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Abstract

In the setting of the complex spectrum of a field of characteristic zero
we give complex analogs of the celebrated (real) Baer-Krull theorems relat-
ing the orderings of a field compatible with a given valuation ring with the
orderings of the residue class field of that valuation ring.

INTRODUCTION

In the setting of the complex spectrum of a field of characteristic zero we
want to give complex analogs of the celebrated (real) Baer-Krull theorems
relating the orderings of a field compatible with a given valuation ring with
the orderings of the residue class field of that valuation ring.

Recall that a field K is called real if K admits orderings. The set of
such orderings is denoted Spec,(K) and called the real spectrum of K. Real
fields are of zero characteristic.

If B is a local ring, let mp, Ug and K := B/mp respectively denote
the maximal ideal, the group of units and the residue class field of B. If K
is a field and B C K is a valuation ring of K, then let Ag : K — K U {0},
I'p:=K\{0}/Ug and vg : K — I'gU{oco} respectively denote the canonical
place, the value group of B (additively written) and the canonical valuation
associated to B. The restriction of Ag to B is the canonical residue class

1991 AMS subject classification: 12J10, 12J15.
* Partially supported by CICYT, PB 89/0379-C02-02 and by DGICYT

3727


fefernan
Rectángulo


3728 : DE LA PUENTE

morphism. Note that the characteristic of K is zero if and only if B is finite
over (Q, i.e., Q is a subring of B.

If K is a field and B is a valuation ring of K, recall that
(a) B is called residually real if the residue class field K is real ie., if
Spec,(K) # 0.
(b) If K is real and (3 belongs to Spec,(K), then B is called S-convex if for
all a € K, b € B, the condition a? <z b? implies a € B.

In the late 1920’s and early 1930’s it was proved -using a different
language— by Baer and Krull (see {Ba] and [Kr]) that: .

(Ba-Kr 1) If B is ~convex then there exists a unique 8 in Spec,(K)
such that for all € Up, = >g 0 if and only if Ag(x) >3 0. In particular, B
is residually real.

(Ba~Kr 2) If B C K is residually real, then for every v € Spec,(K) there
exists (3 in Spec,(K) such that for all a,b € B, the condition a <g b implies
Ap(a) <4 Ap(b). Moreover, v = B and B is B-convex.

Already considered in [Kr], the relationship between + and all possible
3 satisfying (Ba~Kr 2) was completely elucidated in [Br]. The notion of real
place (the place associated to a residually real valuation ring) was introduced
and studied in [L].

Today, we can deduce (Ba-Kr 1) and the second assertion in (Ba-Kr 2)
from the well-known fact that the following statements are equivalent:
(i) B is f-convex,
{ii) mp is B-convex in B,
(iii) there exists a unique 3 in Spec, (K ) with respect to which Ag|p : B — K
is an order—preserving ring morphism,
(iv) B contains the valuation ring {z € K : 22 <g n? some n € N},
(v) there exists v in Spec,(K) such that for all a,b € B, the condition
a? <z b* implies Ag(a?) <, Ap(b?).

These are assertions about pushing down orderings from K to K. On
the other hand, the first part of (Ba-Kr 2) is a lifting property for orderings
from K to K, under certain circumstances.

A previous unrefereed version of this paper is [Pul].
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NOTATIONS

* An involution of a ring A is an element 7 of the automorphism group
Aut (A) such that 72 = id4. In this paper we will assume, in addition, that
involutions are not frivial, i.e., 7 # id4. If 7 is an involution of A, then A"
denotes the subring of A consisting of the fixed points of A; it is called the
fixed ring of A.

% If Ay, Ay are subfields of a field A3, then A; - As denotes the smallest
subfield of A3 containing A; U As.

% Let E be an algebraically closed field. Then +ir denote the solutions of
the equation X241 =0 in E. When E is understood, we will simply write
-+i. In this paper, ¢ is always either i or —i.

* E® denotes the algebraic closure of a field E.

