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Classical and quantum polarization correlations
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We compare the maximum achievable polarization correlations for classical-like separable states and quan-
tum entangled states. For one-photon systems we find that the maximally entangled states have three times
larger correlations than the maximum correlations achievable with separable states. However, for larger photon
numbers we find that there are separable states with larger correlations than the maximally entangled states.
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Polarization is a fundamental ingredient of light, both in
the quantum and in the classical domains. In the quantum
regime this variable has been crucial in order to demonstrat

experimentally fundamental properties and applications o vo field modes sustaining a single polarization mode. In

the quantum theory such as entanglement, complemen_ta}n%ese expressiorQ represents the standard parametrization
quantum cryptography, teleportation, and Bell inequalities

[1-14). All these examples involve sources of light with of the sphere) =(6,¢), whereg and ¢ are the polar and

. ) e . the azimuthal angles, respectively. The polarization correla-
nonclassical properties and strong polarization correlations

It might be quessed that auantum entanaled states woulti ns can be naturally measured as the distance between the
9 9 q 9 int distribution Q(4,€),) and the product of individual

present always larger polarization correlations than classicalot 91 .
like separable states. In this work we examine this issue jistributionsQs(€21) Qz(€22), in the form
some detail. We compute and compare the maximum achiev-
a_ble correlations attainable by entangled and sepa('able C=f dQ,dQ,[Q(Q4,0,)—Q1(027)Q,(Q,)]?,
disentangleflstates. For one-photon systems we find that the

maximally entangled states have three times larger correla- 23
tions than the maximum correlations achievable with Sepawheredﬂjzsinajdajd¢j, j=1,2 is the differential of solid
rable stategSec. Il. However, for larger photon numbers angle. A similar approach has been adopted to asses the vis-
we find that there are separable states with larger correlatloqgi"ty of multiparticle interference fringe§18]. This defini-
than the maximally entangled stateec. IV). These results  {ion js invariant under S(2) transformations applied to each
are obtained by using a recently introduced measure of pPQsp|arization mode separately. These are linear and energy
larization correlation$15,16 (Sec. I). For the sake of com- onserving transformations of the field complex amplitudes
pleteness and comparison we also compute the p°|a”zat'c{'ﬂ)roduced by passive optical devices such as free propaga-
correlations for the same states by using the familiar Stokegon peam splitters, phase plates, and mifrdhat modify
parametergSec. V). the position and orientation of the polarization distribution
on the Poincarsphere but preserve its form.
Il. POLARIZATION CORRELATIONS This formalism assesses polarization correlations irre-
) spective of its quantum or classical origin. Therefore this is a
In a recent work[15,16 we have proposed a suitable gyjtaple tool to compare the maximum achievable correla-
assessment of polarization correlations in terms of the joinfjgns attainable with quantum and classical states.

polarization distribution on the Poincasphere given by the As an alternative approach to this problem we can men-

(2.2

nd|ny,n,) is the product of photon number states in the

SU(2) Q function[17] tion the use of the familiar Stokes parameters, which is fur-
ther developed in the next sections. Here we just point out

* (n;+1)(ny,+1) that the measur€.3) is more powerful and complete than

Q(1,Q7)= 270 BT any other one based on the Stokes parameters Snice
f1N2= (4m) volves field correlations of all orders simultaneously, while
X (N, Q1:N0,5,Q5]pIn1,Q1:0,,Q,), the Stokes parameters involve only the lowest orders.
@1 Ill. ONE-PHOTON STATES

wherep is the density matrixjn,,Q1;n,,Q,) is the product In a first approach to the problem let us examine exhaus-
of SU(2) coherent states in the corresponding modes tively the simple but fully relevant case of a single photon in

each polarization mode. In this case any joint density matrix
can be expressed as a linear combination of the operators
*Electronic address: alluis@fis.ucm.es S$1k®Sy, for k,£=0x,y,z, having the following expres-
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sions in the photon-number basis:
s;0=11,0;¢1,0+10,1)0,1],

