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Thermal-equilibrium quantum states are constructed for free scalar fields in (%+1)-dimensional
de Sitter space. The states are described by density matrices of "thermal" form, satisfying the von
Neumann equation associated with the appropriate functional Schrodinger equation. These solu-
tions exist only for fields with mass and/or curvature coupling corresponding to conformal invari-
ance. The temperature associated with such a state obeys the classical red-shift law. States exist
with any temperature value at any given time; the zero-temperature limit is the Euclidean vacuum
state. The total field energy of a thermal state above that of the Euclidean vacuum is finite and posi-
tive. This excitation energy consists of one contribution which red-shifts classically, but-it can also
contain a contribution which grows in time as the radius of the space.

I. INTRODUCTION

Thermal physics plays an important role in gravita-
tional physics, and particularly in cosmology; thermal
equilibrium of matter and fields figures at some stage in
most cosmological models. Thermal states for quantum
systems in Bat spacetime are well understood. But space-
time curvature and dynamics affect significantly the
definition and nature of thermal equilibrium. Finite-
temperature quantum field theory in curved but static or
stationary spacetimes has been described by Dowker and
Ciitchley, ' Gibbons and Perry, Dowker and Kennedy,
Altaie and Dowker, and Critchley, Davies, and Ken-
nedy. Thermal equilibrium and finite-temperature
theory have been defined for conformally invariant 6elds
in conforilially static spacetimes by Gibbons and Perry,
Kennedy, and Hu; ' various methods for treating the
approximately thermal behavior of more general fields in
more general spacetimes have been developed by, e.g.,
Drummond, Hu, ' '" Critchley, Davies and Kennedy,
Semenoff and Weiss, ' Chen and Hu, ' Hu, Critchley,
and Stylianopoulos, ' and Eboli, Jackiw, and Pi. ' The
purpose of this work is to examine in detail thermal-
equilibrium states of a quantized 6eld in a curved and dy-
namic spacetime, treating a particular simple example:
%'e consider here free scalar fields in de Sitter space.
This is perhaps the simplest —and best studied—
quantum field theory after fiat-spacetime theory; it is also
of interest as underlying inflationary cosmological mod-
els. ' For generality we treat de Sitter space of arbitrary
dimensionality, as this is no more difficult than four di-
mensions.

Since thermal states are the objects of principal interest
here, it is convenient to treat the field theory via covari-
ant functional Schrodinger formalism, ' in which the
quantum states of the field are represented explicitly.
Pure states are described by wave functionals, which as-

sign probability amplitudes to configurations of the 6eld
on hypersorfaces of constant time. The evolution of a
wave functional from one such hypersurface to another is
generated by a field Hamiltonian operator; the wave func-
tional obeys a "functional Schrodinger equation. "
Thermal states, being mixed states, must be represented
by density matrices. The matrix elements of these opera-
tors are likewise functionals of field values on constant-
time hypersurfaces. Their time evolution is governed by
the von Neumann equation corresponding. g to the func-
tional Schrodinger equation. The Hamiltonian in these
equations can be obtained from an integral over a
constant-time hypersurface of the energy-density com-
ponent of the canonical stress-energy tensor for the field.
Consequently we term this formulation of the theory
"canonical. " An alternative, equivalent functional-
Schrodinger formulation is also of use here. It is based
on a time-dependent rescaling of the field; in terms of this
conformally transformed field the theory can be cast in a
form resembling Aat-spacetime theory. ' ' The Hamil-
tonian and functional Schrodinger and von Neumann
equations in this formulation, termed "conformal, " are
obtained by exploiting this resemblance. These formula-
tions of the functional Schrodinger formalism are the
same as those used by Eboli, Jackiw, and Pi' to treat
nonequilibrium density matrices in fiat and de Sitter
spacetimes.

