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Abstract Let E and F be topological vector spaces and let G and Y be topological
abelian groups. We say that E is sequentially barrelled with respect to F if every
sequence (un)n∈N of continuous linear maps from E to F which converges pointwise
to zero is equicontinuous. We say that G is barrelled with respect to F if every set
H of continuous homomorphisms from G to F , for which the setH (x) is bounded
in F for every x ∈ E , is equicontinuous. Finally, we say that G is g-barrelled with
respect to Y if every H ⊆ CHom(G,Y ) which is compact in the product topology
of YG is equicontinuous. We prove that

• a barrelled normed space may not be sequentially barrelled with respect to a
complete metrizable locally bounded topological vector space,

• a topological group which is a Baire space is barrelled with respect to any topo-
logical vector space,

• a topological group which is a Namioka space is g-barrelled with respect to any
metrizable topological group,

• a protodiscrete topological abelian group which is a Baire space may not be
g-barrelled (with respect to R/Z).

We also formulate some open questions.
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1 Main Results

A locally convex space E is said to be barrelled if every closed, absorbing and
absolutely convex subset of E is a neighborhood of zero. Barrelled (real) locally
convex spaces were introduced by N. Bourbaki in [3] and they have been extensively
studied in many references as the monographs [10, 16].

Already in [3] the following characterization of barrelled spaces can be found:

Theorem 1.1 Let E be a locally convex space. The following properties are equiv-
alent:

(i) E is barrelled.
(ii) If F is a nontrivial locally convex Hausdorff topological vector space andH is

a set of continuous linear mappings from E to F for which the set

H (x) =
⋃

u∈H
{u(x)}

is bounded in F for every x ∈ E, then H is equicontinuous.

Local convexity of F is essential for the validity of implication (i) ⇒ (i i) of
Theorem1.1. It seems that this fact was pointed out for the first time in [23].

W.Robertson obtained in [17, Theorem4] the following characterization: a locally
convex space E with topology η is barrelled if and only if the only locally convex
vector space topologies with bases of η-closed neighborhoods of the origin are those
coarser than η. This motivated the following definition, included in the same refer-
ence:

Definition 1.1 Let E be a topological vector space under the topology η. We say
that E is ultrabarrelled if the only vector space topologies on E , compatible with
the algebraic structure of E and in which there is a base of η-closed neighbourhoods
of the origin, are those coarser than η.

For ultrabarrelled spaces we have the following nice analogue of Theorem1.1:

Theorem 1.2 (W. Robertson, L. Waelbroeck) For a topological vector space E the
following properties are equivalent.

(i) E is ultrabarrelled.
(ii) If F is a topological vector space andH is a set of continuous linear mappings

from E to F, for which the set

H (x) =
⋃

u∈H
{u(x)}

is bounded in F for every x ∈ E, then H is equicontinuous.
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The implication (i) ⇒ (i i) was proved in [17], where the validity of (i i) ⇒ (i) was
posed as a question as well. It seems that a (rather delicate) proof of the implication
(i i) ⇒ (i) appeared for the first time in [22, Proposition I.5]. A proof of Theorem1.2
is presented also in [1, §7.3] (where the term ’barrelled’ is used instead of ’ultrabar-
relled’).

It is clear that any ultrabarrelled locally convex space is barrelled. In [17] an
argument based on an idea from [23] was used to show that the converse implication
may fail:

Theorem 1.3 ([17, p. 256]) There is a normed space which is barrelled but not
ultrabarrelled.

To formulate our first theorem we need to introduce the following concept:

Definition 1.2 Let E be a topological vector space and F a Hausdorff topological
vector space. We say that E is sequentially barrelled with respect to F if every
sequence (un)n∈N of continuous linear maps from E to F which converges pointwise
to zero is equicontinuous.

Clearly every ultrabarrelled space is sequentially barrelled with respect to any
topological vector space. Hence the following result is a refinement of Theorem1.3:

Theorem 1.4 A barrelled normed space need not be sequentially barrelled with
respect to a complete metrizable, locally bounded topological vector space.

Question 1.1 Let E be a normed space which is sequentially barrelled with respect
to every complete metrizable (locally bounded) topological vector space. Is then E
ultrabarrelled?

The following result establishes a natural connection between ultrabarrelledness
and the property of being a Baire space:

Theorem 1.5 ([17, Proposition12]) Let E be a topological vector space over K ∈
{R,C}. If E as a topological space is a Baire space, then E is ultrabarrelled.

