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Classical and quantum polarization correlations
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We compare the maximum achievable polarization correlations for classical-like separable states and quan-
tum entangled states. For one-photon systems we find that the maximally entangled states have three times
larger correlations than the maximum correlations achievable with separable states. However, for larger photon
numbers we find that there are separable states with larger correlations than the maximally entangled states.
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I. INTRODUCTION

Polarization is a fundamental ingredient of light, both
the quantum and in the classical domains. In the quan
regime this variable has been crucial in order to demonst
experimentally fundamental properties and applications
the quantum theory such as entanglement, complementa
quantum cryptography, teleportation, and Bell inequalit
@1–14#. All these examples involve sources of light wi
nonclassical properties and strong polarization correlatio

It might be guessed that quantum entangled states w
present always larger polarization correlations than class
like separable states. In this work we examine this issu
some detail. We compute and compare the maximum ach
able correlations attainable by entangled and separable~i.e.,
disentangled! states. For one-photon systems we find that
maximally entangled states have three times larger corr
tions than the maximum correlations achievable with se
rable states~Sec. III!. However, for larger photon number
we find that there are separable states with larger correlat
than the maximally entangled states~Sec. IV!. These results
are obtained by using a recently introduced measure of
larization correlations@15,16# ~Sec. II!. For the sake of com-
pleteness and comparison we also compute the polariza
correlations for the same states by using the familiar Sto
parameters~Sec. V!.

II. POLARIZATION CORRELATIONS

In a recent work@15,16# we have proposed a suitab
assessment of polarization correlations in terms of the j
polarization distribution on the Poincare´ sphere given by the
SU~2! Q function @17#

Q~V1 ,V2!5 (
n1 ,n250

`
~n111!~n211!

~4p!2

3^n1 ,V1 ;n2 ,V2urun1 ,V1 ;n2 ,V2&,

~2.1!

wherer is the density matrix,un1 ,V1 ;n2 ,V2& is the product
of SU~2! coherent states in the corresponding modes
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1050-2947/2004/69~2!/023803~6!/$22.50 69 0238
m
te
f

ity,
s

.
ld
l-

in
v-

e
a-
-

ns

o-

on
s

t

un,V&5 (
m50

n S n

mD 1/2S sin
u

2D n2mS cos
u

2D m

e2 imfum,n2m&,

~2.2!

and un1 ,n2& is the product of photon number states in t
two field modes sustaining a single polarization mode.
these expressionsV represents the standard parametrizat
of the sphereV5(u,f), whereu and f are the polar and
the azimuthal angles, respectively. The polarization corre
tions can be naturally measured as the distance betwee
joint distribution Q(V1 ,V2) and the product of individua
distributionsQ1(V1)Q2(V2), in the form

C5E dV1dV2@Q~V1 ,V2!2Q1~V1!Q2~V2!#2,

~2.3!

wheredV j5sinujdujdfj , j 51,2 is the differential of solid
angle. A similar approach has been adopted to asses the
ibility of multiparticle interference fringes@18#. This defini-
tion is invariant under SU~2! transformations applied to eac
polarization mode separately. These are linear and en
conserving transformations of the field complex amplitud
~produced by passive optical devices such as free prop
tion, beam splitters, phase plates, and mirrors! that modify
the position and orientation of the polarization distributi
on the Poincare´ sphere but preserve its form.

This formalism assesses polarization correlations ir
spective of its quantum or classical origin. Therefore this i
suitable tool to compare the maximum achievable corre
tions attainable with quantum and classical states.

As an alternative approach to this problem we can m
tion the use of the familiar Stokes parameters, which is f
ther developed in the next sections. Here we just point
that the measure~2.3! is more powerful and complete tha
any other one based on the Stokes parameters sinceC in-
volves field correlations of all orders simultaneously, wh
the Stokes parameters involve only the lowest orders.