s,x=10,,(1,0+[1,0,(0,1,

(3.1
sjy=i1(10,);(1,0-1,0¢0.1),
sj,=11,0(1,0-[0,2(0.1,

with
tr[ (S k®S2,)(S1m®S2r) =4k mOe r - (3.2

These are the restrictions to the subspace of one photon per

mode of the Stokes operators
_ At T
Sj0=aj18j117 323 2,
—af T
Sjx=aj 2311432,
(3.3

oot T
Sjy=i(aj 25,1~ a) 13 2),

_ At t
Si.= aj 181~ 8 A 2,
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The joint Q function for one-photon states can be easily
determined experimentally by measuring the probability
P(Q4,Q,) that the two photons cross simultaneously two
analyzers

P(Q1,0,)=tr(p|1,01)1(1.04|®|1,0,)(1.Q,|)

=4m°Q(Q1,Q,), (3.9
where|1,Q j)j represent the polarization states crossing the
corresponding analyzer with certainty. The statistics of such
a measurement coincides with the definition of the two-mode
polarization distributiorQ(1,Q5,).

A. Maximum correlations for separable states

With the help of the above results we can investigate the
maximum polarization correlations attainable with separable
states with a single photon in each mode. To this end we
construct the most general separable state considering the
diagonal form of the density matrix, whose eigenvectors
must be orthogonal product states. Without loss of generality
we can always choose one of the eigenvectors to be the prod-
uct of number state$1,0)1]1,0), [this is because of the
double SUW2) symmetry ofC mentioned abovie The other
eigenvectors must be orthogonal to this one. The procedure

wherea;  are the corresponding complex amplitude operato construct the other most general orthogonal states is rather

tors.
Every one-photon pure state is a @Y coherent state
[1,Q) and

(10]91,0)=(1,0[41,0)

== (sin 6 cos¢,siné sin¢,cosh),

(3.9
leading to a joint polarization distribution
1
Q01,0 = ——[1+ Q- (s))+ Qy ()
(4)
+((Q1-5)®(Ny-5))], (3.5
while the associated individual distributions are
O)= ! 1+Q 3.6
Qj(Q)) =, (1+ i () (3.6)

From Eqgs.(2.3) and(3.5) it can be seen that the degree of
polarization correlations admits a simple and natural expres-
sion in terms of the mean values of the Stokes operators

>

Cone photo™
P (127)? k. e=xy,

, ((S1k®@S2,0) = (S1)(S2.0))%
(3.7

which resembles previous approaches to this prollesh

We stress that this equivalence occurs only for one-photon

simple due to the reduced dimensionality. Specificallyev-
ery one-photon pure state is a @V coherent staté1,Q),
and (i) the only state orthogonal td,Q) is the antipodal
state|1,—Q), where— Q= (7— 0,4+ 7). The result forpg
is of the form

ps=a[1,001(1,00®[1,005(1,0 + 8]1,0):(1,0 ®(0,1),
X<0,1| + ’y|0,1>1<0,1| ®|1,Q>2<1,Q| + 5|0,1>1
%(0,1]®|1,~ Q)x(1,— O], (3.9

or an equivalent expression where the modes 1 and 2 are
interchanged. In this expressian B, vy, 6 are real non-
negative parameters with+ g+ y+ =1, |[n,m) are num-

ber states an¢il,= Q) are SU2) coherent states. The indi-
vidual density matrices are

p1=(at B)[1,00(1,0+(y+8)[0,1(0.1],

p2=a|1,00(1,0/+5]0,1(0, 1+ % 10X 19|

states since in this case the Stokes parameters are the only

nontrivial moments of the polarization distribution.