In view of Theorem1.5 the underlying topological space of a barrelled normed
space which is not ultrabarrelled cannot be a Baire space. According to [7], the first
example of a normed barrelled space which is not Baire appeared in [9]; see also [8,
20] for more examples of this sort.

Definition 1.3 Let G be a topological group and F be a topological vector space
over a nontrivially valued division ringK. We say that G is barrelled with respect to
F if every set H of continuous homomorphisms from G to F , for which the set

H (x) =
⋃

u∈H
{u(x)}

is bounded in F for every x ∈ E , is equicontinuous.
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We shall prove the following statement, which generalizes a similar one obtained
in [13] for the case of a normed space F .

Theorem 1.6 Let G be a topological group and F be a topological vector space
overR. If G as a topological space is a Baire space, then G is barrelled with respect
to F.

Question 1.2 Let G be a topological group and F be a topological vector space over
a nontrivially valued division ring K. If G as a topological space is a Baire space, is
then G barrelled with respect to F?

Definition 1.4 Let X be a topological space.

• X is called a Namioka space ([6]), or is said to have the Namioka property, if for
every compact Hausdorff space K , every metrizable space Z and every separately
continuous f : X × K → Z , there exists a dense Gδ-subset A of X such that f is
continuous at every point of A × K .

• X is called a weak Namioka space, or is said to have the weak Namioka property,
if for every compact Hausdorff space K , every metrizable space Z and every sep-
arately continuous f : X × K → Z , there exists a ∈ X such that f is continuous
at every point of {a} × K .

Proposition 1.1 (a) Let X be a topological space. Assume that for every compact
Hausdorff space K , every metrizable space Z and every separately continuous
f : X × K → Z there exists a dense subset A of X such that f is continuous at
every point of A × K. Then X is a Namioka space.

(b) (A. Bouziad, oral communication) Let X be a topological space. Assume that
every element of X admits a neighborhood which is a Namioka space. Then X
is a Namioka space.

Proof (a) This follows from the following known fact (see [15, p. 518]): for a sepa-
rately continuous f : X × K → Z the set

A( f ) := {a ∈ X : f is continuous at every point of {a} × K }

is always a Gδ-subset of X .
(b) Let f : X × K → Z be a separately continuous map, where Z is a metric space
and K is a compact space. Taking into account (a), we only have to show that the
set A( f ) is dense in X . Let U be a nonempty open subset of X . Choose x in U and
let V be a neighborhood of x in X such that V is a Namioka space. Choose also an
open subset W of X such that x ∈ W and W ⊂ V . The mapping g := f |V×K → Z
is separately continuous; since V is a Namioka space, the set

A(g) := {a ∈ V : g is continuous at every point of {a} × K }

is dense in V . From this, since U ∩ W is a nonempty open subset of V , we get that
A(g) ∩ (U ∩ W ) �= ∅. Fix an element a ∈ A(g) ∩ (U ∩ W ). Clearly, f is jointly
continuous at each point of {a} × K .
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The next theorem contains several known results about Namioka spaces.

Theorem 1.7 The following statements hold:

(a) [15, Theorem1.2] If X is a strongly countably complete regular space, then X
is a Namioka space. In particular, if X is a Čech complete Tychonoff space, then
X is a Namioka space.

(b) [19, Théorème 3] If X is a completely regular Namioka space, then X is a Baire
space.

(c) [19, Théorème 7] If X is a metrizable Baire space, then X is a Namioka space.
(d) [21, Théorème 2] There exists a completely regularHausdorff Baire space, which

has not the weak Namioka property.
(e) [21, Corollaire 6] If X is a Baire space which contains a dense σ -compact

subset, then X is a Namioka space.
(f) [18] If X is a Baire space which contains a dense K -countably determined

subset, then X is a Namioka space.
(g) [2, p. 333] If X is a pseudocompact space, then X is a Namioka space.

Proposition 1.2 If X is a locally pseudocompact space, then X is a Namioka space.

Proof This follows from Theorem1.7(g) and Proposition1.1(b).

Definition 1.5 Let G be a topological group and Y a Hausdorff topological group.
We say that

• G is g-barrelled with respect to Y if everyH ⊆ CHom(G,Y ) which is compact
in the product topology of YG is equicontinuous.

• G is sequentially g-barrelledwith respect to Y if every sequence {un}n∈N contained
in CHom(G,Y ) which converges pointwise to zero, is equicontinuous.

