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Ultrastrong coupling between electron tunneling and mechanical motion
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The ultrastrong coupling of single-electron tunneling and nanomechanical motion opens exciting opportunities
to explore fundamental questions and develop new platforms for quantum technologies. We have measured and
modeled this electromechanical coupling in a fully suspended carbon nanotube device and report a ratio of
gm/ωm = 2.72 ± 0.14, where gm/2π = 0.80 ± 0.04 GHz is the coupling strength and ωm/2π = 294.5 MHz is
the mechanical resonance frequency. This is well within the ultrastrong coupling regime and the highest among
all other electromechanical platforms. We show that, although this regime was present in similar fully suspended
carbon nanotube devices, it went unnoticed. Even higher ratios could be achieved with improvement on device
design.
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I. INTRODUCTION

Ultrastrong coupling between a quantum system and a
nanomechanical resonator is reached when the ratio between
the coupling strength gm and the mechanical resonance fre-
quency ωm/2π is greater than one. In the dispersive regime,
such high coupling opens a wide range of possibilities for the
development of promising applications in quantum informa-
tion processing [1], high-precision sensors [2–4], cooling [5],
transfer of quantum states to mechanical motion [6,7], and in
the exploration of the foundation of quantum mechanics [8].
The main reason for these promising features lies in the strong
back action of a single photon or electron on the mechanical
motion. Unprecedented control over quantum states is then
available and macroscopic quantum states can be created al-
lowing for foundational tests of quantum mechanics. Recent
proposals suggest that work extraction at the nanoscale is
possible in the ultrastrong coupling regime [9,10], as well as
the study of fluctuation theorems [10] and study of systems
far from equilibrium [11,12].

Among the large variety of optomechanical and elec-
tromechanical platforms developed [13–23], the ultrastrong
coupling between quantum states and mechanical motion
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is within reach only for a few, including superconduct-
ing circuits (gm/ωm � 0.35) [24], NV centers embedded in
semiconducting nanowires under a magnetic field gradient
(gm/ωm � 0.1) [25], and quantum dots in semiconducting

FIG. 1. (a) Schematic of the device. A carbon nanotube is sus-
pended between two metallic reservoirs and over an array of gate
electrodes to which we apply gate voltages VG1−G5. A bias voltage Vs

drives a current I through the nanotube, within which a quantum dot
is electrostatically defined. The single-electron tunneling through the
quantum dot couples to the nanotube’s motion. The coupling strength
depends on the distance d between the quantum dot and the gate
electrodes. (b) Schematic diagram of the electrochemical potential
levels of a quantum dot. The left (L) and right (R) tunnel rates from
the reservoirs to the quantum dot are indicated γ in

L , γ out
L , γ in

R and γ out
R .

The electrochemical potentials of left and right contacts are µL and
µR, respectively, and their energy difference defines a bias window.
When the carbon nanotube vibrates, the electrochemical potential of
the quantum dot µ shifts with respect to a reference electrochemical
potential µ0, which is controlled by the gate electrodes. The red arrow
symbolizes the change in µ caused by the nanotube’s motion.
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nanowires, for which strain is the coupling mechanism
(gm/ωm � 0.85) [26,27]. Theoretical proposals indicate that
the ultrastrong coupling could be reached in SQUIDs with
a mechanical compliant segment [28–31], single atoms in a
cavity [32,33], or Cooper pair boxes [34–36].

Quantum dots electrostatically defined in fully suspended
carbon nanotube devices [Fig. 1(a)] offer a high degree of
control over the confinement potential [37]. The mechanical
properties of carbon nanotubes are also exceptional; com-
paratively large zero-point motion, quality factors as high
as 5 × 106 [38], and mechanical frequencies up to 39 GHz
[39].

When the carbon nanotube is in motion, its displace-
ment changes the distance between the carbon nanotube and
the gate electrodes. The quantum dot is thus capacitively
coupled to the nanotube’s motion. The first evidence of
this effect was the observation that single-electron tunneling
creates periodic modulations of the mechanical resonance
frequency [22,23,37,40–42]. These modulations of the me-
chanical resonance frequency, also called softening, are a
signature of the electromechanical coupling between charge
states and mechanical motion [43,44]. This coupling allowed
for the realization of coherent mechanical oscillators driven
by single-electron tunneling [45], cooling of the mechani-
cal motion [46], and probing of electronic tunnel rates [47].
Fully suspended carbon nanotube devices in the ultrastrong
coupling regime have been proposed for the realization of
nanomechanical qubits [48]. A recent study has demonstrated
so-called deep-strong coupling [49], which is the equivalent
of ultrastrong coupling between a carbon nanotube quan-
tum dot and a THz resonator [50]. Until now, a careful
experimental estimation of the electromechanical coupling
strength that carbon nanotube devices can offer was still
missing.

In this work we show that the electromechanical cou-
pling in fully suspended carbon nanotube devices can reach
the ultrastrong coupling regime and that it presents one of
the highest coupling ratios reported so far; gm/ωm � 2.72.
We obtain this ratio using two independent approaches. We
measure the periodic modulations of the mechanical reso-
nance frequency resulting from single-electron tunneling in
our experiment and model it using a rate equation model.
We also simulate the quantum dot energy levels as the car-
bon nanotube position changes in the plane of motion. Both
approaches lead to similar conclusions and converge to the
same quantitative value of gm. The observed coupling ratios
can be improved further by adapting the geometry of the
device.