+6]1,-Q){1,-Q], (3.10
and then
<Sl>:(a+:8_ 60— YUy,
(3.11
(s2)=(a—PBu,+(y—6)Q,
and
<Sl,k¢z®32>= 0,
(51,28)=(a—B)u,—(y— )L, (3.12
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whereu, is a unit real vector in the direction. Therefore C. Separable counterpart of the maximally entangled state

B _ B A separable state that has been often considered as the
(5128%) = (S12)(S2) = 2(a = B)(5+ y)u, separable counterpart of the maximally entangled state is

+2(a+B)(5—y)Q. (313  [20]

It can be easily seen that the maximum ®@foccurs when
u,=Q with, either a=46=1/2, B=y=0, or «=6=0, B
=+y=1/2. We have also the possibility af,=—Q inter-
changinga«+ B. The maximum of the polarization correla-

1
po== | A0IL0)(10]10)(10)]

1
|+ 3 (S1x®SoxtS1y®Spy+51,8S;,) |,

tions for one-photon separable states is 4
1 (3.20
Com= (12m)2 (3.19 leading to
One of the states reaching the maximum is, for example, 1 1
Qs Q4 ,Qz):—2 1+ §[1+cosalcosez

pam=3(11,0)2(1,0/®]1,0)5(1,0+]0,2)1(0,2]®[0,1)2(0,1)) (4m)

1

=2(1+51,85,), (3.19 +5in6,Sin 6, co8 by — do) 11, (3.22

wherel represents the identity in the subspace of one-photon
states, i.e.| =s; (®S,. The corresponding joir® function ~and again uniform individual distributionsQ;({21)
is =Q,(Q,)=1/(4). In this case

1 1 1
=312y ~3CsngCme (3.23

Qsm(Q21,Q5)= (1+cos#,cosb,), (3.19 Csc

(4m)?

with uniform individual distributions Q1(4)=Q,({5) and this separable counterpart of maximal entanglement does
=1/(4). not provide maximum classical polarization correlations.
Despite the very different nature of the staf@s21) and
B. Maximally entangled state (3.17), we have that the corresponding polarization distribu-
ions Qg and Q. have the same structukep to a trivial
flection ¢,— — ¢,). The only relevant difference is the
relative height of the distribution above the uniform constant
background, so that, leaving aside the above-mentioned re-

(]11,04/1,0,+]0,14]0,1),),  (3.17 flection,

This maximum for separable states can be compared wit
the correlations for the maximally entangled state

|7l> e
2

or, equivalently, Qsc=3 w + 3 Qme- (3.249

_1
Pme= 41+ 109~ 51y @S+ 51,0 57). (318 This means that the stat8.21) is a mixture of maximal
As has been shown in Ref16], this is the pure state with entanglement and fully unpolarized light.
maximum polarization correlations. The joiQtfunction is
IV. MULTIPHOTON STATES

Qme(Ql,Qz)z%[lecoselcosaz In what follows we address the generalization of these
(4) conclusions to the case of an arbitrary number of photons
; ; in each polarization mode. For arbitrary dimension we have
Tsind;sinfy cosd ditda)l, (319 Hden able to obtain the maximu@or separable states.
while the individual distributions are unifornQ,(Q;) Nevertheless, we can still obta_\in meaningful conclu_sions if
=Q,(Q,) = 1/(4m). This leads to we focus on swtablt_e generalizations of the classical and
quantum states considered above.

3

Cne=——— =3Cqp. (3.20
me (1272 sm A. Separable states
We can begin with the generalization of H§.21),
The correlations arising from maximal entanglement are
three times larger than the maximum achievable with sepa- PSCI%I dQln,0)(n, Qs |nQ)(n0l. (4.1

rable states.
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FIG. 1. Plot of the polarization correlatiorts as a function of
the number of photons for several field states: filled triangles for
pscin EQ. (4.1); empty squares fopg, in Eq. (4.7); empty triangles
for the maximally entangled staté) . in Eq. (4.12); filled squares
for the entangled sta{g)) . in Eq.(4.16. It can be appreciated that
CsmandC coincide, giving more polarization correlations thag
and| ) me. It can be also noticed th&,, andCg. depend quadrati-

cally onn, while for C,. andC,,. the dependence is linear.