+ We fix a field extension R C K with R real. Then K has zero character-
istic, obviously. Thus, there exist field morphisms j : K — C with C some
algebraically closed field of zero characteristic and such a field C' possesses
involutions 7 that fix j(I2) pointwise (see [S] to learn about the abundance of
involutions in zero characteristic algebraically closed fields). Let e € {%ic}
and take triplets (7,7, ¢) such that C is algebraic over j(R) - 7j(R). Say two
triplets (js,7s,€5) with s = 1,2 are equivalent if there exists a field isomor-
phism f : C; — C3 such that f(e;) = €2, jo = fj1 and f[clrl (CTP > Gyt is
a fleld isomorphism (order-preserving, a fortiori). The points of the com-
plex spectrum of K over R, Spec.(K/R), are equivalence classes [j, T, ¢]
of such triplets. We have just explained that Spec.(K/R) is non-empty,
provided that R is reai. The complex spectrum has been studied by the
author in [Pu3] and earlier in [Pu2]. If K is also real then Spec.(K/R) ex-
tends Spec,(K) in the following sense. For each ordering § of K consider
the real closure F of (K,/). Then F* has a unique involution 7 fixing F
and having 7(i) = —4. Thus § ~ [j,7,i] defines a (canonical) mapping
T : Spec,(K) — Spec.(K/R), where j : K — F“ is the field embedding
considered above. (In this paper we only use the existence of Y. However,
as one would expect, T is continuous and a homeomorphism onto the image,
provided that the spectra are endowed with their usual topologies; see 2.5,
2.6 and 2.7 [Pu3]).
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Let R C K be a ficld extension with R real. In this paper we will deal
with just a point in Spec.(K/R) at a time, so that the notation z = [j,7, €]
can and will often be simplified to 2 = [K C C,7,¢]; this conveys that j is
the identity on K and each element of K is identified with its image in C.
We have then R C C" (although the notation does not make this explicit).

First we observe that z = [K C C, 7, €] induces a point in Spec, (K N C7),
namely the ordering induced by the real closed field C7 on KN C7. Let us
denote it by re(z). Note that K C C7 iff K = K NCT iff Tre(z) = z,
with T as in the notations. We may say that the point z is real if any of
the equivalent conditions above hold. Note that Spec.(X/R) contains real
points iff I{ is real.

Given z = [K C C,7,¢] and a € K set N.(a) := ar(a) € C7 and call it
the 7—norm of a. In fact, N,(a) is non-negative, being a sum of squares in
C™. Indeed N, (a) = ("“F;(“))2 + (“_;i(“))?. In general, N.(a) € K, since in
general 7(K) € K.

1. Definitions. Let R C K be a field extension with R real, B a valu-
ation ring of K and § C K any subset. Let z = [K C C,7,¢] belong to
Spec.(K/R).

(a) B is called z-conver (in K) if for all a € K, b € B, the condition
N {a) < N, (b) mplies a € B.

(b) S is called T-invariant if 7(S) = S, (equivalently, if 7(S) C S).

Though (a) has been defined using a specific representative of z, it is not
hard to show that this definition is independent of the representative chosen.

Note that Ny (a) = a2, for all a € K, when z is a real point. Thus, both
definitions (real and complex) of convexity agree in this case.

2. Remarks. (a) Assume that B is 7-invariant. Then all mp, U and K
are T-invariant. Call 7/ the restriction of 7 to K. Then 7/ = idg if K C C™
iff z is real.

{b) Assume that K is algebraically closed, 7 is an involution of K and B is
r-invariant. Then the mapping defined by 7(x + mg) = 7(z) + mp, for all
x € B, is an involution of K (note that i € Up, since B is integrally closed,
whence 7(i + mp) = —i +mp # i + mp, so that 7 # idg). In particular,
ApT = FAg. Conversely, if o is any involution of K such that AgT = o )p,
then B is r—invariant and o = 7.

(c) The condition AgT = oAp obviously implies ApN,; = N Ap.
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3. Proposition. Let R C K be a field extension with R real, z = [K C
C,7,¢€] a point in Spec.(K/R) and B a z—convex valuation ring of K. Then
the following hold true:

(i) B is finite over Q and char K = 0,

(ii) BN C7 is a re(z)-convex valuation ring of K NCT,

(iii) if K is T—invariant then B is T—invariant.