II. SYSTEM AND ELECTROMECHANICAL MODEL

We focus on a carbon nanotube device with a suspended
segment of approximately 800 nm [see Fig. 1(a)]. The quan-
tum dot is defined in the nanotube through a combination of
Schottky barriers at the contacts and the voltages applied to
five gate electrodes (labeled VG1−G5) beneath the nanotube.
These gate electrodes are also used to actuate the nanotube’s
motion [45,51,52]. A current I is driven by a bias voltage Vs.
All experiments are performed at 40 mK.

To model the interplay between the single-electron trans-
port through the quantum dot and the nanotube’s mechanical
motion in this device, we use rate equations. First, we describe
the electron transport through the device. Applying a bias volt-
age Vs between the source (left) and drain (right) reservoirs
opens up an energy window eVs = µL − µR, where e is the
charge of an electron, and µL and µR are the electrochemi-
cal potentials of the left and right reservoirs, respectively. If
within this energy window, which we will refer to as bias
window, there is an electrochemical potential level µ corre-
sponding to a transition that involves the charge state of the
quantum dot, electrons can tunnel from one reservoir onto the
quantum dot and off to the other reservoir.

We calculate the current I as a function of the quan-
tum dot electrochemical potential µ. The quantum dot is
weakly coupled to left and right reservoirs [see Fig. 1(b)],
and this coupling is parameterized by four effective tunnel
rates; tunneling from the left/right reservoir to the quantum
dot [γ in

L/R(µ)] and tunneling from the quantum dot to the
left/right reservoir [γ out

L/R(µ)] [42]. These effective tunnel rates
correspond to the product of the left/right tunnel barrier rates
[�L/R] and the overlap between the density of states of the
quantum dot and left/right reservoirs, ρL/R(µ), i.e.

γ in
L/R(µ) = �L/R ρL/R(µ), (1a)

γ out
L/R(µ) = �L/R(1 − ρL/R(µ)). (1b)

The tunneling through the quantum dot occurs at a rate
�tot = ∑

µ=L,R(γ in
µ + γ out

µ ) = �L + �R. As we will show
later, �tot/2π is of the order of 100 GHz, and thus h̄�tot �
kBT for sub-Kelvin temperatures, with kB the Boltzmann con-
stant. In this regime, we find [42,53]

ρL/R(µ) = 1

2
+ 1

π
arctan

(
2(µL/R − µ)

h̄�tot

)
. (2)

We can thus express the current flowing through the quantum
dot as

I (µ) = e
γ in

L (µ)γ out
R (µ) − γ in

R (µ)γ out
L (µ)

�tot
. (3)

We now examine how the mechanical motion affects the
electron transport. As the carbon nanotube moves, its dis-
placement z in the vertical direction changes the capacitance
between the gate electrodes and the quantum dot. This leads
to a change in µ proportional to the electromechanical cou-
pling constant gm at the first order in the displacement (see
Appendix A),

µ(z) � µ0 + h̄gm
z

zZPM
, (4)

where zZPM = √
h̄/2mωm is the zero-point motion, with m

the nanotube’s mass (see Appendix B 4 for details on the
estimation of the carbon nanotube’s mass), and µ0 is the
electrochemical potential of the quantum dot for a carbon nan-
otube displacement equal to 0, i.e., at z = 0. We can control
µ0 with the applied gate voltages.

The change in µ caused by the nanotube’s motion produces
a change in the average population of the quantum dot. This
change can be considered adiabatic if �tot � ωm. This means
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that, on the timescales corresponding to the mechanical mo-
tion, the average population instantaneously reaches a steady
state and is purely defined by the position of the carbon nan-
otube. In this regime, electron-vibron coupling mechanisms
such as the Franck-Condon blockade [54–56] are negligible.
In this case, we find that the relative average occupation of the
quantum dot with reference to a fixed charge state is

p(µ(z)) = γ in
L (µ(z)) + γ in

R (µ(z))

�tot
. (5)

Note that p is a number between 0 and 1.
The mechanical motion is in turn affected by the electron

transport. Variations of p cause the reduction of the mechan-
ical resonance frequency that is considered a signature of
strong electromechanical coupling in nanotube mechanical
resonators [22,23,37,40–42]. The effective resonance fre-
quency ωeff

m (µ0)/2π , lower than ωm/2π , is observed when µ
varies within the bias window [µR, µL]. This interplay between
single-electron transport and mechanical motion can be ex-
plored further by writing the equation of motion that models
the carbon nanotube displacement (see Appendix A),

z̈ + ω2
m

[
z + 2p(µ(z))

gm

ωm
zZPM

]
= 0. (6)

Since carbon nanotube devices exhibit high-quality factors,
we neglect the mechanical damping over a few mechanical
periods.

