 0.31/0.14 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
28 0.00/0.15 0.00/1.00 0.00/0.94 0.31/0.31 0.31/0.41 1.00/0.88 0.75/0.47 0.12/0.11

min.
29 0.00/0.15 0.00/1.00 0.00/0.94 0.31/0.22 0.38/0.41 1.00/0.59 0.75/0.25 0.12/0.09

min.
30 0.00/0.15 0.00/1.00 0.00/0.94 0.31/0.30
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List of acronyms

BNF: Backus-Naur form.

BPM: heartbeats per minute.

csv: comma-separated values.

ECG: electrocardiogram.

GoC: grade of confidence.

RR interval: interval between two consecutive R waves.
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