The desired description of a thermal state of the field,
then, is given by its density matrix. We take the form of
a thermal density matrix in the conformal formulation to
match that in Aat spacetirne, in accord with the appear-
ance of the field theory itself. The canonical form of the
density matrix follows via a simple transformation. The
von Neumann equation determines conditions under
which a density matrix can take such a form, i.e., under
which a state thus described can exist, and fixes some of
its properties. All the physical features of the thermal
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II. FUNDAMENTALS

De Sitter space of %+ 1 dimensions is taken here as a
fixed background for the field theory. Its metric may be
written

ds = dt —+a cosh (t/a)dQ~

=a sec g( —dr) +dQ&), (2.1a)

where a is a positive constant and d Qz is the line element
of the unit X-sphere. Comoving-observer proper time
t E (

—Oo, + ~ ) and conformal time g H ( —m /2, +m. /2 )

are related by

state can be calculated from the density matrix thus
deterxnined.

The derivation is presented as follows. Particulars of
the spacetime geometry and field theory are given in Sec.
II. In Sec. III we describe the functional Schrodinger
formalism and the canonical and conformal Hamiltonian
operators. The form of the thermal density matrix and
the conditions imposed by the von Neumann equation are
obtained in Sec. IV. As an example of the calculation of
physical properties using the density matrix, in Sec. V we
calculate the field energy of a thermal state, as represent-
ed by the gravitational Hamiltonian. Results are summa-
rized and discussed in Sec. VI.

Units with A= c =kz = 1 are used throughout this
work. Our sign conventions and general notation follow
those of Misner, Thorne, and Wheeler.

(3.1)

where the field argument is considered as a function only
of the angular coordinates A& on the constant-time hy-
persurface with the given g value. This equation can be
expressed as a functional differential equation once the
Hamiltonian H appropriate to the theory is known.

A. The "canonical" Hamiltonian

The Hamiltonian operator can be obtained from an in-
tegral of the field energy density over a constant-time hy-
persurface

a(g)= fd"x& g—~g»~T„„. (3.2)

we label the resulting Hamiltonian "canonical. " Its form
as a functional differential operator is obtained by replac-
ing the conjugate momentum II=8„N by the functional
derivative operator i(g»I& —g )5/54; this implements
the appropriate commutation relation between N and II
in the field-coordinate representation. ' The result is

The component T„„ is taken from the canonical stress-
energy tensor

T„=B„48„Ii—i —,'g„[gt' 8 4B 4+(m +JR )4 ];
(3.3)

=arctan[ sinh( t /a ) ] .
0 cosh u

(2.1b)

The curvature scalar is R =X(%+1)/a, a constant.
The field 4 considered here is a real scalar field of mass

m, with no nongravitational couplings. The action for
this field on the de Sitter background is

S= ,' f d—+—'xV'—g [g" B„@B@+(m +JR )@ ],
(2.2)

with x, g, g", and R taken from the geometry (2.1a), and

( constant. The corresponding classical field equation is

[ —(m +JR )]@=0, (2.3)

with the covariant O'Alembertian in de Sitter space.
General solutions of this equation can be obtained in
several forms by separation of variables. '

III. THE FUNCTIONAL SCHRODINGER
EQUATION

The quantized field theory can be treated using covari-
ant functional Schrodinger formalism. ' Pure quantum
states of the field are described by wave functionals. In a
"field-coordinate" representation, these assign probability
amplitudes to configurations of the field on constant-time
hypersurfaces. The evolution of a wave functional from
one such hypersurface to another is governed by the
functional Schrodinger equation

+~ -'(~)[h'Ja, ea, e
+ A (g)(m +JR )4 ]

(3.4)

with A (q):—a seep, and with d Q~ the volume element
and h 'J the metric on the unit ¹phere.