The combination of Eqs. (5) and (6) makes explicit that p
can change within a mechanical oscillation, since p depends
on µ, and µ depends on z [Eq. (4)], which is a function of
time. Considering that µ has a weak dependence on z, the
rest position of the resonator zr (p) = −2p(µ)(gm/ωm )zZPM,
is obtained for z̈ = 0. Figures 2(a)–2(c) show the nanotube’s
displacement z and dot population p as a function of time, as
well as the corresponding trajectories in phase space, obtained
by solving Eq. (6) numerically for different values of µ0.
When µ0 is far above the bias window (µ0 � µL), p(µ) = 0
and the resonator rest position is zr (0) = 0 (dash-dotted green
line). Conversely, when µ0 is far below the bias window
(µ0 � µR), the population is p(µ) = 1 and the nanotube’s rest
position is zr (1) = −2(gm/ωm )zZPM (dashed blue line). But
when µ0 is within the bias window, p(µ) varies between 0 and
1, i.e. 0 � p(µ) � 1, and the nanotube’s rest position satisfies
0 � zr (p) � −2(gm/ωm )zZPM (solid orange line). The nan-
otube’s motion follows a trajectory in phase space at constant
angular velocity ωm but the rest position (0, zr (p)) shifts with
p(t ), making the trajectory elliptical instead of circular [see
Fig. 2(b)]. As a result, when p is not constant (solid orange
line), the period can exceed 2π/ωm, leading to a reduction
of the effective mechanical resonance frequency ωeff

m (µ0)/2π ,
evident in Fig. 2(a).

Under the approximation of small displacements, the ef-
fective resonance frequency can be estimated from Eq. (6).
Linearizing p(µ), we obtain

p(µ) = p(µ0) + (µ − µ0)
∂ p

∂µ

∣∣∣∣
µ0

. (7)

FIG. 2. Time evolution obtained by numerically integrating the
equation of motion (6), starting from the initial conditions z(0) =
z0 + zr (p(µ(z0))) and ż(0) = 0, with z0/zZPM = 20, for three differ-
ent values of µ0: well above the bias window (µ0 � µL, dash-dotted
green lines), within the bias window (µ0 = 0, solid orange lines),
and well below the bias window (µ0 � µR, dashed blue lines). This
choice of z(0) results in identical amplitudes for the cases µ0 �
µL and µ0 � µR. (a) Nanotube’s displacement z as a function of
time over four mechanical periods. Gray lines indicate the nan-
otube’s rest position for p = 0 and p = 1: zr (0) = 0 and zr (1) =
−2(gm/ωm )zZPM. (b) Corresponding phase space trajectories over
one mechanical period. The dots indicate the resonator’s rest po-
sition for p = 0 and p = 1: zr (0) (green point) and zr (1) (blue
circle). (c) Population of the quantum dot as a function of time over
one mechanical period. These simulations, use the parameters ex-
tracted from the experiment (see main text); ωm/2π = 294.5 MHz,
�L/2π = 1.0 GHz, �R/2π = 40 GHz, and zZPM = 0.68 pm (see Ap-
pendix B). In the plots, the value of gm/2π was exaggerated by a
factor 2 for visual clarity; gm/2π = 1.6 GHz while the true value is
0.8 GHz.

We introduce this expression in Eq. (6) and use Eq. (4) to
rewrite the equation of motion as follows:

z̈ +
[
ω2

m + 2g2
mh̄ωm

∂ p

∂µ

∣∣∣∣
µ0

]
z = −2p(µ0)gmωmzZPM. (8)

Thus the effective resonance frequency is

ωeff
m (µ0) =

√
ω2

m + 2g2
mh̄ωm

∂ p

∂µ

∣∣∣∣
µ0

. (9)

Note that ∂ p/∂µ is negative.

III. EXPERIMENTAL RESULTS

To verify the validity of this prediction in our device and
estimate the coupling strength gm, we use gate voltages to de-
fine a single quantum dot, revealed by the Coulomb diamonds
in Fig. 3(a). From this measurement, we estimate the lever arm
α = 0.054+0.007

−0.005 eV/V and its uncertainty (see Appendix B 2),
which relates the variation of µ0 with the applied gate voltages
	µ0 = −α	VG1. Measurements in Figs. 3(a), 3(b) were per-
formed with the carbon nanotube at rest (no driven motion),
and thus µ is equal to µ0. From a fit of a Coulomb peak
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FIG. 3. (a) Current as a function of Vs and VG1 with VG2 =
0 V, VG3 = −4 V, VG4 = 0 V, VG5 = −3.95 V and Rs = 100 k
. We
observe Coulomb diamonds, evidencing single-electron tunneling.
(b) Current as a function of VG1 for Vs = 0.2 mV at the Coulomb
peak indicated by the black dashed line in (a). The green line is a fit
to Eq. (3) with �L/2π = 1.0 GHz and �R/2π = 40 GHz. (c) Pop-
ulation p as a function of VG5 computed using Eq. (5) for z = 0.
(d) Current variation 	I as function of the drive power frequency
ωe/2π and VG1 at Vs = 0.2 mV. In each column, the average value
of the current was subtracted to highlight the mechanical resonance.
Near the Coulomb peak, the nanotube’s resonance frequency shows
a dip. A small shift in VG1 explains the gate voltage difference
between the center of the Coulomb peak in (b) and (d). The green
line (Lin. fit) is a fit with Eq. (9) and the blue line (Num. int.) is the
effective resonance frequency reproduced by numerical integration
of the equation of motion (6) with gm/2π = 0.80 GHz.

using Eq. (3) [Fig. 3(b)], we obtain �L/2π = 1.0 ± 0.1 GHz
and �R/2π = 40 ± 5 GHz. The uncertainty interval in these
tunneling rates is determined by fitting the Coulomb peak with
two extreme α values given by the uncertainty in α. We then
use Eq. (5) to estimate p for any value of µ. The resulting p(µ)
is shown in Fig. 3(c).