In the case where Y is the compact group R/Z we will drop the reference to Y and
use the shorter expression “(sequentially) g-barrelled group”.

g-barrelled topological abelian groups were introduced in [5]. Corollary 1.6 in
this reference provides some classes of g-barrelled groups. Also, several permanence
properties of this class were established in [5], but only recently it was proved that
the class of g-barrelled groups is closed with respect to Cartesian products [4].

For our purposes it is convenient to highlight the following results from [5]:

Theorem 1.8 Let G and Y be topological groups.

(a) If G as a topological space is a Baire space, then G is sequentially g-barrelled
with respect to Y (cf. [5, Proposition1.4]).

(b) If G and Y are metrizable and all closed separable subgroups of G are Baire
spaces, then G is g-barrelled with respect to Y (cf. [5, Theorem1.5]).

Here we shall prove the following statements:

Theorem 1.9 Let G be a topological group and Y be ametrizable topological group.
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(a) If G as a topological space is a Namioka space, then G is g-barrelled with
respect to Y .

(b) If G as a topological space is locally pseudocompact, then G is g-barrelled with
respect to Y .

Remark 1.1 The following particular case of Theorem1.9(b) was obtained earlier in
[11, Proposition4.4]: every pseudocompact topological abelian group is g-barrelled.

Question 1.3 LetG be aHausdorff (locally quasi-convex abelian) topological group,
which is g-barrelled with respect to every metrizable (abelian) topological group Y .
Is then G as a topological space a weak Namioka space?

It was shown in [21] that the Namioka spaces form a proper subclass of the class of
Baire spaces. By using a construction of [21], we will show that Theorem1.9(a) is
no longer true if we replace “Namioka space” with “Baire space”, thus answering
the question posed in [14, Remark2.2]. We denote by Z(2) the 2-element abelian
group Z/2Z.

Theorem 1.10 There exists a protodiscrete (in particular, locally quasi-convex)
Hausdorff topological abelian group G with the following properties:

(a) G as a topological space is a Baire space.
(b) G is not g-barrelled with respect to the discrete group Z(2). In particular, G is

not g-barrelled.

There also exists a submetrizable topological abelian group which as a topo-
logical space is a Baire space, but which is not g-barrelled (A. Bouziad, personal
communication).

Remark 1.2 In [12] it was introduced a notion of a g-ultrabarrelled topological
group. This class admits the following remarkable characterization: a Hausdorff
topological abelian group G is g-ultrabarrelled iff every closed group homomor-
phism from G into any separable complete metrizable topological group is continu-
ous [12, Theorem3.1]. In [12] it is noticed also that any topological group which is a
Baire space, is g-ultrabarrelled. From this and Theorem1.10 it follows that a Haus-
dorff topological abelian protodiscrete (hence, locally quasi-convex) g-ultrabarrelled
group may not be g-barrelled.

2 The Proofs

Proof of Theorem1.4

Fix a number p with 0 < p ≤ 1 and consider the sequence space

l p = {x = (x1, x2, . . . ) ∈ R
N :

∞∑

k=1

|xk |p < ∞}



On Ultrabarrelled Spaces, their Group Analogs and Baire Spaces 83

endowed with the p-norm

‖x‖p =
( ∞∑

k=1

|xk |p
) 1

p

, x ∈ l p .

Let us write
(l p)1 := (l p, ‖ · ‖1) .

Now we can formulate the following statement, which implies Theorem1.4.

Theorem 2.1 Let 0 < p < 1. Then

(a) (l p)1 is a barrelled normed space.
(b) (l p)1 is not sequentially barrelled with respect to lp.

Proof (a) is proved in [17, 23].
(b) Fix n ∈ N and consider the linearmapping un : (l p)1 → l p defined by the equality

un(x) = (x1, x2, . . . , xn, 0, 0, . . . ), x ∈ l p .

We have:
‖un(x)‖p ≤ ‖x‖p, x ∈ l p , (1)

and
‖un‖ := sup{‖un(x)‖p : x ∈ l p, ‖x‖1 ≤ 1} = n

1
p −1

. (2)

Fix now a number r with 0 < r < 1
p − 1 and write

vn = 1

nr
un .