Except in the minimal-coupling (/=0) case, the canon-
ical stress-energy tensor (3.3) differs from the gravitation
al stress-energy tensor obtained by variation of the action
S with respect to the metric. The latter —containing
terms absent from (3.3), arising from the variation of the

/RAN

term in the action —appears on the right-hand
side of the Einstein field equations. Nonetheless, the
Hamiltonian constructed from the canonical T„ is the
correct choice for the functional Schrodinger equation.
This may be seen by considering the propagator for that
equation. The path integral

G[e „q,;e„q,]=f e'(~)nc (3.5)

is the propagator' ' for any state from field config-
uration No on hypersurface go to configuration N, at g, ;
here the action S is given by the integral (2.2) over the re-
gion between those hypersurfaces, and the functional in-
tegral is over all fields in that region having the given
configurations at go and g, . The functional 6 can be
evaluated explicitly; it satisfies Eq. (3.1) with a the
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canonical Hamiltonian (3.4). In particular, since in the
de Sitter background the mass and curvature-coupling
terms contribute identically to the action, the evolution
of any state via G depends on m, g, and R only in the
combination m +gR —as the canonical Hamiltonian
does, but its gravitational counterpart does not.

The Hamiltonian takes a particularly convenient form
in terms of normal-mode amplitudes for the field. The
field on any constant-time hypersurface can be expanded
in spherical harmonics in le dimensions:

@«x)= Xyl. &L(&x»
L

(3.6)

—
—,
'A' "(il), + —,'A '(i))~'(il)y'

$2

with

~~ ( il ) = [L + ( m +gR ) A ( il ) ]'

a time-dependent conformal-time frequency.

(3.7a)

(3.7b)

where I. denotes the complete set of N angular mornen-
tum quantum numbers. The harmonics PL are eigen-
functjons of the Laplacian on the unit N-sphere, with ei-
genvalues L= ——1(l+X—1), where l is any non-
negative integer. For convenience we take the
(hence the amplitudes yL) to be real. These functions
constitute a complete orthonormal set on the X-sphere;
hence the coeKcients yL constitute a complete set of mu-
tually commuting observables for the theory, equivalent
to the field values 4(Q&). With 4 given by expansion
(3.6), and 5/5N similarly transformed via the chain rule,
the Hamiltonian (3.4) takes the form of a sum of indepen-
dent single-mode Harniltonians:

H(g)= +HI (rl)

and
2 1/2

I 2+
2

I+ N —1

2
(3.9c)

The last term in the action (3.9a) is a surface term, the in-
tegral of a total derivative. It has no effect on the equa-
tion of motion and contributes only an overall phase to
any wave functional, via the propagator 6. It may there-
fore be disregarded. (This entails only a canonical trans-
formation of the conjugate momentum operator. ) The
remaining terms constitute the action for a set of har-
monic oscillators, with "coordinates" y,I and confor-
rnal-time frequencies co,l. The associated "conformal"
Hamiltonian is

H, (rl)= g H,L (il)
L

2X 2 2
+ Ly~L, — (3.10)

The corresponding Schrodinger equation is of the form
(3.1), with the time derivative 8/Oil taken at fixed @, or
y,L, rather than at fixed N or yI as in the canonical for-
mulation of Sec. III A.

Despite differences in form, the canonical and confor-
mal formulations of the functional Schrodinger equation
are equivalent. To each canonical wave functional
%'[Iyr I,q] there corresponds a unique conforrnal wave
functional %,[Iy,L ],g] and vice versa. These function-
als, representing the same quantum state, assign the same
relative probability amplitudes to any given Geld
configurations. They differ by the phase factor associated
with the surface term in the action (3.9a), and by a nor-
malization factor, since they are normalized with respect
to integration over different Geld variables. Specifically,
corresponding functionals are related by

8. The "conformal" Hamiltonian

@,(n &N ) = &y,L (n»i «x»
L

(3.8)

An alternative definition of the Hamiltonian can also
be used, based on a time-dependent rescaling of the
field. ' ' ' The theory can be expressed in terms of the
dimensionless "conformal" field 4, —:A ' "

( il )4.
Then in terms of the amplitudes of a harmonic expansion
of this Geld, viz. ,

.X —1X exp —i y,I tang

xq, l (y (3.11)

withyI =y,L
A" ' (il). Given this relation, 4 satisfies

Eq. (3.1) with Hamiltonian (3.7a) and 8/Bg at fixed yl if
and only if 4, satisfies the same equatio~ with Hamiltoni-
an (3.10) and 8/Oil taken at fixed y,L .