We drive the nanotube’s motion by a microwave tone at
frequency ωe/2π and drive power P0 = −79 dBm applied to
gate G3 [see Fig. 1]. The mechanical resonance causes sharp
steps in I (ωe/2π ). Numerically differentiating I (ωe/2π ), the
resonance is evident as peaks/dips in dI/dωe [Fig. 3(d)].
The mechanical resonance frequency drops below ωm/2π =
294.5 MHz at values of VG1 for which we observed a Coulomb
peak [Fig. 3(b)]. We fit this effective resonance frequency,
ωeff

m , using Eq. (9). Because p(µ) is estimated from the tunnel
rates and µ0 is calculated from the lever arm α [Figs. 3(a),
3(b)], the coupling strength gm is the only fitting parameter.
The resistance of the measurement circuit was taken into
account by correcting the bias voltage accordingly (see Ap-
pendix B 3). We find gm/2π = 0.80 ± 0.04 GHz given the
uncertainty over �L and �R. This result leads to a coupling
ratio gm/ωm � 2.72 ± 0.14. This ratio is, to the best of our

knowledge, the highest value reported among all other elec-
tromechanical platforms. We have estimated gm/2π for other
Coulomb peaks in Appendix C.

We have further corroborated ωeff
m (µ0) by numerically in-

tegrating Eq. (6). This approach does not require p(µ) to be
linearized. We estimate zZPM = 0.68 pm (see Appendix B 4),
and considering the values of ωm, �L and �R extracted from
the experiment, we compute z(t ) for various sets of values
of µ0, gm and z(0), choosing ż(0) = 0. We then derive ωeff

m
(see Appendix D) and find that gm/2π � 0.80 GHz accurately
reproduces the dependence of ωeff

m with VG1 observed in the
experiment [dashed blue line in Fig. 3(d)]. This result is in
good agreement with the value of gm obtained from the fit to
Eq. (9). The amplitude of motion, z(0) � 20zZPM ∼ 15 pm, is
consistent with the values estimated in previous experiments
[45,52]. The value of z(0) only significantly affects the width
of the dip in the resonance frequency when z(0)/zZPM is larger
than �tot/gm, i.e z(0)/zZPM � 50 (see Appendix B 4). We thus
confirm that the small displacement limit [Eq. (7)] applies to
our experiments.

IV. SEMICLASSICAL ELECTROSTATIC MODEL

We now compare these results with a semiclassical numer-
ical approximation. We calculate the single-particle energy
levels of the dot, εn(z), n = 0, 1, .... In this case, εn(z) is
the contribution to the charging energy, µ, which depends on
position z for the gate voltage configuration of the experiment.
The occupied energy levels will only impose a constant force
on the oscillator. In this case, the value of gm can be estimated
from Eq. (4) as

gm = zZPM

h̄

dεn

dz
. (10)

We compute the levels εn(z) solving explicitly the electric
potential field in the plane of motion, V (z, x), using a finite
difference method (see Appendix E). Then, the dot energy lev-
els can be obtained from V (z, x) using the Bohr-Sommerfeld
equation [57],∮ √

2me(εn(d ) − eV (d, x))dx = 2π h̄

(
n + 1

2

)
. (11)

The integral is calculated along a horizontal line at height d
from the gates representing the classical path of the electrons.
me is the electron mass. Figure 4 shows ε for different values
of n as a function of the distance d . The values of gm extracted
for different values of d are displayed in Fig. 4 (inset). We find
a value gm/2π ≈ 0.80 GHz for d = 90 nm, a distance, which
is consistent with the geometry of our device (see Appendix E)
considering the deformation of the nanotube. The value of
gm decreases slightly with the quantum level index n and
as a function of d , setting the range of possibilities for our
platform.

V. CONCLUSION

To conclude, we have found that fully suspended carbon
nanotube devices can reach ultrastrong coupling gm/2π ≈
0.80 ± 0.04 GHz between single-electron transport and me-
chanical motion, leading to a coupling ratio of gm/ωm �
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FIG. 4. Energy levels of the quantum dot with
n = 0, 5, 10, 20, 30 as a function of d obtained from Eq. (11). (Inset)
Values of gm obtained from the dependence of the energy levels with
d . The dashed line represent the value gm/2π = 0.80 GHz obtained
from the experiment.

