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Abstract
In recent years, the sustained increase in the worldwide demand for lithium batteries goes
side by side with the need for reliable methods to assess battery performance. Of particular
importance is assessing Lithium-Ion cell’s thermal behavior given its role on hazard and
aging of batteries. An essential task towards developing battery management systems is
the estimation of physical parameters and their uncertainties in terms of both models and
observations. Consequently, this paper analyzes the uncertainty in a thermal single particle
model for a lithium-ion cell. In the first part of themanuscript, we explore themodel adequacy
by analyzing the forward and backward uncertainty propagation in the model in terms of
diffusion coefficients, reaction rate constants, and observations of cell voltage. In the second
part of the manuscript, we infer the cell’s reversible heat given the energy balance equation
and the cell’s temperature observations. We argue that the methods proposed here may be
extended to analyze other more general lithium-ion models.

Keywords Li-Ion batteries · Parameter identification · Uncertainty
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1 Introduction

The worldwide demand for Lithium-Ion batteries has continuously increased during the
last decades. The development of models to simulate battery behavior has gone side by
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side. Broadly speaking, first principle models of batteries are based on multiphysics and are
fundamental from a theoretical point of view [1–3]. Unfortunately, these models are complex
and computationally expensive to simulate, which is a limitation in applications, i.e., design
and analysis, where the intense simulation of battery behavior under multiple regimes is
required. Because of these arguments, the worldwide community has developed reduced-
order models. These types of models, many of them phenomenological, reproduce battery
dynamics successfully.

Computermodels arising from the discretization of batterymodelswill be useful as long as
there is confidence in their predictions, mainly to assist decision making [4]. Since reduced-
order models are typically easier to implement and faster to simulate, quantitative methods
are required to evaluate reduced-order models’ ability to predict quantities of interest as
input parameters vary across regimes. An appropriate approach to address this question is
the forward and backward uncertainty propagation analysis. In this regard, it is important to
analyze the model adequacy to predict the lithium-ion cell thermal behavior given its role on
battery performance, safety, aging, wear and tear.

To address these questions, in this paper, we consider a thermal single-particle model
(TSPM), studied by Guo et al. [5], that assumes non-constant temperature along time and
couples lithium concentration and thermal balance equations. It is a reduced-order model
whose numerical simulation cost allows it to combine with Monte Carlo simulations.

First, we analyze the forward uncertainty propagation of the transport and kinetic
coefficients—i.e., its identifiability—through global sensitivity analysis. To accomplish this
task, we analyze each coefficient’s contributions to the likelihood’s variance. We define the
likelihood as the conditional probability of voltage observations given these model coeffi-
cients in the present setting. We find that four parameters (the diffusion coefficient and the
reaction rate activation energies, of both electrodes) with the same scale are identifiable from
voltage measurements.

On the other hand, to carry out backward uncertainty analysis, we elicit prior distribution
models for the activation energy parameters and use them, with the likelihood, to analyze
the conditional probability of these coefficients given voltage observations. Of note, voltage
observations are easier to obtain compared to temperature observations, see [6]. We apply
this strategy to Guo’s reduced-order model to find a conditional probability of the activa-
tion energy parameters given voltage observations. We remark that this is not a trivial task
since “...the task of parameter identification is challenging. [...] many parameters are weakly
identifiable from current and voltage measurements....", see [7]. In this context, we must
highlight that we make inferences with a computer model whose solutions mimic the con-
tinuous model solutions with a specific order of error in practice. In this paper, we use the
estimate introduced in [8] for the solution of the inverse problem in terms of the computer
model error. Based on voltage observations, this estimation provides evidence to decide on
the grid thickness used to solve the computer model.

As a second line of evidence of the TSPM’s predictive capacity, we infer the reversible
heat of the lithium-ion cell using the energy balance equation and temperature observations
during a discharge cycle. A central part of ourmethod is estimating the temperature derivative
solving a linear inverse problemwith theBayesian paradigm.Weuse spatial statisticsmethods
to propose a prior model of the temperature derivative, which we regard as a distributed
parameter, using aGaussianMarkov randomfield.We accomplish this task in two steps. First,
we pose a uniformly spaced prior model, and secondly, we subsample a central subinterval
where the pointwise variance is smaller. This strategy allows us to reduce the variance of the
posterior model and reduce the number of degrees of freedom. This approach is based on
well known model reduction methods, see for example Spantini et al. [9] or Bui et al. [10].
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Related work There are many research efforts aimed at analyzing cycling performance of
lithium ion batteries taking into account thermal effects [5, 11–14]. Marcicki et al. [15] con-
sidered a lumped energy balance equation and Kalman filtering to estimate heat generation
during cycling for Li-ion cells. Bizeray thesis [16] contributes towards state and parameter
estimation of thermal-electrochemical lithium-ion battery models, noteworthy are the per-
formance estimation analyses based on extended Kalman filtering. Tagade et al. [17] carried
out a synthetic analysis of experimental design and bayesian calibration of an electrochemi-
cal termal model. Chen et al. [18] proposed a 3D model aimed at exploring battery thermal
behavior taking into account the battery shape. Raijmakers et al. [6] provided a review on heat
generation principles, as well as methods and challenges in battery temperature measurement
methods.