In order to comput&) we will approximate the scalar prod-

uct between S(2) coherent states

|<n,Q|n,Q’)|2=%(1+Q-Q’)”z[l—%(Q—Q’)Z} .
4.2)

Since this scalar product differs from zero significantly only
when Q= we can approximate the term in the square

brackets by a Gaussian, so that
|<n,Q|n,Qr>|2:e—n(n—n’)2/4:e—n(l—ﬂ-n’)/z’ (4.3

so thatQ can be easily computed,

n
sinf —=1+Q,-Q
nJrl)2 . r(\/i ' 2)
e

4

Qsd 21,85) =

n

V2

1+ Q.- Q,
(4.4

The reduced individual distributions are unifor@,(€,)
=Q,(Q,)=1/(47), so thatC. can be expressed as

1
(4m)?

sc

n+1)* 1 sinf(nz
(n+1) e‘Z”J dz—( )—1
2 0 Z

n

(4.9
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FIG. 2. Plot of the polarization correlatios; as a function of
the number of photons. In solid line we represent E¢4.5 while
the dashed line corresponds to the approximatib6).

The usefulness of this approximation can be checked in Fig.
2, where we have represented the numerical evaluation of
Eq. (4.5 along with the approximatiofé.6).

On the other hand, a suitable generalization of the sepa-
rable statepg, (3.15 is provided by the state

Psm=— %(|n,0>1(n,0|®|n,0)2<n,0|
+]0,n)1(0,n|®@[0,n)(0.N|), 4.7

leading to a jointQ function

0. _1(n+1)? 0,  6,\*"
Qsm( 1, 2)—5 _471_ COS;COSf
01 0,\™"
+ sm?sm? , (4.8
and individual distributions
n+1 0 0
(0 )= —— nJqimpn
Q;(Q)) = cog 2+S|n2 2), (4.9

so that

(4.10

sm

1 (n+1)4( B n!? )2
2642 (2n+1)2\ 0 (2mt)

which is represented in Fig. &mpty squargsas a function
of n. In the limit of n>1 the following approximation is
valid:

n2

Con o

(4.1)

It can be appreciated that this state carries larger polarization

which we have computed numerically obtaining the resultsorrelations than the statd.1). On the other hand the indi-
represented in Figs. (illed triangles and 2 as a function of vidual distributions(4.9) are clearly not uniform, in spite of

n. For n>1 the
=sint?(n2) is valid for the integration interval in Eq4.5).
This allow us to compute the above integral leading to

n

o o

(4.6

rough approximation[sint?(n2)]/z

the fact tha(S;)=0.

B. Entangled states

We can consider at least two suitable multiphoton gener-
alizations for the one-photon maximally entangled state
(3.17. For example, we have the maximally entangled state

023803-4
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n

1
it m§=:0 m,n—m);|m,n—m),, (4.12

| lzb> me—

recently studied in Ref21], and whose polarization proper-
ties have been already examined in R&8]. In this case

Q. 0 _n+
Qme( 1 2)_(477

. 01 02 2n
+e' (P17 %2 cos~cos—| , (4.13
2 2
andQy(Q1) =Qx(0,)=1/(4m), so that
1 n?
(4.19

Cme™ iz 2ni 1

which is represented in Fig. (empty triangles For n>1
this scales linearly om,

n
2572

(4.15

Cme=

It is worth noting that for increasing this state carries
lesser polarization correlations than the separable gtgtm
Eq. (4.7). This seemingly paradoxical result might be as-

PHYSICAL REVIEW A69, 023803 (2004

1 (n+1)*

Coe=Cort—— ———
a 2572 (2n+1)12

(4.18

sm

whereCg, is given by Eq.(4.10. This has been also repre-
sented in Fig. Ifilled squaresas a function ofn. We can
appreciate that the polarization properties of this state are
very similar to the corresponding ones for the separable state
psm iN EQ. (4.7). The only difference is the presence of an
extra term in Eq(4.17), which can be considered as a quan-
tum interference effect. Its contribution @, is positive so

that the polarization correlations are always larger for the
entangled state. Nevertheless, we have that for large number
of photonsn>1 the extra terms tend to vanish so that the
separable and the entangled state carry the same polarization
correlationsCqe=Csn. As a matter of fact, fom=3 the
difference betweeC,, and Cg, is only 0.5%.