2.72 ± 0.14, a value that exceeds that obtained with any other
electromechanical platform. We have quantified the coupling
strength by using rate equations to model the reduction of
mechanical resonance frequency observed in our experiments.
We separately confirmed the resulting coupling strength
with electrostatic simulations based on Bohr-Sommerfeld
equations. From these simulations, we extrapolate that this
coupling could be enhanced by reducing the distance between
the carbon nanotubes and the gates and/or the number of
charges in the quantum dot. Using our model to fit measure-
ments from similar suspended carbon nanotube devices ([42]
and [41]), we concluded that the ultrastrong coupling regime
was present, but went unnoticed. We obtained ratios gm/ωm

of 1.7 and 1.25, respectively (see Appendix F). This finding
suggests that the ultrastrong coupling regime is standard in
this type of devices. It allows for an ambitious suite of exper-
iments, ranging from nanomechanical qubits, to information,
to work conversion at the nanoscale.
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APPENDIX A: SIMPLIFIED ELECTROMECHANICAL
MODEL IN THE ADIABATIC REGIME

In this Appendix, we give more details about the elec-
tromechanical model presented in Sec. II. We focus here on
a single level of the quantum dot, the one inside or closest
to the bias window, assuming that there is at most one level
inside it [as represented in Fig. 1(b)]. The quantum dot is
capacitively coupled to the gates and the effective capacitance
depends on the distance between the quantum dot and the
gates. Therefore, the vertical motion of the carbon nanotube
(CNT) changes the electrochemical potential µ of the quantum
dot level. At the first order in z, we have

µ(z) � µ0 + ∂µ

∂z

∣∣∣∣
z=0

z, (A1)

where z = 0 corresponds to the rest position of the carbon
nanotube when the quantum dot level is empty. Like for
optomechanical systems [8], we define from the above expres-
sion the electromechanical coupling strength

gm = 1

h̄

∂µ

∂z

∣∣∣∣
z=0

zZPM, (A2)

and obtain the expression of µ(z) given by Eq. (4).
So the Hamiltonian describing this simplified model of the

electromechanical system is

H =
(

µ0 + h̄gm
ẑ

zZPM

)
n̂ + h̄ωmb̂†b̂, (A3)

where b̂ is the annihilation operator of the considered mechan-
ical mode and n̂ the occupation of the quantum dot level. The
interaction part of the Hamiltonian therefore writes

Hint = h̄gm
ẑ

zZPM
n̂, (A4)

which corresponds to an electromechanical force

F̂ = −dHint

dẑ
= − h̄gmn̂

zZPM
(A5)

applied on the resonator.
In addition, electrons tunnel in and out the quantum dot

with rates γ in
L/R(µ) and γ out

L/R(µ) [see Eqs. (1)] and the me-
chanical resonators undergoes damping at rate γm. Our device
operates in the semiclassical regime (large phonon number
in the resonator) where there is no entanglement between
the quantum dot and resonator and no coherences inside the
quantum dot. Furthermore, the relevant time scales for the
tunneling events 1/�L/R are orders of magnitude shorter than
the mechanical dynamics (see Table I). Therefore, we make
the adiabatic approximation, namely, we consider that the
population p = 〈n̂〉 of the quantum dot is always the equilib-
rium one [Eq. (5)], and instantaneously follows the variations
of z = 〈ẑ〉. The time evolution of the position of the resonator
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TABLE I. Parameters of the case considered in the main text.

Parameter Name Value

Bias voltage Vs 0.2 mV
Left tunneling rate �L/2π 1.0 ± 0.1 GHz
Right tunneling rate �R/2π 40 ± 5 GHz
Lifetime broadening �tot/2π 41 ± 5 GHz
Bare mechanical frequency ωm/2π 294.5 MHz
Zero point motion fluctuation zZPM 0.68 ± 0.04 pm
Mechanical quality factor Qm � 2000
Coupling strength gm/2π 0.80 ± 0.04 GHz

is described by the classical equation of motion

z̈ + γmż + ω2
mz = 〈F̂ 〉

m
, (A6)

where m is the mass of the resonator. This equation is con-
sistent with the results from Ref. [43]. In the following, we
will consider only a few mechanical periods and thus neglect
the mechanical damping due to the high-quality factor Qm =
ωm/γm (see Table I). Using Eq. (A5) and the expression of the
zero-point motion fluctuation zZPM = √

h̄/2mωm, we obtain
the equation of motion (6).

APPENDIX B: CHARACTERIZATION OF THE
EXPERIMENTAL DEVICE

In this Appendix, we describe the suspended carbon nan-
otube device we used in the experiment and explain how we
determined its characteristics.

1. Carbon nanotube device

The suspended carbon nanotube device is similar to the one
presented in Refs. [45,51,52]. We fabricated chips from high-
resistance Si/SiO2 substrate by patterning Au/Cr electrodes
with E-beam lithography. The carbon nanotubes are grown
by CVD on a separate quartz substrate using nanoparticles of
Al2O3, Fe(NO3) and MoO2(acac)2 as catalyst and mechani-
cally transferred to the chip. Figure 5 displays a schematic of
the device respecting geometric the proportions.

2. Determination of the lever arm α and its uncertainty

The lever arm α = |e|Cldot
G

C (where Cldot

G is the capacitance
between the gate voltage VG1 and the dot, and C the sum
of the gate, source CS and drain capacitances) is critical to
the estimation of the coupling strength. The lever arm can
be extracted from the two slopes Slope1 and Slope2 of the

FIG. 5. Schematic of the device.