Regarding sensitivity analysis, [19–22] investigate global sensitivity analysis of electro-
chemical models of Li-ion cells including thermal effects.

Likewise, there are inverse analysis electrochemical systems defined by Li-ion batteries,
see [23–25].

Contributions and limitationsWe explore the adequacy of a thermal single particle model
for a Lithium-Ion cell. Our forward uncertainty propagation analysis reveals a relation
between forward uncertainty propagation and practical parameter identifiability when we
consider the likelihood function as a quantity of interest (QoI). Moreover, in the backward
uncertainty analysis we find a probability distribution for these parameters. On the other
hand, we estimate the reversible heat using this model for a lithium-ion cell with quantified
uncertainty. We use methods of spatial statistics to elicit a prior statistical model for the
derivative of the temperature. The corresponding inference process accounts for dimension
reduction exploiting the fact that the conditional probability of the temperature derivative is
a Gaussian distribution. We point out that our analysis can be applied to other models for
lithium-ion cells.We show the importance of prior model elicitation to estimate the reversible
heat.

The remainder of this manuscript is organized as follows: Sect. 2 presents the analyzed
model and the theoretical analysis tools. Section 3 makes a discussion of our results. Finally,
Sect. 4 summarizes our findings and their generality.

2 Methods

For the sake of making this paper self-contained, in this section, we gather the theoretical
methods used in our in silico analysis.

2.1 Thermal Li-ion single cell model

We consider the thermal single particle model for a Lithium-Ion cell described by Guo et
al. [5], which reads as follows. Assuming each electrode can be represented by a single
intercalation spherical particle, the mass balance of lithium ions in an intercalation particle
of electrode activematerial is described by Fick’s second law in a spherical coordinate system

∂cs,j
∂t

= Ds,j

r2
∂

∂r

(
r2

∂cs,j
∂r

)
, (1)

where cs,j is the concentration of lithium ions in the intercalation particle, t is time, r is the
radius direction coordinate, Ds,j is the solid phase diffusion coefficient, which is a function
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of temperature, and the subscript j = p/n represents the positive/negative electrode. We also
have the initial conditions

cs,j(t = 0) = cs,ini,j, (2)

and the boundary conditions (
Ds,j

∂cs,j
∂r

)
r=0

= 0,

(
Ds,j

∂cs,j
∂r

)
r=Rj

= −Jj,
(3)

where r = Rj is the particle radius, and

Jp = I

FSp
, Jn = − I

FSn
,

with I the total current, F = 96,487 C/mol the Faraday constant and Sj the total electroactive
surface area of electrode j.

Assuming that the spatial temperature distribution in the cell can be neglected, the cell
temperature T is a function of time only, satisfying

MCp
dT

dt
= I T

[
∂Up

∂T

(
xp,surf

) − ∂Un

∂T

(
xn,surf

)] + I
(
ηp − ηn + I Rcell

) − q. (4)

Here M and Cp are the mass and the specific heat capacity of cell, respectively. In addition,

Uj is the Open Circuit Potencial (OCP) and xj,surf = cs,j|r=Rj
cs,j,max

is the State of Charge (SoC).
The overpotential ηj is defined as

ηj = 2RT

F
ln

⎛
⎝

√
m2

j + 4 + mj

2

⎞
⎠ ,

where

mj = I

FkjSjcs,j,maxc0.5e

(
1 − xj,surf

)0.5
x0.5jsurf

,

being kj the reaction rate constant and ce the (assumed constant in this model) electrolyte
concentration in solution phase. Finally, Rcell is the electrolyte resistance and q is the rate of
heat transfer between cell and surroundings.

The initial cell temperature is assumed to be ambient temperature

T |t=0 = Tamb. (5)

In this context, it is possible to explicit the cell voltage Vcell as

Vcell = Up
(
xp,surf

) −Un
(
xn,surf

) + ηp − ηn + I Rcell. (6)

The transport and kinetic parameters involved in the model equations are functions of
temperature. The solid phase diffusion coefficients Ds,j and the reaction rate constants kj
depend on the temperature through Arrhenius’ correlation

Ds,j(T ) = Ds,j,ref exp
[ Eadi,j

R

(
1
T − 1

Tref

)]
,

kj(T ) = kj,ref exp
[ Eare,j

R

(
1
T − 1

Tref

)]
.
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where Eadi,j and Eare,j are the diffusion coefficient activation energy and the reaction rate
activation energy, respectively, of electrode j. Of note, the dependence of coefficients Ds,j on
temperature implies that Eqs. (1) and (4) are coupled.

2.2 Computer model

Broadly speaking, battery model analysis is concerned with studying the solution of
model (1)–(6) under different parameter regimes. Let us denote

θ = (Eadi,p , Eadi,n , Eare,p , Eare,n ), (7)

the activation energy parameter vector and let Vcell(t) be the cell voltage at time t . Equa-
tions (1)–(6) define a forward mapping M from these model parameters to cell voltage

M : θ −→ Vcell.