III. ONE-PHOTON STATES

In a first approach to the problem let us examine exha
tively the simple but fully relevant case of a single photon
each polarization mode. In this case any joint density ma
can be expressed as a linear combination of the opera
s1,k^ s2,, , for k,,50,x,y,z, having the following expres-
©2004 The American Physical Society03-1
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sions in the photon-number basis:

sj ,05u1,0& j^1,0u1u0,1& j^0,1u,

sj ,x5u0,1& j^1,0u1u1,0& j^0,1u,
~3.1!

sj ,y5 i ~ u0,1& j^1,0u2u1,0& j^0,1u!,

sj ,z5u1,0& j^1,0u2u0,1& j^0,1u,

with

tr@~s1,k^ s2,,!~s1,m^ s2,r !#54dk,md,,r . ~3.2!

These are the restrictions to the subspace of one photon
mode of the Stokes operators

Sj ,05aj ,1
† aj ,11aj ,2

† aj ,2 ,

Sj ,x5aj ,2
† aj ,11aj ,1

† aj ,2 ,
~3.3!

Sj ,y5 i ~aj ,2
† aj ,12aj ,1

† aj ,2!,

Sj ,z5aj ,1
† aj ,12aj ,2

† aj ,2 ,

whereaj ,k are the corresponding complex amplitude ope
tors.

Every one-photon pure state is a SU~2! coherent state
u1,V& and

^1,VuSu1,V&5^1,Vusu1,V&

5V5~sinu cosf,sinu sinf,cosu!,

~3.4!

leading to a joint polarization distribution

Q~V1 ,V2!5
1

~4p!2
@11V1•^s1&1V2•^s2&

1^~V1•s1! ^ ~V2•s2!&#, ~3.5!

while the associated individual distributions are

Qj~V j !5
1

4p
~11Vj•^sj&!. ~3.6!

From Eqs.~2.3! and~3.5! it can be seen that the degree
polarization correlations admits a simple and natural exp
sion in terms of the mean values of the Stokes operators

Cone photon5
1

~12p!2 (
k,,5x,y,z

~^s1,k^ s2,,&2^s1,k&^s2,,&!2,

~3.7!

which resembles previous approaches to this problem@19#.
We stress that this equivalence occurs only for one-pho
states since in this case the Stokes parameters are the
nontrivial moments of the polarization distribution.
02380
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The joint Q function for one-photon states can be eas
determined experimentally by measuring the probabi
P(V1 ,V2) that the two photons cross simultaneously tw
analyzers

P~V1 ,V2!5tr~ru1,V1&1^1,V1u ^ u1,V2&2^1,V2u!

54p2Q~V1 ,V2!, ~3.8!

where u1,V j& j represent the polarization states crossing
corresponding analyzer with certainty. The statistics of su
a measurement coincides with the definition of the two-mo
polarization distributionQ(V1 ,V2).

A. Maximum correlations for separable states

With the help of the above results we can investigate
maximum polarization correlations attainable with separa
states with a single photon in each mode. To this end
construct the most general separable state considering
diagonal form of the density matrix, whose eigenvecto
must be orthogonal product states. Without loss of genera
we can always choose one of the eigenvectors to be the p
uct of number statesu1,0&1u1,0&2 @this is because of the
double SU~2! symmetry ofC mentioned above#. The other
eigenvectors must be orthogonal to this one. The proced
to construct the other most general orthogonal states is ra
simple due to the reduced dimensionality. Specifically~i! ev-
ery one-photon pure state is a SU~2! coherent stateu1,V&,
and ~ii ! the only state orthogonal tou1,V& is the antipodal
stateu1,2V&, where2V5(p2u,f1p). The result forrs
is of the form

rs5au1,0&1^1,0u ^ u1,0&2^1,0u1bu1,0&1^1,0u ^ u0,1&2

3^0,1u1gu0,1&1^0,1u ^ u1,V&2^1,Vu1du0,1&1

3^0,1u ^ u1,2V&2^1,2Vu, ~3.9!

or an equivalent expression where the modes 1 and 2
interchanged. In this expressiona, b, g, d are real non-
negative parameters witha1b1g1d51, un,m& are num-
ber states andu1,6V& are SU~2! coherent states. The indi
vidual density matrices are

r15~a1b!u1,0&^1,0u1~g1d!u0,1&^0,1u,

r25au1,0&^1,0u1bu0,1&^0,1u1gu1,V&^1,Vu

1du1,2V&^1,2Vu, ~3.10!

and then

^s1&5~a1b2d2g!uz ,
~3.11!