Then we have
(C1) vn : (l p)1 → l p is a continuous linear mapping.
(C2) limn ‖vn(x)‖p = 0 for every x ∈ l p. This follows from (1).
(C3) The sequence (vn)n∈N is not equicontinuous at 0 ∈ (l p)1. In fact, from (2) we
have

‖vn‖ = n
1
p −(r+1)

. (3)

The equicontinuity of (vn)n∈N at 0 ∈ (l p)1 would imply that

sup
n

‖vn‖ < ∞

in contradiction with (3).
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Proof of Theorem1.6
Let H be a set of continuous homomorphisms from G to F for which H (x) is
bounded in F for every x ∈ G. Fix a zero neighborhood W ∈ N (F). We are going
to find O ∈ N (G) with u(O) ⊂ W for every u ∈ H , which means that H is
equicontinuous at 0 ∈ G.

Fix a symmetric closed W1 ∈ N (F) with W1 + W1 ⊂ W. Write

Xn =
⋂

u∈H
u−1(nW1), n = 1, 2, . . .

The boundedness in F of H (x) for every x ∈ G implies

G =
⋃

n∈N
Xn . (4)

Since the sets Xn, n = 1, 2, . . . are closed and G is a Baire space, we can find and
fix n0 ∈ N such that

U := Int(Xn0) �= ∅ .

Pick x0 ∈ U . Then

V := U − x0 ∈ N (G) .

It is easy to check that

u(x) = u(x + x0) − u(x0) ∈ n0W1 + n0W1 ⊂ n0W, ∀x ∈ V, ∀u ∈ H . (5)

Find and fix now O ∈ N (G) such that O+ n0· · · +O ⊂ V . As

x ∈ O ⇒ n0x ∈ V ,

from (5) we get

n0u(x) = u(n0x) ∈ n0W ∀x ∈ O, ∀u ∈ H .

Hence u(O) ⊂ W ∀u ∈ H , as required.

Proof of Theorem1.9

We will prove the following stronger version of Theorem1.9:

Theorem 2.2 Let G be a topological group and Y be ametrizable topological group.

(a) If G as a topological space is a weak Namioka space, then G is g-barrelled with
respect to Y .

(b) If G as a topological space is locally pseudocompact, then G is g-barrelled with
respect to Y .
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Proof (a) Fix a setH of continuous homomorphisms fromG to Y which is compact
in the product topology of YG . Consider the mapping f : G × H → Y defined as
follows:

f (x, u) = u(x), x ∈ G, u ∈ H .

Then f is separately continuous. Since G has the weak Namioka property, there
exists an element a ∈ G such that f is continuous at every point of {a} × Y . From
this, according to [15, Lemma 2.1] we can conclude that the set

{ f (·, u) : u ∈ H } = H

is equicontinuous at a. Since H consists of homomorphisms, we obtain that Y is
equicontinuous.
(b) This follows from (a) and Proposition1.2.

Proof of Theorem1.10

Let I be a fixed uncountable set. For f ∈ Z(2)I we denote by supp f the support of
f , i. e. the set of all i ∈ I such that f (i) = 1. Write

G = { f ∈ Z(2)I : card(supp f ) ≤ ℵ0}.

Consider on G the group topology which admits as a basis of neighborhoods of zero
the sets of the form

UJ := { f ∈ G : f (i) = 0 ∀i ∈ J }

where J runs through all subsets of I with card (J ) ≤ ℵ0. SinceUJ is a subgroup of
G for every J , this is a protodiscrete group topology.

(1) G is a Baire space [21].

Let K = β I be the Stone-Čech compactification of the discrete space I and let
C(K ,Z(2)) be the the set of all continuous mappings h : K → Z(2). Let us identify
G with a subset of C(K ,Z(2)) as follows: to each f ∈ G corresponds its unique
continuous extension f̃ : K → Z(2). Consider the mapping � : G × K → Z(2)
defined by the equality

�( f, h) = f̃ (h) ∀( f, h) ∈ G × K .

We have

(2) For a fixed h ∈ K the mapping �(·, h) is continuous on G [21].
(3) For each f ∈ G there exists h ∈ K such that � is not continuous at ( f, h) [21].

Consequently G is not a weak Namioka space.
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Note also that for each h ∈ K the mapping �(·, h) is a group homomorphism
from G to Z(2) (indeed, this is so when h = i ∈ I by the definition of the group
operation of G; the general case follows from the density of I in K ).

Clearly the set of continuous homomorphisms

H = {u ∈ Z(2)G : ∃h ∈ K , u(·) = �(·, h)}

is pointwise compact, but it is not equicontinuous (as the equicontinuity of H at 0
would imply that � is continuous at each point of {0} × K , which is not the case by
(3) above).
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