The forward mapping Vcell = M(θ) has no analytical expression. Thus, to explore prob-
lem (1)–(6), we rely on a computer model V h

cell = Mh(θ) ∈ R
N , where h accounts for a

discretization size and N is the dimension of the corresponding finite dimensional space. In
this paper, we propose Mh implementing second-order centered finite differences in space
and Crank-Nicolson scheme to march in time to deal with equation (1), as well as a two stage
Runge-Kutta second-order method (namely, Heun’s method) to approximate the solution of
thermal equilibrium Eq. (4).

Practical validation of a computer model is necessary if we are to use model Mh as a
surrogate of model M to explore backward and forward uncertainty propagation. In the
absence of an analytical expression of Vcell, in order to provide a numerical convergence rate
of the computer model, we compute

ph � log2

(∥∥V 4h
cell − V 2h

cell

∥∥∞∥∥V 2h
cell − V h

cell

∥∥∞

)
,

where the norms || ·||∞ are computed on the corresponding coarser mesh. Of note ph ≈ 1.99,
for h = 2− j for j = 2, 3, 4, . . . This value of ph suggests a quadratic order of convergence.

2.3 Forward and backward uncertainty analysis

Let us denote by v = (vi )
N
i=1 the voltage observations at times t = (ti )Ni=1. We shall assume

vi = Vcell(ti ; θ)+ηi . Namely, we assume that a voltage observation vi is themodel prediction
Vcell(ti ; θ) for a given set of parameters θ with additive noise, e.g. ηi ∼ N (0, σ 2) for
i = 1, . . . , N . Then, the conditional probability of vi given θ is vi |θ ∼ N (Vcell(ti ; θ), σ 2).
In the synthetic examples shown in Sect. 3, the standard deviation σ of the noise is set such
that the signal to noise ratio (SNR) satisfies

max(Vcell)

σ
= 102

to mimic the precision of instruments used to measure voltage. We have made the hypothesis
that there is no interference, see Johnson [26]. If we assume observations are independent
then we obtain a model of the conditional probability of v given θ

πV |�(v|θ) =
N∏
i=1

1√
2πσ 2

exp

(
− 1

2σ 2 (vi − Vcell(ti ; θ))2
)

. (8)
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In Sect. 3 we analyze the uncertainty in the forward model Vcell = M(θ) through global
sensitivity analysis. To accomplish this task, we explore the practical parameter identifiability
by taking the likelihood (8) as a quantity of interest in the Sobol sensitivity analysis.

According to Salltelli et al. [27], the first order Sobol sensitivity analysis for a quantity of
interest Y = Y (θ) is defined by

Si = varθi
(
Eθ∼i (Y |θi )

)
var(Y )

, (9)

where var(Y ) is the variance of the quantity of interest Y , varθi (·) denotes the variance of
argument (·) taken over θi , and Eθ∼i (·) denotes the expectation of argument (·) taken over all
factors but θi . We use (9) to explore the contribution of the variance in each model parameter
to the variance in the likelihood (8). In Sect. 3 we argue that all activation energy parameters
θ are practically identifiable given voltage observations.

On the other hand, in the backward uncertainty analysis, we care about the uncertainty in
the parameters θ given observations of the voltage. Thus, we shall use the Bayesian paradigm
to model the conditional probability of the vector of model parameters θ given a vector of
observations v = (v1, . . . , vN )T . The prior model

π�(θ) (10)

codes into a probability density function available information about the parameters that
is independent from the voltage observations. If π�(θ) is a prior distribution of the model
parameters, then the uncertainty of the model parameters given observations of the voltage
is given by the posterior distribution

π�|V (θ |v) = πV |�(θ |v)π�(θ)

Z(v)
, (11)

where Z(v) is the normalization constant, often unknown.
There are no analytical methods to explore the posterior distribution (11), e.g., to obtain its

estimators, for example, the maximum a posteriori θMAP = maxθ π�|V (θ |v), the posterior
conditional mean θCM = E[π�|V (θ |v)] or posterior median θmedian. Thus, in Sect. 3 we
shall use a stochastic collocation method called Markov Chain Monte Carlo (MCMC) to
approximate numerically the posterior distribution (11).

2.4 Elicitation of the prior distribution for the activation energy parameters

To elicit a prior distribution (10) we shall assume Eadi,j , Eare,j ∈ [0, a × 105], j=p/n. We set
a = 2 for Eadi,p anda = 1 for the rest of the activation energy parameters.Also,we use the fact
that the parameter correlation structure is implicitly set into the forward model Vcell = M(θ)

to pose the prior model as the product of a prior model for each parameter. Consequently, we
model Eadi,j/(a×105), Eare,j/(a×105) ∼ Beta(α, β), where instrumental parameters α, β

are chosen following E[log(θi )] = ψ(α) − ψ(α + β), var(log(θi )) = ψ1(α) − ψ1(α + β),
being ψ and ψ1 are the first and second logarithmic derivatives of the Gamma function.