^s2&5~a2b!uz1~g2d!V,

and

^s1,kÞz^ s2&50,

^s1,z^ s2&5~a2b!uz2~g2d!V, ~3.12!
3-2
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whereuz is a unit real vector in thez direction. Therefore

^s1,z^ s2&2^s1,z&^s2&52~a2b!~d1g!uz

12~a1b!~d2g!V. ~3.13!

It can be easily seen that the maximum ofC occurs when
uz5V with, either a5d51/2, b5g50, or a5d50, b
5g51/2. We have also the possibility ofuz52V inter-
changinga↔b. The maximum of the polarization correla
tions for one-photon separable states is

Csm5
1

~12p!2
. ~3.14!

One of the states reaching the maximum is, for example

rsm5 1
2 ~ u1,0&1^1,0u ^ u1,0&2^1,0u1u0,1&1^0,1u ^ u0,1&2^0,1u!

5 1
4 ~ I 1s1,z^ s2,z!, ~3.15!

whereI represents the identity in the subspace of one-pho
states, i.e.,I 5s1,0^ s2,0. The corresponding jointQ function
is

Qsm~V1 ,V2!5
1

~4p!2
~11cosu1cosu2!, ~3.16!

with uniform individual distributions Q1(V1)5Q2(V2)
51/(4p).

B. Maximally entangled state

This maximum for separable states can be compared
the correlations for the maximally entangled state

uc&me5
1

A2
~ u1,0&1u1,0&21u0,1&1u0,1&2), ~3.17!

or, equivalently,

rme5
1
4 ~ I 1s1,x^ s2,x2s1,y^ s2,y1s1,z^ s2,z!. ~3.18!

As has been shown in Ref.@16#, this is the pure state with
maximum polarization correlations. The jointQ function is

Qme~V1 ,V2!5
1

~4p!2
@11cosu1cosu2

1sinu1sinu2 cos~f11f2!#, ~3.19!

while the individual distributions are uniformQ1(V1)
5Q2(V2)51/(4p). This leads to

Cme5
3

~12p!2
53Csm. ~3.20!

The correlations arising from maximal entanglement
three times larger than the maximum achievable with se
rable states.
02380
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C. Separable counterpart of the maximally entangled state

A separable state that has been often considered as
separable counterpart of the maximally entangled stat
@20#

rsc5
1

4pE dVu1,V&1^1,Vu ^ u1,V&2^1,Vu

5
1

4 F I 1
1

3
~s1,x^ s2,x1s1,y^ s2,y1s1,z^ s2,z!G ,

~3.21!

leading to

Qsc~V1 ,V2!5
1

~4p!2 H 11
1

3
@11cosu1cosu2

1sinu1sinu2 cos~f12f2!#J , ~3.22!

and again uniform individual distributionsQ1(V1)
5Q2(V2)51/(4p). In this case

Csc5
1

3~12p!2
5

1

3
Csm5

1

9
Cme, ~3.23!

and this separable counterpart of maximal entanglement d
not provide maximum classical polarization correlations.

Despite the very different nature of the states~3.21! and
~3.17!, we have that the corresponding polarization distrib
tions Qsc and Qme have the same structure~up to a trivial
reflection f2→2f2). The only relevant difference is th
relative height of the distribution above the uniform consta
background, so that, leaving aside the above-mentioned
flection,

Qsc5
2

3

1

~4p!2
1

1

3
Qme. ~3.24!

This means that the state~3.21! is a mixture of maximal
entanglement and fully unpolarized light.

IV. MULTIPHOTON STATES

In what follows we address the generalization of the
conclusions to the case of an arbitrary number of photonn
in each polarization mode. For arbitrary dimension we ha
not been able to obtain the maximumC for separable states
Nevertheless, we can still obtain meaningful conclusions
we focus on suitable generalizations of the classical
quantum states considered above.

A. Separable states

We can begin with the generalization of Eq.~3.21!,

rsc5
1

4pE dVun,V&1^n,Vu ^ un,V&2^n,Vu. ~4.1!
3-3
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In order to computeQ we will approximate the scalar prod
uct between SU~2! coherent states

u^n,Vun,V8&u25
1

2n
~11V•V8!n5F12

1

4
~V2V8!2Gn

.

~4.2!