V. CORRELATIONS VIA STOKES PARAMETERS

For the sake of completeness and comparison we can
compute the polarization correlations for multiphoton states
by using a generalization of E@3.7) involving the Stokes
parameters

:EX - ((S1k®S2) = (St Sa))?.
(5.1

cribed to the fact that for the separable staigin Eqg.(4.7)  We stress that Eq$2.3) and(5.1) are intrinsically different
the polarization distribution is concentrated around just twoand they only coincide for one-photon states, while for mul-
extreme polarization states, while the structure of the maxitiphoton case they lead to different results as we see below.

mally entangled staté4.12) implies a more uniform distri-
bution.

For all the multiphoton states studied in the preceding
section we have

Finally we may consider a second generalization of the

guantum entangled statd.17) of the form

1

|'r//>qe=\E(|n10>1|nv0>2+|01”>1|0an>2),

(4.19

which is a pure state counterpart of the separable ptaie
Eq. (4.7). This is sometimes referred to either as a Sehro
dinger cat state or even as a maximally entangled §2@e
24]. In this case, the joint polarization distribution is

_(n+1)? 6,  6,\%"
Qqe(leQZ)_W COS?COS?
01 6"
+ SIH?SIH?)

1
+ W(sin 01sin6,)"codn( 1+ ¢,

(4.17

while the individual distributions are the same as in Eq.
(4.9). This leads to

For the separate statg,, in Eq. (4.7) we have
(S1k® Sppr) =N?8y 26k - (5.3

Exactly the same result is obtained for the entangled gtate
in Eq. (4.16), since forn>1 the contributions of crossed
nondiagonal terms vanish. Therefore,

n4

Com=Cqe= (12m)?° (5.9

On the other hand, for the separable siajein Eq. (4.1
we get

n2

(S1k®Spkr) = 3 Okkr (5.5

so that
~ n*
Com———. 5.6
< 3(12m)2 (5.6)
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Finally, for the maximally entangled state,. in Eq.
(4.12 we get that the only nonvanishing terms are

(S1205,,) =(S1x®S,0) = —(S1y®Syy) = %n(n+2)(,5 .

so that

_n¥(n+2)?

= : 5.8
3(12m)? 58

me

We can appreciate that for all of thefhscales as*. This

PHYSICAL REVIEW A69, 023803 (2004

VI. CONCLUSIONS

Summarizing, we have analyzed the polarization correla-
tions of entangled and separable states. We have found the
maximum polarization correlations for separable states with
a single photon in each polarization mode. We have found
that this maximum is three times smaller than the value
achieved by the maximally entangled states.

When examining larger photon numbers we have found
that there are separable states with larger polarization corre-
lations than the maximally entangled states. Moreover, for
increasing photon numbers entangled and separable states
tend to have the same degree of polarization correlations. It
is worth noting that this suggests that, in general, for multi-
photon states, entanglement does not necessarily imply larger

is the main difference with the results of the preceding secpolarization correlations. o
tion. As we have argued before, the reason for this difference Finally, the examples analyzed in this work demonstrate
is that Eq.(2.3) involves all the moments of the Stokes op- the relevance in quantum optics of higher-order moments of

erators, not only the first ones. Therefore, E213) provides

a more complete assessment of polarization correlation prop-
erties. In other words, the examples analyzed above demon-

polarization variables beyond the Stokes parameters.
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