We remark that the Beta distribution is the maximum entropy distribution with support
on [0, 1] that arises (see Singh et al. [28]) from requiring a probability density function
f = fθi (θi ) to satisfy

∫ 1

0
fθi (θi )dθi = 1,
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∫ 1

0
ln θi fθi (θi )dθi = E[ln θi ],

and ∫ 1

0
ln(1 − θi ) fθi (θi )dθi = E[ln(1 − θi )],

for i = 1, 2, 3, 4. We set the instrumental parameters α = β = 1.1. Then we model the joint
prior probability density (10) as the product

π�(θ) = fEadi,p
(Eadi,p/(2 × 105)) × fEadi,n

(Eadi,n/10
5) × fEare,p

(Eare,p/10
5) × fEare,n

(Eare,n/10
5).

2.5 Estimation of the reversible heat

2.5.1 Bayesian approach

We shall use the equation of energy balance (4) to estimate the reversible heat given tempera-
ture observations T (ti ) at times ti for i = 1, . . . ,m. Following the notation of Marcicki [15],
we assume the irreversible part of the generated heat to be qirr = I

(
ηp − ηn + I Rcell

)
, while

Newton’s law of cooling holds for the heat rejected to the environment q∞ = h (T − Tamb).
Furthermore, we shall assume that the cell mass M and the cell specific heat capacity Cp

are known. Consequently, if an approximation of the temperature derivative dT
dt is available,

then we can use the energy balance (4) to estimate the reversible heat qrev by

qrev = MCp
dT

dt
− qirr − q∞. (12)

In order to use Eq. (12), we propose a Bayesian approach to estimate the temperature
numerical derivative given noisy observations of T . If we regard numerical differentiation as
an inverse problem, then the forward problem is a convolution with a Heaviside function H

T (ti ) =
∫
R

H(ti − s) f (s)ds + ξi , ξi ∼ N (
0, γ 2

T

)
, (13)

where f is the derivative of T in the zero noise limit and γ 2
T is the noise variance. In the

results presented in Sect. 3 we set the signal to noise ratio

SNR = max T

γT
= 102.

We shall use Eq. (13) to pose both, a computer model to solve the direct problem and a
likelihood model. We discretize the integral in Eq. (13) using the composite medium point
rule obtaining

Ti
.= T (ti ) − Tamb =

∫ ti

0
f (s)ds + ξi ≈

i∑
j=1

s f (s j ) + ξi , i = 1, . . . ,m, (14)

where we have assumed uniform timing in the observations ti = is for i = 0, . . . ,m
and s j = 1

2 (t j−1 + t j ) for j = 1, . . . ,m. Denoting by T = (Ti )mi=1, f = ( f (si ))mi=1 and
ξ = (ξi )

m
i=1, the discretized inverse problem (14) can be writen as

T = A f + ξ, (15)
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where A = (ai j )mi, j=1 is the lower triangular matrix defined by

ai j =
{

s if i ≥ j,

0 other case.

Assuming temperature observations are independent, the likelihood is given by the condi-
tional probability

T | f ∼ N (A f , �obs), (16)

where �obs = γ 2
T Im and Im ∈ R

m×m are the covariance and identity matrices respectively.
We shall solve the inverse problem in two stages. First, we pose a Gaussian prior model

for the probability distribution of the temperature derivative

f ∼ N (0, �pr ), (17)

with zero mean and covariance matrix �pr . Here, we define the covariance matrix in terms
of the precision matrix �−1

pr = γ −2LT L , where γ 2 is the marginal variance and matrix

L ∈ R
m×m is a model proposed by Bui [29] as follows. We let fi = 1

2 ( fi+1 + fi−1) + ξi ,
where ξi ∼ N (0, 1) for i = 2, . . . ,m − 1.

For the end points f1 and fm we postulate

f1 ∼ N
(
0,

1

δ2

)
, fm ∼ N

(
0,

1

δ2

)
,

and set the end points variance 1/δ2 by letting

1

δ2
= eT[m/2]

(
LT
DLD

)−1
e[m/2],

where e[m/2] is the canonical basis vector of index the integer part of m
2 and

LD = 1

2

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎦

∈ R
m×m .

Then γ −2LT L = �−1
pr is the precision matrix where

L = 1

2

⎡
⎢⎢⎢⎢⎢⎣

2δ 0
−1 2 −1

. . .

−1 2 −1
0 2δ

⎤
⎥⎥⎥⎥⎥⎦

∈ R
m×m,

The marginal variance γ 2 is chosen to be a function of the number of degrees of freedom,
i.e. γ 2 = γ0m3 for some γ0 > 0 and m is the number of degrees of freedom.