FIG. 6. (a) Coulomb diamonds from Fig. 3(a). The two black
lines follow the edge of the diamond and correspond to Slope1 =
−0.376 + 0.064 − 0.174 eV/V and Slope2 = 0.0625 + 0.0065 −
0.0045 eV/V. The dashed lines indicate the error in the determination
of the slope. (b) Top: Coulomb peak in Fig. 3(b). The measured
current I was smoothed. Bottom: Corrected voltage between source
and drain contacts as a function of VG1.

Coulomb diamond [Fig. 6(a)] [58]

Slope1 = − |e|Cldot

G

C − CS
, Slope2 = |e|Cldot

G

CS
. (B1)

Combining the two expressions of Eq. (B1), we obtain

α = Slope1 × Slope2

Slope1 − Slope2
(B2)

From Fig. 6(a), we deduce the two slopes Slope1 =
−0.376+0.064

−0.174 eV/V and Slope2 = 0.0625+0.0065
−0.0045 eV/V, result-

ing in a lever arm:

α = 0.054+0.007
−0.005 eV/V. (B3)

3. Corrections to the bias voltage

The internal resistance Rs = 100k
 of the IV converter
become a significant fraction of the total resistance of the
circuit when the device is tuned in a Coulomb peak. It is
therefore necessary to introduce a corrected bias voltage,

V Corr
s (VG1) = Vs − I (VG1)Rs. (B4)

The resulted V Corr
s (VG1) is plotted in Fig. 6(b). The cor-

rected bias voltage was used to fit the Coulomb peak in
Fig. 3(b) and the mechanical resonance frequency in Fig. 3(d),
which impact the estimation of gm.

4. Estimation of the carbon nanotube’s mass

In the following we estimate the mass m of the CNT and its
zero point motion zZPM from the dependence of the mechan-
ical resonance frequency ωm/2π with gate voltage [59–61].
We measure the change in current as a function of ωm [Fig. 7]
while sweeping three gate voltages VG = {VG1,VG3,VG5} (VG2

and VG4 showed leakage currents during the experiment). We
observe the increase of ωm when VG become more negative
until −3.6 V, where the CNT enters the strong bending regime
[60,62].

To fit the mechanical frequency, we make use of the con-
tinuum model developed in Refs. [60] and [63] to describe the
bending modes of a CNT. The displacement z as a function of
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FIG. 7. Mechanical resonance frequency observed for a large
sweep of gate voltages VG = {VG1,VG3,VG5} while driving the CNT
with a microwave tone at frequency ωe/2π in a similar manner
as Fig. 3(d). The mechanical resonance frequency ωm/2π is fitted
(black dashed line) by self-consistently solving for the eigenmodes
of Eq. (B5) together with Eq. (B6) and Eq. (B8). The obtained fitting
parameters are L = 936 ± 10 pm, r = 3.9 ± 0.2 pm, V0 = 0.82 ±
0.07 V, Tr = 0.7 ± 0.2 nN.

time and the position x along the tube axis is modeled by the
equation

ρA
∂2z

∂t2
+ EI

∂4z

∂x4
− T

∂2z

∂x2
= F (x, t ), (B5)

where the first term accounts for the inertia of the CNT, with
ρ the mass density of the CNT and A the cross-section area.
The second term accounts for the restoring force due to the
bending rigidity EI , with E the Young modulus and I the
second moment of inertia, while the third term is the restoring
force due to the tension T . Finally, the CNT is driven and
tuned by the electrostatic force per unit length F (x, t ), which
is given by [63]

F (x, t ) = 1

2

∂cl
G

∂z
(VG(t ) − V0)2, (B6)

where V0 is an offset on the dc gate voltage VG(t ) and cl
G =

CG/L, with CG the total capacitance between the CNT and the
gates, is the gate capacitance per unit length. If we approxi-
mate the geometry of the problem as that of a cylinder above
an infinite plane, then [63]

cl
G(x) = 2πε0

arccosh[(d − z(x))/r]

≈ 2πε0

ln(2d/r)
+ 2πε0√

d2 − r2arccosh2(d/r)
z(x), (B7)

where d is height of the CNT from the gates (at zero gate
voltage), r is the radius of the CNT, and the last approximation
is valid for d � r, z. Finally, the tension T on the CNT has
two contributions: one due to the pull of CNT towards the
gates, which elongates it, and another due to clamping, which
can introduce a residual tension Tr and bending (so that the
length of the clamped CNT is not the same as the length when
unclamped) even when the gate voltage is zero. In conclusion,
the tension is given by [63]

T = Tr + EA

2L

∫ L

0

(
∂z

∂x

)2

dx. (B8)

TABLE II. Parameters of the estimation of the carbon nanotube’s
mass and zero-point motion. zZPM.