Since this scalar product differs from zero significantly on
when V.V8 we can approximate the term in the squa
brackets by a Gaussian, so that

u^n,Vun,V8&u2.e2n(V2V8)2/45e2n(12V•V8)/2, ~4.3!

so thatQ can be easily computed,

Qsc~V1 ,V2!5S n11

4p D 2

e2n

sinhS n

A2
A11V1•V2D

n

A2
A11V1•V2

.

~4.4!

The reduced individual distributions are uniformQ1(V1)
5Q2(V2)51/(4p), so thatCsc can be expressed as

Csc5
1

~4p!2 F2
~n11!4

n2
e22nE

0

1

dz
sinh2~nz!

z
21G ,

~4.5!

which we have computed numerically obtaining the resu
represented in Figs. 1~filled triangles! and 2 as a function o
n. For n@1 the rough approximation @sinh2(nz)#/z
.sinh2(nz) is valid for the integration interval in Eq.~4.5!.
This allow us to compute the above integral leading to

Csc.
n

26p2
. ~4.6!

FIG. 1. Plot of the polarization correlationsC as a function of
the number of photonsn for several field states: filled triangles fo
rsc in Eq. ~4.1!; empty squares forrsm in Eq. ~4.7!; empty triangles
for the maximally entangled stateuc&me in Eq. ~4.12!; filled squares
for the entangled stateuc&qe in Eq. ~4.16!. It can be appreciated tha
Csm andCqe coincide, giving more polarization correlations thanrsc

anduc&me. It can be also noticed thatCsm andCqe depend quadrati-
cally on n, while for Csc andCme the dependence is linear.
02380
s

The usefulness of this approximation can be checked in
2, where we have represented the numerical evaluation
Eq. ~4.5! along with the approximation~4.6!.

On the other hand, a suitable generalization of the se
rable statersm ~3.15! is provided by the state

rsm5 1
2 ~ un,0&1^n,0u ^ un,0&2^n,0u

1u0,n&1^0,nu ^ u0,n&2^0,nu!, ~4.7!

leading to a jointQ function

Qsm~V1 ,V2!5
1

2 S n11

4p D 2F S cos
u1

2
cos

u2

2 D 2n

1S sin
u1

2
sin

u2

2 D 2nG , ~4.8!

and individual distributions

Qj~V j !5
n11

8p S cos2n
u j

2
1sin2n

u j

2 D , ~4.9!

so that

Csm5
1

26p2

~n11!4

~2n11!2 S 12
n! 2

~2n!! D
2

, ~4.10!

which is represented in Fig. 1~empty squares! as a function
of n. In the limit of n@1 the following approximation is
valid:

Csm.
n2

28p2
. ~4.11!

It can be appreciated that this state carries larger polariza
correlations than the state~4.1!. On the other hand the indi
vidual distributions~4.9! are clearly not uniform, in spite o
the fact that̂ Sj&50.

B. Entangled states

We can consider at least two suitable multiphoton gen
alizations for the one-photon maximally entangled st
~3.17!. For example, we have the maximally entangled st

FIG. 2. Plot of the polarization correlationsCsc as a function of
the number of photonsn. In solid line we represent Eq.~4.5! while
the dashed line corresponds to the approximation~4.6!.
3-4
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uc&me5
1

An11
(

m50

n

um,n2m&1um,n2m&2 , ~4.12!

recently studied in Ref.@21#, and whose polarization prope
ties have been already examined in Ref.@16#. In this case

Qme~V1 ,V2!5
n11

~4p!2 Usin
u1

2
sin

u2

2

1ei (f11f2) cos
u1

2
cos

u2

2 U2n

, ~4.13!

andQ1(V1)5Q2(V2)51/(4p), so that

Cme5
1

24p2

n2

2n11
, ~4.14!

which is represented in Fig. 1~empty triangles!. For n@1
this scales linearly onn,

Cme.
n

25p2
. ~4.15!

It is worth noting that for increasingn this state carries
lesser polarization correlations than the separable statersm in
Eq. ~4.7!. This seemingly paradoxical result might be a
cribed to the fact that for the separable statersm in Eq. ~4.7!
the polarization distribution is concentrated around just t
extreme polarization states, while the structure of the ma
mally entangled state~4.12! implies a more uniform distri-
bution.