—co,'I. ( il )y,'I,

N —1 d
(y,l tani) )

2 d7j

the action (2.2) takes the form
T 2

dycLs=y ,'fdg-
L d'g

(3.9a)

IV. THERMAL STATES

A thermal-equilibrium state of the field is a mixed
quantum state, described by a density matrix p or p, .
The density matrix must satisfy the von Neurnann equa-
tion

with
1/2

i [H,p]=0-. Bp

BY)
(4.1)

N —1~„(q)= X'+ m'+JR —,A'(g)
4a

(3.9b) or its conformal counterpart, corresponding to the func-
tional Schrodinger equation (3.1), and is normalized to
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unit trace.
The simple form of the conformal Hamiltonian (3.10)

suggests that the conformal density matrix for a thermal
state should be a product of thermal density matrices for
each normal-mode oscillator:

p =IIp L,

L

There is no mixing of modes in Eq. (4.4a), and for each
mode the operators y,L, y,L5/5y, L, 5 /5y, L, and the
identity are linearly independent. Thus Eq. (4.4a)
demands that the coeScients of these operators vanish
separately. This occurs, i.e., the thermal density matrix
(4.2) is a solution of the von Neumann equation, if and
only if the conditions co,L =A, , or equivalently

P c

2 sinh ~L Le (4.2)
N —1

m +JR=
4a

(4.5a)

r

~L, ~cL,
—,'coth

L
(PL, ~,L )—

. dn

( —pL )" dH I"' dg

131.
H,L

7l

(I(. —I) .

p =0 (4.3a)

where the iterated commutator is defined via

dHcL
H,L,

'9

with

(j) ' (j —i)
cL

H,L, H,L, d'g
(4.3b)

dH, L
H,j,

7f

(0)
dH, L

d'g
(4.3c)

Evaluating the comrnutators and the sum over k yields

with

(pI.~,L )+fL(rj)+gL+'(rj)y, L
, dg

gi '(~) 5'
+2f1 (rj)y,l + p, =0, (4.4a)

~I. 5y I,

fL (rj) = — [cosh(2PL co,l )—1]tanrl
4co~L

and
dpi

g (+)(~)—
4

~cr.+ ' [sinh(2' co,L )
cL

(4.4b)

%2PL cocL ]tang (4.4c)

Here the inverse temperature PI may be a function of
time and, for generality, of the mode I., although in
genuine thermal equilibrium it is expected to be indepen-
dent of I.. [The temperature Pt ', like all energies associ-
ated with H or H„ is in terms of conformal time; the cor-
responding physical temperature, associated with proper
time, is ( APL ) .] Given this ansatz, the conformal von
Neumann equation reduces to (Bp, /BrI) =0, i.e.,

and

(4.5b)

are both satisfied.
These, then, are the necessary and sufficient conditions

for a de Sitter-space scalar field to possess therrnal-
equilibrium states, as described by Eq. (4.2). Condition
(4.5a) implies that such states exist only for a confor-
mally invariant field theory —with I=0 and
g=(N 1)/4N —or the—ories equivalent to it by virtue of
the identity of mass and curvature-scalar terms in de Sit-
ter space. This accords with the result of Hu, that
thermal equilibrium can be maintained only for a confor-
mally invariant field in a conformally static spacetime,
the constancy Of the de Sitter-space curvature scalar al-
lowing slightly greater latitude in the choice of field here.
Hu observed that in the absence of conformal invariance
particle, hence entropy, production disrupts thermal
equilibrium; here condition (4.5a) follow directly from the
von Neumann equation and the thermal ansatz (4.2},
without reference to any definition of particles. (The von
Neumann equation incorporates the condition of con-
stant entropy in an equilibrium state. ' ' ) Condition
(4.5a) is also equivalent to the requirement that H, be
time independent, in which case the imaginary-time in-
tegral expression for the density matrix used by Drum-
mond9 reduces to the thermal-equilibrium form (4.2).
Condition (4.5b) implies that the physical temperature
(AP) ' associated with such a state varies with time as

, in accord with the classical red-shift law for the
temperature of relativistic particles. The temperature is
not otherwise constrained; a thermal state exists for any
value of the temperature at any given time.