Parameter Estimated value

d 100 nm
L 936 ± 10 nm
r 3.9 ± 0.2 nm
ρ 1350 kg/m3

E 1.25 TPa
Tr 0.7 ± 0.2 nN
V0 0.82 ± 0.07 V
CG 12.9 ± 0.2 aF
∂CG/∂z 29.0 ± 0.8 pF/m
m 61 ± 6 ag
zZPM 0.68 ± 0.04 pm

One can then get frequency of the eigenmodes of (B5)
by solving (B5) self-consistently together with (B6) and (B8)
(see Ref. [63] for details on these calculations). We use the
obtained fundamental frequency to fit the gate voltage de-
pendence measured in Fig. 7. To do the fit, we take ρ =
1350 kg/m3 and E = 1.25 TPa, which are standard values for
a CNT as it has been widely reported in the literature [63–65].
We further know from the device fabrication that d ≈ 100 nm.
The parameters left to fit are then L, r, Tr , and V0. The obtained
values are shown in Table II and the resulting fit in Fig. 7
(dashed black line). From L and r we further estimate the
mass m = 61 ± 6 ag. This gives a zero-point motion zZPM =
0.68 ± 0.04 pm. It is worth pointing out that the uncertainty
on zZPM does not affect the value of coupling coefficient gm in
the main text, since the expression of the effective mechanical
frequency [Eq. (9)] does not depend on zZPM. Furthermore, we
have found that, in the numerical simulations described in the
main text, small changes in zZPM only affect the value found
for z(0), which is such that z(0)/zZPM � 20.

5. Estimation of the size of the quantum dot

Here we estimate the length Ldot of the quantum dot con-
finement in the carbon nanotube from the formula of the
capacitance between a cylinder and an infinite plane, which
for d � z, r takes the form

Cdot
G ≈ 2πε0Ldot

ln (2d/r)
(B9)

where ε0 is the vacuum permittivity. We reproduce
the quantum dot capacitance with respect to VG1,
Cdot

G = 1.46 aF, estimated from the Coulomb diamond in
Fig. 3(a), for Ldot = 103 nm and using the parameters of
Table II.

APPENDIX C: FULL SET OF COULOMB PEAKS

We show in Fig. 8 other Coulomb peaks than the one stud-
ied in the main text. For each Coulomb peak, there is a dip in
the mechanical resonance frequency. We applied the method
described in the main text to estimate the coupling strength
gm. The results of each fit are summarized in Table III. Note
that in some cases the coupling strength we find exceeds the
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FIG. 8. Top: Fit (green line) of the Coulomb peaks measured under the same condition as in Fig. 3(b) for the extended range of VG1 (black
line). The center of the Coulomb peaks in gate voltage are shifted from the centers of the frequency dips due to gate voltage drifts. Bottom:
Corresponding mechanical resonance frequency obtained by measuring the current variation 	I . The plot was leveled by column for clarity.
The mechanical resonance frequency variations are fitted using the linearization presented in Sec. II, using gm as fitting parameter. The fitting
parameters are displayed in Table III.

one in the main text, but the uncertainty is higher. Our data
shows no evidence of a dependence of gm with gate voltage.
However, the range of gate voltage might be too small to
reveal a trend.

APPENDIX D: CONFIRMATION OF THE SMALL
AMPLITUDE LIMIT

In Sec. II, we did a first-order expansion to obtain the effec-
tive mechanical frequency [Eq. (9)] and used this expression
to fit the experimental data [Fig. 3(d)] and extract the value of
gm. Here, we go one step further and numerically integrate
the equation of motion (6) to confirm the value found for
the coupling strength. This numerical integration requires us
to choose values for µ0, gm and a set of initial conditions
(ż(0), z(0)). We choose ż(0) = 0 and therefore z(0) is closely
related to the amplitude of the mechanical motion. The other
parameters were determined from the experimental data and
are given in Table I.

TABLE III. Parameters of the fit of the measurements shown in
Fig. 8 from Peak 1 (on the left) to Peak 9 (on the right). The centers
of the Coulomb peaks V pk

G1 are different in gate voltage from the
centers of the frequency dips V f

G1 due to gate voltage drifts. Note
that a few coupling strengths exceed the one of the main text, but the
uncertainty is higher.

Param. �L/2π �R/2π V f
G1 V pk

G1 ωm/2π gm/2π

Unit GHz GHz V V MHz GHz

Peak 1 0.7 25 -3.821 -3.886 294.6 0.8
Peak 2 1.7 40 -3.716 -3.7815 294.0 0.8
Peak 3 0.9 25 -3.589 -3.6485 293.5 0.9
Peak 4 1.3 30 -3.502 -3.55 292.5 0.7
Peak 5 0.2 30 -3.432 -3.442 292.4 0.8
Peak 6 0.2 20 -3.368 -3.365 291.4 0.8
Peak 7 0.25 20 -3.260 -3.255 290.3 0.8
Peak 8 0.5 15 -3.163 -3.157 289.8 0.8
Peak 9 0.2 20 -3.055 -3.045 289.5 1.0

For each set of values (µ0, gm, z(0)), we get ωeff
m (µ0) as

the slope of the argument of z(t ) + iż(t )/ωm. Figure 9(a)
represents ωeff

m (µ0) as a function of the gate voltage for
gm/2π = 0.80 GHz and different values of z(0). The quantum
dot level µ0 is related to the gate voltage by the relation
µ0 = α	VG1), k and α = 0.054 eV/V. This figure shows that

FIG. 9. Characterization of the frequency dip: (a) mechanical
resonance frequency as a function of the gate voltage VG5 = V0 −
µ0/α for gm/2π = 0.80 GHz and different values of z(0); (b) depth
of the dip 	ωmax = ωm − minµ0

(ωeff
m (µ0)) and (c) full width at

half-minimum 	µ1/2 as a function of the initial position z(0) and
the coupling strength gm. The light blue solid line corresponds to
	ωmax/2π = 9.1 MHz and the dashed green line to 	µ = 0.21 meV,
which are the characteristics of the experimental plot in Fig. 2(c). The
other parameters are given in Table I.
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the frequency dip can be characterized by its depth, 	ωmax =
ωm − minµ0

(ωeff
m (µ0)), and full width at half-minimum, 	µ1/2.