Proof. (i) We have n=2 = N,(n™!) < N.(1) = 1, hence n~! € B, for all
1 < n € N, whence Q is a subring of B and of K.
(ii) Immediate.
(iii) 7(K) = K implies 7(B) = B simply because T({l).e K, B is z—convex
and N, (7(a)) = ar(a) =N (a),forallac B. &

4. Proposition. Let R C K be a field extension with R real, z = [K C
C, 7, €] a point in Spec.(K/R) and B a valuation ring of K. If B is T—invariant
and BN C7 is re(z)-convex, then B is z—convex.

Proof. Suppose that a € K, b € B and N, (a) < N, (b). Since 7(B) = B,
then N, (b) = br(b) lies in BNC”, whence N, (a) = ar(a) also lies in BNC7,
by re(z)-convexity. Moreover if a ¢ B then a™! € mp, whence 7(a) =
a~lar(a) € mg € B = 7(B). Applying 7 we get a € B, a contradiction.
Therefore, a € B holds, as was to be shown. B

Since we will only be interested in z-convex valuation rings, then we will
restrict ourselves to valuation rings finite over Q, by Proposition 3 (i).

Let z = [K C C,7,¢} be a point in Spec.(K/R) and set H := {z €
K :N,(z) < n?, somen € N}. Then H is a z—convex valuation ring in K.
Indeed, it is easy to verify that H is closed under products and sums, using
that No(# +y) < 4max{N;(z), N-(y), N-(z7(y)),1}, for all z,y € K. 1t is
also clear that 2 € K \ ‘H implies 27! € H.

5. Proposition. Let R C K be a field extension with R real, z = [K C
C,1,¢} a point in Spec.(K/R). If B is any valuation ring of K finite over Q,
then the following are equivalent:

(a) B is z—convex in K,

(b) mp is z—convex in B,

(¢) HC B.

Proof. (a) = (b) Let a € B, b € mp and suppose N, (a) < N,(b). If
b =0 then 0 = N;{a) = a = 7(a), whence a belongs to mp. 1f a # 0 then


fefernan
Rectángulo


3732 DE LA PUENTE

b#0,N.(b71) <N, (a7!) and b~ ¢ B, whence a~! ¢ B, by z—convexity of
B. Thus, a belongs to mg.

(b) = (¢ Let # € K be such that N,(z) < n?, for some n € N.
Suppose 2 € B. Thenn # 0, 27! € mp and n=%2 < N.(z~!) whence n™!
belongs to mpg, by z—convexity of mp and finiteness of B over Q. It follows
that 1 belongs to mpg, which is absurd.

(¢) = (a) Let a € K, b € B and suppose N-(a) < N.(b). If b =0
then 0 = N, (a) = a = 7(a). If.b # 0 then N, (ab™!) < 1 whence ab™! € H C
Bandsoa=(ab")beB. =m

6. Definitions. Let B C K be a fleld extension with R real. Consider
z = [K C C,7,¢] € Specc(K/R). Let E,F be intermediate fields with
RCECKCFCC.

(a) C is algebraic over K - 7(K) whence also algebraic over F - 7(F). We
define the extension of z to F' to be the point [F C C,1,¢] € Spec.(F/R)
and denote it by ext(z, F).

(h) Let C' be the algebraic closure of E - 7(E) inside C. Clearly ¢ belongs to
C’. Now, for every a € C', 7(a) is a root of the image by 7 of the minimal
polvnomial of a over E - r(E), whence t(a) belongs to C'. It follows that the
restriction 7 of 7 to C' is an involution (if 7' = id¢v then C' would embed
into a real closed field, contradicting that C' is algebraically closed). The
point {E C C', 7', €] belongs to Spec.(E/R) and is called the restriction of z
to E and denoted res(z, E).

The extensions of z to all intermediate fields F' are dominated by the
extension to C, in the sense that ext(z, F) = res(ext(z,C), F). For short,
write 21 = ext(z, C).

The proof of the following result is immediate.