The description of thermal states iri the canonical for-
mulation follows from the above results. The matrix ele-
rnents of the density matrix p, in the basis of amplitudes
yL, follow from those of p, via a relation corresponding
to Eq. (3.11). Specifically, since p, has the form (4.2},
with H,L given by Eq. (3.10), its matrix elements are
mode products of ordinary simple-harmonic-oscillator
thermal-state matrix elements:

p [ I y,L, I, I z,L l 1
=II —tanh

PA,

7T

1/2

exp . [(y,I +z,L )cosh(PA, ) 2y,L z,L ]-2sinh( A,
(4.6)

with conditions (4.5) assumed, and P now taken independent of L. Since any density matrix can be written p(y, z)
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=g;c;g;(y)P,*(z), where the c; are c numbers and the tP; some basis of wave functions, it follows from relation (3.11)
that the density matrix p corresponding to this p, has matrix elements

]. /2

p[[yL },IzL j;g]=IIA'N "~ (g) —tanh
A

L
exp [(yL+zj )cosh(PA, ) —2yI zI ]2smh A,

Xexp i — (yl —zl ) A '(r))tang (4.7)

can be seen directly that the density matrix thus defined satisfies the canonical von Neumann equation, with Hamil-
tonian (3.7a). The operator form of p can be inferred from these results and the relationship between the Hamiltonians
(3.7a) and (3.10):

p=II2sinh A' " (g)exp i — A '(g)t»gyJ
L

Xexp( —pIH~+ ' AN (71)[(&—1)z—(&z—1)sec g]yL } )exp +i A '(q)tangylN —i 2 2 2 2 .N —1
(4.g)

where yL here denotes the amplitude operators. This
canonical density matrix for a thermal state takes the fa-
miliar Aat-spacetime form, proportional to e ~, only in
(1+1)-dimensional de Sitter space. There the canonical
and conformal formulations are identical. (This accords
with a result of Semenoff and Weiss Assuming a densi-
ty matrix of that form, they find that equilibrium requires
both conformal and minimal coupling, which coincide
only in 1+ 1 dimensions. )

The zero-temperature, i.e., P~ ~, limit of these
thermal states is the Euclidean ' vacuum state. In this
limit the density matrix factors into a product of wave
functionals for a single, pure quantum state. Its wave
functional, in the canonical formulation, is

I

Euclidean-vacuum wave functional for fields satisfying
that condition, is just this %0.

V. THERMAL ENERGY

The field energy of a thermal state is a simple charac-
teristic which can be calculated from the density matrices
obtained above. The energy is given by the expectation
value of a Hamiltonian; for this purpose it is useful to
consider the "gravitational" Hamiltonian H . This is
given by the integral (3.2), using the gg component of the
gravitational stress-energy tensor '

T„'~'=(1—2g')B„@BN+(2g' —
—,')g„g~ 8 NB @

—
—,'g„„m 4& +2/@(g,U@—V„B,C&+ —,'G„„@)

Xexp ——A" '(g)
2

(5.1)

in the integrand. The result, with the same operator im-
plementation as for the canonical Hamiltonian, is

. N —1X A, +i tang yL2
H (g)=H(r)) gN g sec q—A '(q)yL

L

X uq/2e 7 (4.9) 5 5+i tang yL + yL
where the final phase factor is demanded by the function-
al Schrodinger equation. The wave functional of the Eu-
clidean vacuum for massive de Sitter-space scalar fields
has previously been calculated in the formulation used
here. The analytic continuation of that wave functional
to mass values in accord with condition (4.5a), i.e.,

'

the

(5.2)

with H as in Eq. (3.7a). The formal (conformal-time) en-
ergy expectation value in a thermal state is the trace of
Hgp, viz. ~