Equations (16) and (17), together with Bayes rule (see [30]), define a Gaussian model for
the conditional probability of the derivative of the temperature f given a vector of temperature
measurements T

f |T ∼ N ( f post , �post ) (18)
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with explicit expressions for the posterior covariance matrix

�post =
(
AT�−1

obs A + �−1
pr

)−1 =
(

1

γ 2
T

AT A + 1

γ 2 L
T L

)−1

(19)

and the posterior mean vector

f post = 1

γ 2
T

�post A
T T . (20)

The second stage of the inverse problem is carried out through dimension reduction in the
number of degrees of freedom.

2.5.2 Dimension reduction

It is known that in the Bayesian approach to inverse problems, the update from prior dis-
tribution (17) to posterior distribution (18) occurs along a low-dimensional subspace of the
space where the distributed parameter f lies. There are research efforts aimed at understand-
ing, computing, and exploiting those data-informed subspaces in the parameter space, see
[9, 31, 32], for both linear and nonlinear inverse problems. Among the data-informed sub-
space analysis methods, parameter dimension reduction is of paramount importance. Indeed,
there is an interplay between smoothness of the forward model (13), the dimension of the
parameter space, and the signal to noise ratio that determines the uncertainty in the posterior
distribution (18), and this dimension is a feature we can change to reduce the uncertainty in
the posterior distribution. In the context of methods for parameter space model reduction,
there are approaches based on optimization [10] and approaches based on marginalization
[32] among other techniques. It is safe to say that although there are no general parameter
dimension reduction methods, most methods aim to enhance the predictive capability of the
posterior distribution as a statistical model, e.g., to quantify the uncertainty in the solution
of the inverse problem better.

In the present setting, we reduce the dimension of the distributed parameter f , inferred as
shown in the Eqs. (18), (20), by computing the pointwise posterior variance and undersam-
pling f at points with smaller variance. To accomplish this task, we use matrix A in Eq. (15)
and a linear interpolation f = Bg, where B ∈ R

m×n , with n < m, is a linear transformation
aimed at collocating the degrees of freedom used to represent f . In the present setting, we
define B such that Bg it leaves unchanged r ∈ N degrees of freedom near the endpoints, and
undersamples the remainder degrees of freedom every other point.

B =
⎡
⎣Ir 0 0
0 R 0
0 0 Ir

⎤
⎦ ∈ R

m×n,

where Ir ∈ R
r×r is the identity matrix, 0 are zero matrices and

R =

⎡
⎢⎢⎢⎢⎢⎣

1 0
1/2 1/2 0
0 1 0

1/2 1/2 0
. . .

⎤
⎥⎥⎥⎥⎥⎦

∈ R
(m−2r)×(n−2r)
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Table 1 Sobol sensitivity analysis.

Eare,p Eare,n Eadi,p Eadi,n

Si 3.4926e−02 2.4850e−02 7.4417e−01 1.2907e-01

varSi 8.1361e−03 7.6431e−03 3.0304e−02 1.4272e−02

Global sensitivity analysis is a measure of practical identifiability. Complementary to the analysis of the
posterior distribution shown in Fig. 2, the marginal posterior distribution is well defined for parameters with
a significant Sobol index given a data set

is the interpolation matrix, with n =
{

(m + 1)/2 if m is odd

m/2 if m is even
.

This collocation strategy reduces both the posterior variance, and the number of degrees
of freedom in the distributed parameter g, as we will see in Sect. 3. The forward model (15)
is transformed into

T = ABg + ξ.

Next, we pose a posteriormodel on g following the derivation of the likelihood (16), aswell as
the priormodel (17) bymeans of the correspondingmarginal variance γ̂ andmatrix L̂ ∈ R

n×n

to define the covariance matrix in order to form the precision matrix �̂−1
pr = γ̂ −2 L̂T L̂ . Thus

obtaining

g|T ∼ N (gpost , �̂post ) (21)

where

�̂post =
(
(AB)T�−1

obs AB + �̂−1
pr

)−1 =
(

1

γ 2
T

BT AT AB + 1

γ̂ 2 L̂
T L̂

)−1

(22)

and

gpost = 1

γ 2
T

�̂post B
T AT T . (23)

3 Results and discussion

3.1 Forward and backward uncertainty analysis

To establish the adequacy of the thermal Li-Ion cell model (1)–(6), we start from synthetic
simulated data created with 41,000 time steps. Specifically, we solve the direct problem with
the values specified in [5] for an initial temperature of 298 K and a discharge rate of 1C. The
time required to reach the cutoff voltage is 4100 s. We have used the forward and backward
uncertainty analysis described in Sect. 2.3. First, by carrying out a Sobol sensitivity analysis
we examine the contribution of each one of the model parameters θ , defined by equation (7),
to the likelihood (8), which is the conditional probability of a set of voltage observations
given these parameters. Table 1 offers evidence that all activation energy parameters have a
meaningful contribution to the variance of the likelihood. We argue that this is a measure of
practical identifiability.
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Fig. 1 MCMC convergence. Two
lines of evidence of the
convergence of the MCMC are,
this trace plot of
− log(πV |�(θ |v)π�(θ)) versus
the iteration number, and the
computed integrated
autocorrelation time (IAT)
divided by the number of
parameters, which in our case is
given by I AT /4 = 6.8

Fig. 2 Inference results. Complementary to the Sobol sensitivity analysis shown in Table 1, the posterior
distribution is narrower for parameters with larger Sobol sensitivity index.