We extract these two parameters from the experimental data:
	ω

exp
max/2π = 9.1 MHz and 	µexp

1/2 = 0.21 meV. We then plot
maps of 	ωmax and 	µ1/2 [Fig. 9(b) and 9(c), respectively]
as functions of gm and z(0). The solid light blue line cor-
responds to the experimental depth and the dashed yellow
line to the width at half-minimum. The intersection of the
two curves gives us the coupling strength: gm/2π = 0.84 GHz
for z(0) = 21zZPM. With this method, we obtain a coupling
strength in good agreement with the analytical fit (gm =
0.80 ± 0.04 GHz), thus validating the first-order expansion
and, in addition we get an estimate of the amplitude of the
mechanical oscillations, ∼15 pm.

In Fig. 9(a), we note that the dips are centered on the
chemical potential of the right reservoir, µR. This is because
the two barriers have very different tunnel rates: �L � �R.
In addition, for small amplitudes of the mechanical oscilla-
tions, the widths of the dips are very similar, with 	µ1/2 �
h̄�tot. In this limit, the effective frequency is well estimated
by Eq. (9). Conversely, the frequency dip becomes larger
when the amplitude of the mechanical oscillations makes
µ(z) vary more than h̄�tot, that is for z(0)/zZPM > �tot/gm.
In this case, µ(z) can enter the bias window even for a µ0
relatively far outside. Note that h̄�tot is the length of the
interval centered in µR over which p(µ) varies significantly,
see Eqs. (2) and (5). For the experimental device, we have
�tot/gm = 50 so we can reasonably use the small amplitude
limit.

APPENDIX E: ELECTRIC FIELD AND SINGLE-PARTICLE
ENERGY LEVELS

We used a finite-differences method in order to calculate
the electric potential field in a vertical plane on the device. In
this calculation we considered a 1200 × 1200 grid in order
to obtain enough resolution, and imposed the five gates in
the bottom on the figure and the two lateral electrodes. The
top boundary of the device is considered at sufficient height
from the device and kept at constant zero voltage, obtaining a
negligible impact on the system [66,67].

Equation (11) requires a path integral along the classical
electrons trajectory. In Fig. 10, we sketch this situation. The
electrons path representing the nanotube is considered as a
straight horizontal line at a certain distance from the gates,
moving from left lead to right.

APPENDIX F: ESTIMATION OF THE COUPLING
STRENGTH FOR SIMILAR DEVICES

IN THE LITERATURE

We apply our model to fit measurements obtained with
similar devices [41,42] and show that devices in these studies
are also in the ultrastrong coupling regime. First we fit the
results of Huttel et al. [41] in Fig. 11(a). We find gm/2π ≈
0.5 GHz. The other parameters of the fit are �L = 55 GHz,
�R = 10 GHz and ωm/2π = 296.5 MHz, considering Vs =
0.1 mV from the paper and α = 0.1. The lever α is not
mentioned so we explored a range of value from α = 0.05
to α = 0.2. The best fit is obtained with α = 0.1. We also

FIG. 10. Electrical voltage in the vertical plane of the device in
an arbitrary gates configuration. The nanotube is represented with an
horizontal white line between the electrodes L and R, at a certain
distance from the gates. This line represents the integration path of
Eq. (11) of the main text.

fitted the result published by Meerwaldt et al. [42] that dis-
play all the parameters our model requires, see Fig. 11(b).
We find a coupling of gm/2π = 0.36 GHz for �L/2π =
127 GHz, �R/2π = 30 GHz and ωm/2π = 286.88 MHz. In
conclusion we find a coupling strength of gm/2π ≈ 0.5 GHz
and �R/2π = 30 GHz in these two devices giving a gm/ωm

ratio of 1.7 and 1.25, respectively.

FIG. 11. Fits of the Coulomb peak (top plots) and mechan-
ical resonance frequency (bottom plots) for experimental results
from other groups using our model. (a) Results reproduced from
Fig. 4 of Ref. [41]. The three curves correspond to different
values of the lever arm: α = 0.05 (�L/2π = 20 GHz, �R/2π =
5 GHz, gm/2π = 0.34 GHz), α = 0.1 (�L/2π = 55 GHz, �R/2π =
10 GHz, gm/2π = 0.5 GHz) and α = 0.2 (�L/2π = 110 GHz,
�R/2π = 19 GHz, gm/2π = 0.7 GHz). (b) Results reproduced from
Fig. 4 of Ref. [42]. The parameters of the fit were �L/2π = 127 GHz,
�R/2π = 30 GHz, gm/2π = 0.36 MHz. The mechanical resonance
frequency ωm/2π = 286.88 MHz and the lever arm α = 0.38 are
given in the paper. The Coulomb peak is shifted by 0.8 mV between
the top and bottom panel.
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