1 5 1 2—
(H ) g A 1 N+ AN —I L 2+A—2 2 g~sec2 AN —1 2

g P, '
2 5y2 2 4 2

5 5—~V'tann yi + y& p[[yL j IzI. } 9] IIdyl.
z~ —3L L

(5.3a)
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with

1 N(N 1)— 2 (N 1—)2
'Ni =A, +— sec'il—

monotonically with increasing temperature (decreasing
P). For example, in (3+1)-dimensional de Sitter space
they can be cast in the forms

4NgX 1 (5.3b)

and

00 1Fi(/3)= —', g „+G3(p)
k =i sinh"(kP/2)

(5.6a)

This is the sum of the Euclidean vacuum and thermal ex-
citation energies of the field. The series diverges for any
value of the temperature. The divergences, however, are
temperature independent, and are just those associated
with the vacuum energy; the counterterms involved in
the regularization or renormalization of (Hs )ii are like-
wise just those for the zero-temperature energy. The
thermal contribution to the energy, therefore, is given by
the difFerence between the expectation value (5.3a) and
the P~ oo limit of that expression. ' "' ' This
difference is

00
1

G3( )=—,
''

I, =, sinh (kI3/2)
(5.6b)

e~+7 m' m'
&F3(p) & +

e ~—1 15 613'
(5.7a)

Since sinhx is greater than x and less than e "/2 for all
positive x, the bounds

& G3(p) &
e~—1 6P

(5.7b)

where

DN(l)
'lVi,

I —o e 1

(2l +N —1 )( l +N —2)!
(N —1)!l!

2A,[X+(N —3 ) /2]'
(N —1)![A, —(N —1)/2]!

(5.4a)

(5.4b)

is the degeneracy of modes with total angular momentum
l, i.e., the number of harmonics 5'I with that total-
angular-momentum quantum number. Owing to the
"Bose-Einstein factor" in the summand, the difference
(5.4a) is finite. It is positive for all positive temperatures.

The physical (proper-time) excitation energy of a
thermal state above the Euclidean vacuum is 3 ' times
the difFerence (5.4a). This may be written

Et3(t) = F~(p)
1

a cosh t/a

(N 1 )
1

4Ng
G (P)

4 X —1

with

cosh(t/a) N(N 1)
1

4Ng-
a 4 N —1

(5.5a)

A,D~(l)
F~(13)—= g

o e
(5.5b)

D~(l )
G~(g) —= g

A, (e~ —1)
(5.5c)

The functions F& and 6& are finite and positive; they de-
pend only on the dimension and temperature, increasing

on these functions follow directly. The functions can also
be evaluated as sums of generalized Riemann g func-
tions.

The thermal excitation energy E13, then, consists of one
contribution which obeys the classical red-shift law, vary-
ing as A ', and in certain cases another which varies as

growing without bound at late times. (The
corresponding energy density contributions are just the
energy terms divided by the spatial volume
V&=2vr' +"~ A /I [(N+1)/2], as the thermal state is
rotationally invariant, i.e., they vary as 3 ' and

, respectively. In contrast, the vacuum energy
density can only be a cosmological-constant contribution,
the corresponding energy varying as A, by virtue of the
de Sitter invariance of the Euclidean vacuum. ) Because
of the form of the gravitational Hamiltonian, E& differs
for fields satisfying condition (4.5a) but with different m
and g values. In the actual massless, conformally coupled
case, the Gz terms in Eq. (5.5a) vanish, and Ep consists
entirely of the F& contribution with classical time depen-
dence. This is the result obtained, for any field satisfying
condition (4.5a), if p, and the conformal Hamiltonian are
used to calculate the energy; it also accords with the re-
sults of Kennedy, Hu, ' and Drummond. For fields
with nonzero mass and correspondingly smaller g values,
the 6& terms add a positive contribution to the energy,
including the component varying as A. This includes the
minimally coupled case, with /=0 and m =(N 1)/—
4a, for which E& takes the value which would be. ob-
tained for any case if the canonical Hamiltonian were
used as the measure of energy. The growing component
of the excitation energy is thus a consequence of the
breaking of strict conformal invariance, a form of "su-
peradiabatic amplification. " ' Such effects were found by
Hu and Chen and Hu' for fields in quasi-equilibrium
when conformal invariance was broken; here the constant
curvature of de Sitter space allows thermal equilibrium to
be maintained.