Next, we use MCMC to sample iteratively the posterior distribution (11) by means of
the t-walk from Christen and Fox [33]. Two standard tests provide numerical evidence
of the MCMC convergence, see Roberts and Rosenthal [34]. Namely, the trace plot of
− log(πV |�(θ |v)π�(θ)) versus the iteration number shown in Fig. 1, and the computed
integrated autocorrelation time (IAT) divided by the number of parameters, which in our
case is given by I AT /4 = 13.4.
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Fig. 3 Predicted state variables. The predicted temperature and voltage using samples from the posterior
distribution obtained through MCMC. Synthetic data was created with 41,000 time steps while samples from
the MCMC were created using 4100 points.

Fig. 4 Inference results with a coarse-grained computer model (I). Temperature derivative (a) and temperature
(b) inferred with a naive prior model with 4100 uniformly spaced grid points. Parts (c) and (d) shows the
corresponding ones with the variance reduction subsampling method described in Sect. 2.5.2

The posterior distribution gives useful information for the identification of model param-
eters. In particular, by means of the MCMC samples is possible to compute estimators of
the posterior distribution (for example, the median θmedian shown in Fig. 2) with a quantified
uncertainty.

Also, this MCMC samples allows us to analyze the relation between forward uncertainty
analysis and practical parameter identifiability. Indeed, from Table 1 and Fig. 2 we see that
posterior variance is smaller for those parameters with larger sensitivity. This outcome is
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Fig. 5 Inference results with a coarse-grained computer model (II). Reversible heat (a) and voltage (b) inferred
with a naive prior model with 4100 uniformly spaced grid points. Parts (c) and (d) shows the corresponding
ones with the variance reduction subsampling method described in Sect. 2.5.2

expected given that carry out a global sensitivity analysis (Sobol) of the likelihood over the
whole parameter support. Consequently, ameasure of practical identifiability given a data set,
is that the Sobol sensitivity index is roughly the same order of magnitude for all parameters.
This result should be general given a data set, a likelihood and a parameter support.

Figure 3a and b show, for temperature and voltage respectively, the true value as well as
the values predicted by the posterior median and by the 5–95% percentiles of the posterior
distribution. We note that predictions are achieved with very low forward uncertainty.

The inference results shown in Figs. 2 and 3 are obtained by simulating the direct problem
with 4100 time steps, while synthetic data, as described in Sect. 2.3, was created using 41000
time steps. Indeed, numerical simulations of the direct problem in computer MacBook Pro
(15-inch, 2018), 2.6 GHz Intel Core i7 of six cores, with 16 GB 2400 MHz DDR4 take 1.04 s
with 4100 points and 5.92 s with 41000 points. Namely, simulating the posterior distribution
with the coarse model saves more than 80% computation time. We argue that this computing
efficiency is of paramount importance if we are to sample the posterior distribution of the
activation energy parameters θ via MCMC.

3.2 Estimation of the reversible heat

Information about the estimation of the temperature derivative for a coarse-grained computer
model (4100 time steps) can be found in Fig. 4a. Figure 4b shows the temperature distribution
predicted bymultiplying bymatrix A, the discrete direct operator defined in Sect. 2.5.1, while
Figs. 5a and b show the predicted cell’s reversible heat qrev and voltage Vcell computed from
the temperature. On the other hand, Figs. 4c, d, 5c and d show the corresponding results
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Fig. 6 Inference results with a fine-grained computer model (I). Temperature derivative (a) and temperature
(b) inferred with a naive prior model with 16400 uniformly spaced grid points. Parts (c) and (d) shows the
corresponding ones with the variance reduction subsampling method described in Sect. 2.5.2

obtained after computing the pointwise posterior variance and undersample the temperature
derivative at the points with smaller variance. For this task, we allocate 10 % of the total
initial number of degrees of freedom uniformly placed in a neighborhood of the endpoints,
as described in Sect. 2.5.2. Of note, the dimension reduction improves the estimation of the
reversible heat, and reduces the posterior variance.

The same analysis is presented in Figs. 6 and 7 for a fine-grained computer model (41000
time steps). This simulation renders roughly the same result as the coarse-grained one.
Namely, we obtain roughly the same estimate of the reversible heat and the same uncer-
tainty and predictions of both temperature and voltage. Consequently, it may be preferable
to use the coarse-grained model if we have to analyze multiple datasets.

We argue that our inference is robust to the numerical discretization, and subsampling
the distributed parameters in the region where the pointwise variance is smaller reduces the
variance in the posterior distribution.

Algorithm 1: Reversible heat estimation
Data: Temperature observations Ti for i = 1, . . . , N
Result: Reversible heat qrev(t j ) at reduced grid t j , with j = 1, . . . , M
1. Form matrices A, �pr , and �obs . Compute the posterior mean f post and covariance �post .