Finally we may consider a second generalization of
quantum entangled state~3.17! of the form

uc&qe5
1

A2
~ un,0&1un,0&21u0,n&1u0,n&2), ~4.16!

which is a pure state counterpart of the separable statersm in
Eq. ~4.7!. This is sometimes referred to either as a Sch¨-
dinger cat state or even as a maximally entangled state@22–
24#. In this case, the joint polarization distribution is

Qqe~V1 ,V2!5
~n11!2

25p2 H S cos
u1

2
cos

u2

2 D 2n

1S sin
u1

2
sin

u2

2 D 2n

1
1

22n21
~sinu1sinu2!n cos@n~f11f2!#J ,

~4.17!

while the individual distributions are the same as in E
~4.9!. This leads to
02380
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Cqe5Csm1
1

25p2

~n11!! 4

~2n11!! 2
, ~4.18!

whereCsm is given by Eq.~4.10!. This has been also repre
sented in Fig. 1~filled squares! as a function ofn. We can
appreciate that the polarization properties of this state
very similar to the corresponding ones for the separable s
rsm in Eq. ~4.7!. The only difference is the presence of a
extra term in Eq.~4.17!, which can be considered as a qua
tum interference effect. Its contribution toCqe is positive so
that the polarization correlations are always larger for
entangled state. Nevertheless, we have that for large num
of photonsn@1 the extra terms tend to vanish so that t
separable and the entangled state carry the same polariz
correlationsCqe.Csm. As a matter of fact, forn53 the
difference betweenCqe andCsm is only 0.5%.

V. CORRELATIONS VIA STOKES PARAMETERS

For the sake of completeness and comparison we
compute the polarization correlations for multiphoton sta
by using a generalization of Eq.~3.7! involving the Stokes
parameters

C̃5
1

~12p!2 (
k,,5x,y,z

~^S1,k^ S2,,&2^S1,k&^S2,,&!2.

~5.1!

We stress that Eqs.~2.3! and ~5.1! are intrinsically different
and they only coincide for one-photon states, while for m
tiphoton case they lead to different results as we see be

For all the multiphoton states studied in the preced
section we have

^Sj ,k&50. ~5.2!

For the separate statersm in Eq. ~4.7! we have

^S1,k^ S2,k8&5n2dk,zdk8,z . ~5.3!

Exactly the same result is obtained for the entangled staterqe
in Eq. ~4.16!, since for n.1 the contributions of crosse
nondiagonal terms vanish. Therefore,

C̃sm5C̃qe5
n4

~12p!2
. ~5.4!

On the other hand, for the separable statersc in Eq. ~4.1!
we get

^S1,k^ S2,k8&5
n2

3
dk,k8 , ~5.5!

so that

C̃sc5
n4

3~12p!2
. ~5.6!
3-5
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Finally, for the maximally entangled staterme in Eq.
~4.12! we get that the only nonvanishing terms are

^S1,z^ S2,z&5^S1,x^ S2,x&52^S1,y^ S2,y&5 1
3 n~n12!,

~5.7!

so that

C̃me5
n2~n12!2

3~12p!2
. ~5.8!

We can appreciate that for all of themC̃ scales asn4. This
is the main difference with the results of the preceding s
tion. As we have argued before, the reason for this differe
is that Eq.~2.3! involves all the moments of the Stokes o
erators, not only the first ones. Therefore, Eq.~2.3! provides
a more complete assessment of polarization correlation p
erties. In other words, the examples analyzed above dem
strate the relevance of higher-order moments in order
properly asseses polarization properties.
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VI. CONCLUSIONS

Summarizing, we have analyzed the polarization corre
tions of entangled and separable states. We have found
maximum polarization correlations for separable states w
a single photon in each polarization mode. We have fou
that this maximum is three times smaller than the va
achieved by the maximally entangled states.

When examining larger photon numbers we have fou
that there are separable states with larger polarization co
lations than the maximally entangled states. Moreover,
increasing photon numbers entangled and separable s
tend to have the same degree of polarization correlation
is worth noting that this suggests that, in general, for mu
photon states, entanglement does not necessarily imply la
polarization correlations.

Finally, the examples analyzed in this work demonstr
the relevance in quantum optics of higher-order moments
polarization variables beyond the Stokes parameters.
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