In all cases the field excitation energy E& neglects the
gravitational self-energy of the field. The "back reac-
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tion" of the spacetime geometry to the excitation energy,
via the Einstein field equations, is disregarded in fixing
the geometry as de Sitter space, just as it is in Aat-
spacetime Geld theory.

VI. CONCLUSIONS

Explicit density matrices for thermal-equilibrium
states, functionals of Geld values on constant-time hyper-
surfaces similar in form to such density matrices in Hat
spacetime, can be constructed as shown here for some de
Sitter-space scalar fields. The field theory involved must
either be conformally invariant, i.e., massless and confor-
mally coupled, or equivalent to a conformally invariant
theory by virtue of the identity of mass and scalar-
curvature terms in de Sitter space. That is, the field must
obey the same classical field equation, and have the same
value of the action, as in a conformally invariant theory.
This requirement, expressed by condition (4.5a), follows
directly from the functional von Neumann equation for
the thermal states. It is a general result that thermal
equilibrium can obtain only for conformally invariant
fields in conformally static spacetimes; the special case
of de Sitter space, with its constant scalar curvature, ad-
mits fields with a range of masses and curvature cou-
plings for which thermal equilibrium can be defined.
Other Friedmann-Robertson-Walker spacetimes, with
constant scalar curvature admit a similar latitude, e.g. , in
the radiation-dominated case, with R =0, massless scalar
fields with any curvature coupling can have thermal-
equilibrium states. '

The requirement (4.5a) also implies that tliese thermal
states cannot be obtained directly from the dimensional
reduction of any states of a scalar field in higher-
dimensional Minkowksi space, in which de Sitter space
can be embedded. The fields imposed on de Sitter space
by even a massless field in such an embedding space all
have I +JR values larger than a bound which exceeds
the value condition (4.5a) specifies.

The temperatures associated with these thermal states
obey the classical red-shift relation for temperatures of
relativistic particles. That is, the physical temperature of
a state varies in time inversely as the radius of the space.
This too is a consequence of the functional von Neumann
equation, expressed by condition (4.5b); it is also a gen-
eral result for scalar fields in thermal equilibrium in con-

formally static spacetimes.
Possible temperatures for thermal states range over all

non-negative values, with the zero-temperature limit (at
fixed time) being the Euclidean vacuum state. This asso-
ciation of the Euclidean vacuum with zero temperature,
appropriate to a pure state, means that the temperature
parametrizing these thermal states is a feature distinct
from the positive Gibbons-Hawking temperature
characterizing Euclidean-vacuum field fluctuations, or
two-point functions, or "detector responses. "

The excitation energy of a thermal state above the Eu-
clidean vacuum follows from the expectation value of the
gravitational Hamiltonian, calculated usirig the density
matrices obtained here. The result is a mode sum of en-
ergies, weighted by factors of the familiar Bose-Einstein
form. Because the form of the gravitational Hamiltonian,
unlike those of the canonical and conformal Hamiltoni-
ans which govern the evolution of the states, differs for
fields satisfying condition (4.5a) with diff'erent masses and
curvature couplings, the excitation energy behaves
differently for different such fields. For the massless, con-
formally coupled field, the energy red-shifts classically,
varying in time inversely as the radius of the space; the
result agrees with earlier calculations of thermal energies
in Friedmann-Robertson-Walker spacetimes. For
massive fields with other curvature couplings, including
minimal coupling, the energy contains an additional con-
tribution which grows directly as the radius of the space.
This is an example of "superadiabatic amplification, " '

owing to the breaking of strict conformal invariance.
The energy of near-equilibrium nonconformally invariant
fields in more general spacetimes behaves similarly; ' in
other Friedmann-Robertson-Walker spacetimes with con-
stant scalar curvature (such as radiation-dominated ones),
in which thermal equilibrium is possible for nonconfor-
mally coupled fields, the same effect should occur.
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