2. Compute qrev = MCp
dT
dt − qirr − q∞.

3. Select a subsampling domain R
4. Compute matrices B, �̂pr , and �̂obs . Compute the reduced model posterior mean gpost and

covariance �̂post .
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Fig. 7 Inference results with a fine-grained computer model (II). Reversible heat (a) and voltage (b) inferred
with a naive prior model with 16,400 uniformly spaced grid points. Parts (c) and (d) shows the corresponding
ones with the variance reduction subsampling method described in Sect. 2.5.2

4 Conclusions

In this paper, we apply forward and backward uncertainty analysis to assess the adequacy of
a thermal single-particle Li-Ion cell model. We have used parameter sensitivity analysis as
diagnostics preceding parameter estimation.We offer numerical evidence that forward uncer-
tainty analysis may serve as a practical identifiability test given a set of voltage observations.
Afterward, we use error control of the posterior distribution concerning the numerical approx-
imation of the direct problem to reduce the computational burden in approximating such a
posterior distribution in order to identify the activation energy parameters via Markov Chain
Monte Carlo. In the second part of the manuscript, we infer the reversible heat of a Li-Ion cell
given observations of the temperature and an energy balance equation. To accomplish this
task, we exploit the linearity of the energy balance equation to construct the solution of the
inference problem as a conditional probability given by a Gaussian distribution with explicit
expressions for the mean and the covariance, Eqs. (18)–(20). Furthermore, we exploit the
fact that the solution grid is different from the data grid to apply a variance reduction method
and obtain a posterior distribution with reduced uncertainty, and a smaller number of degrees
of freedom, Eqs. (21)–(22), and Algorithm 1.
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Code and data availability For the sake of reproducibility, all computations shown in this section were
carried out using Anaconda Python [35] fixing the seed of random number generation as follows:
numpy.random.seed(2021). Code can be obtained from the corresponding author upon request.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ramos, A.M.: On the well-posedness of a mathematical model for lithium-ion batteries. Appl. Math.
Model. 40(1), 115–125 (2016). https://doi.org/10.1016/j.apm.2015.05.006

2. Díaz, J.I., Gómez-Castro, D., Ramos, A.M.: On the well-posedness of a multiscale mathematical model
for lithium-ion batteries. Adv. Nonlinear Anal. 8(1), 1132–1157 (2019). https://doi.org/10.1515/anona-
2018-0041

3. Richardson, G.W., Foster, J.M., Ranom, R., Please, C.P., Ramos, A.M.: Charge transport modelling of
lithium-ion batteries. Eur. J. Appl. Math. (2021). https://doi.org/10.1017/S0956792521000292

4. Oden, T., Moser, R., Ghattas, O.: Computer predictions with quantified uncertainty, part i. SIAM News
43(9), 1–3 (2010)

5. Guo, M., Sikha, G., White, R.E.: Single-particle model for a lithium-ion cell: thermal behavior. J. Elec-
trochem. Soc. 158(2), A122–A132 (2011)

6. Raijmakers, L.H.J., Danilov, D.L., Eichel, R.A., Notten, P.H.L.: A review on various temperature-
indication methods for li-ion batteries. Appl. Energy 240, 918–945 (2019)

7. Li, Y., Ralahamilage, D., Vilathgamuwa, M., Mishra, Y., Farrell, T., Choi, S.S., Zou, C.: Model order
reduction techniques for physics-based lithium-ion battery management: A survey. IEEE Ind. Electron.
Mag. 2021, 256 (2021)

8. Capistrán, M.A., Christen, J.A., Daza-Torres, M.L., Flores-Arguedas, H., Montesinos-López, J.C.: Error
control of the numerical posterior with bayes factors in bayesian uncertainty quantification. Bayesian
Anal. 1(1), 1–23 (2021)

9. Spantini, A., Solonen, A., Cui, T., Martin, J., Tenorio, L., Marzouk, Y.: Optimal low-rank approximations
of bayesian linear inverse problems. SIAM J. Sci. Comput. 37(6), A2451–A2487 (2015)

10. Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional
parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008)

11. Ning, G., Popov, B.N.: Cycle life modeling of lithium-ion batteries. J. Electrochem. Soc. 151(10), A1584
(2004)

12. Santhanagopalan, S., Guo, Q., Ramadass, P., White, R.E.: Review of models for predicting the cycling
performance of lithium ion batteries. J. Power Sourc. 156(2), 620–628 (2006)

13. Kumaresan, K., Sikha, G., White, R.E.: Thermal model for a li-ion cell. J. Electrochem. Soc. 155(2),
A164 (2007)

14. Cai, L., White, R.E.: Mathematical modeling of a lithium ion battery with thermal effects in. comsol inc
multiphysics (mp) software. J. Power Sourc. 196(14), 5985–5989 (2011)

15. Marcicki, J., Yang, X.G.: Model-based estimation of reversible heat generation in lithium-ion cells. J.
Electrochem. Soc. 161(12), A1794 (2014)

16. Bizeray, A.: State and parameter estimation of physics-based lithium-ion battery models. In: PhD thesis,
University of Oxford (2018)

17. Tagade, P., Hariharan, K.S., Basu, S., Verma, M.K.S., Kolake, S.M., Song, T., Oh, D., Yeo, T., Doo,
S.: Bayesian calibration for electrochemical thermal model of lithium-ion cells. J. Power Sourc. 320,
296–309 (2016)

18. Chen, S.C., Wan, C.C., Wang, Y.Y.: Thermal analysis of lithium-ion batteries. J. Power Sourc. 140(1),
111–124 (2005)

19. Grandjean, T.R.B., Li, L., Odio, M.X., Widanage, W.D.: Global sensitivity analysis of the single particle
lithium-ion battery model with electrolyte. In: 2019 IEEE vehicle power and propulsion conference
(VPPC), IEEE, pp. 1–7 (2019)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.apm.2015.05.006
https://doi.org/10.1515/anona-2018-0041
https://doi.org/10.1515/anona-2018-0041
https://doi.org/10.1017/S0956792521000292


Thermal uncertainty analysis of a single... Page 17 of 17    64 

20. Vazquez-Arenas, J., Gimenez, L.E., Fowler, M., Han, T., Chen, S.K.: A rapid estimation and sensitivity
analysis of parameters describing the behavior of commercial li-ion batteries including thermal analysis.
Energy Convers. Manage. 87, 472–482 (2014)

21. Edouard, C., Petit, M., Forgez, C., Bernard, J., Revel, R.: Parameter sensitivity analysis of a simplified
electrochemical and thermal model for li-ion batteries aging. J. Power Sourc. 325, 482–494 (2016)

22. Li, W., Cao, D., Jöst, D., Ringbeck, F., Kuipers, M., Frie, F., Sauer, D.U.: Parameter sensitivity analysis of
electrochemical model-based battery management systems for lithium-ion batteries. Appl. Energy 269,
115104 (2020)

23. Jokar, A., Rajabloo, B., Désilets, M., Lacroix, M.: An inverse method for estimating the electrochemical
parameters of lithium-ion batteries. J. Electrochem. Soc. 163(14), A2876 (2016)

24. Rajabloo, B., Jokar, A., Désilets, M., Lacroix, M.: An inverse method for estimating the electrochemical
parameters of lithium-ion batteries. J. Electrochem. Soc. 164(2), A99 (2016)

25. Li, J., Wang, L., Lyu, C., Liu, E., Xing, Y., Pecht, M.: A parameter estimation method for a simplified
electrochemical model for li-ion batteries. Electrochim. Acta 275, 50–58 (2018)

26. Johnson, D.H.: Signal-to-noise ratio. Scholarpedia 1(12), 2088 (2006)
27. Saltelli, A.P., Annoni, I., Azzini, F., Campolongo, M., Ratto, Variance, T.: Based sensitivity analysis

of model output design and estimator for the total sensitivity index. Comput. Phys. Commun. 181(2),
259–270 (2010)

28. Singh, V.P., Rajagopal, A.K., Singh, K.: Derivation of some frequency distributions using the principle
of maximum entropy (pome). Adv. Water Resour. 9(2), 91–106 (1986)

29. Bui-Thanh, T.: A gentle tutorial on statistical inversion using the bayesian paradigm. I: Technical Report
12-18, Institute for Computational Engineering and Sciences, 01 (2012)

30. Howson, C., Urbach, P.: Scientific Reasoning: The Bayesian Approach. Open Court Publishing, Berlin
(2006)

31. Bui-Thanh, T., Ghattas, O., Martin, J., Stadler, G.: A computational framework for infinite-dimensional
bayesian inverse problems part i: the linearized case, with application to global seismic inversion. SIAM
J. Sci. Comput. 35(6), A2494–A2523 (2013)

32. Cui, T., Martin, J., Marzouk, Y.M., Solonen, A., Spantini, A.: Likelihood-informed dimension reduction
for nonlinear inverse problems. Inverse Prob. 30(11), 114015 (2014)

33. Christen, J.A., Fox, C., et al.: A general purpose sampling algorithm for continuous distributions (the
t-walk). Bayesian Anal. 5(2), 263–281 (2010)

34. Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various metropolis-hastings algorithms. Stat. Sci.
16(4), 351–367 (2001)

35. Anaconda software distribution (2020). https://www.anaconda.com/products/distribution

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://www.anaconda.com/products/distribution

	Thermal uncertainty analysis of a single particle model for a Lithium-Ion cell
	Abstract
	1 Introduction
	2 Methods
	2.1 Thermal Li-ion single cell model
	2.2 Computer model
	2.3 Forward and backward uncertainty analysis
	2.4 Elicitation of the prior distribution for the activation energy parameters
	2.5 Estimation of the reversible heat
	2.5.1 Bayesian approach
	2.5.2 Dimension reduction


	3 Results and discussion
	3.1 Forward and backward uncertainty analysis
	3.2 Estimation of the reversible heat

	4 Conclusions
	Acknowledgements
	References