7. Proposition. Let R C E C K be a field extension with R real. Let
z = [K € C,7,¢] be a point in Spec.(K/R) and B C K a valuation ring.
Consider w = res(z,FE) € Spec.(E/R). If B is z—convex then BN E is
w-convex. W

8. Definition and Proposition. Let R C K C C be a feld extension

with I real and C' algebraically closed. Let B be a subring of K and 7 an
involution of C. The set

O;(B) :={z € C: N;(z) < N.(b), some b € B}
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is called the T~conver hull of B. It is a w—convex, r—invariant valuation ring
of C, where w = |C C C,1,€] € Spec.(C/R). In addition, if B is a valuation
ring of K then B is z—convex if and only if O(B) is an extension of B, i.e.,
O.(ByNnK = B.

Proof. It is easy to verify that O,(B) is closed under products and sums,
using that Ny (z +y) < 4max{N;(z),N-(y),N(z7(y)),1}, for all z,y € C.
It is straightforward to show that O.(B) is a w-convex valuation ring. It
is T-invariant just because Ny(z) = N (r(z)). Finally, it is immediate to

realize that O, (B) N K = B if and only if B is z—convex. B
From here on, we set f(oo) = o0, for any map f.

9. Construction: Complex (Ba—Kr 1). Let B C K be a valuation ring
finite over Q and z = [K C C,7,¢] € Spec.(K/R). Write R for the residue
class field of the valuation ring BN R. Suppose that B is z—convex. Then
BN R is convex in R with respect to the ordering induced by C7.

Easy case: Suppose K = C. Then K is algebraically closed and 7-
invariant, By Proposition 3 (iit), B is r-invariant. By Remarks 2 (b), 7
induces an involution 7 on K such that Mg = TAg. Moreover z{— is alge-
braically closed, by [PC] lemma 17, page 47. The fixed field K" contains
R, since R C K™. In this situation, we say that z and B induce the point
zp = [K C K,7,\p(¢)] € Specc(K/R). Such a point zp is unique in
Spec.(K /R) with the conditions AgT = FAp and Ap(e) appearing in the last
entry (clearly Ag(e) € {&i}).

General case: If K is not necessarily equal to C, then extend z to 2! €
Spec.(C/R) and consider H := O,(B), which is a z!-convex valuation ring
of C extending B, using Definitions 6 and 8. To z' and H we apply the
construction of the previous easy case, thus obtaining an induced point (z) 5.
It lies in Spec.(C/R), being C (respectively, R) the residue class field of H
(respectively, of H N R = BN R).

The condition H N K = B conveys inclusions B C H and mp C my.
They induce a field embedding I : K — C. In particular, the place Ay :
C — C U {00} satisfies I\g = Ay|p. If we identify each element of K with
its image by / then Ay is an extension of Ap to C and we will simply write
A for cither A or Aj;. Now, the field extension K - 7(K) C C is algebraic,
since K - 7(K) C C is algebraic. We have a point res((z')y, K) that will
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be denoted zp and called point induced by z and B in Spec.(K/R), namely,
zp = [F - 6,7, )\B(F)] |

Note that H is 7—invariant. Thus the equality A7 = TX holds and it
follows that AN, = N=A.

How does this fit with the real (Ba-Kr1)? re(z') is nothing but the
unique ordering of C™ and re((z')y) is_the unique ordering of C’. Thus
re(zp) is the ordering induced on K N C'. Then the ordering re(z) given by
the real (Ba-Kr 1) coincides with re(zg). Indeed, given z € Ug N C™, we
have A(z) > 03 © >e(y) 0 iff 7 = a2, for some a€ C™ \ {0}. This
implies that 0 # A(x) = Ma)? and this holds iff A(z) >ye(.m) 0.

10. Definition. Let R C K be a field extension with R real, B a valuation
ring of K. Suppose that the residue class field R of BN R is a real subfield
of K. If w = [K C D,o,¢ belongs to Spec.(K/R), then a lifting of w via
Ap is a point z in Spec.(K/R), snuch that B is z—convex and zg = w.

The generalization of (Ba-Kr 2) to the complex spectrum claims that
liftings exist. It will follow easily from the next result, the proof of which is
due to A, Prestel.

11. Proposiytion. Let R C K be a field extension with R real, B C K a
valnation ring, D an algebraically closed extension of K with char D = 0, o
an involution of D. Suppose that the residue class field R of BN R satisfies
I} € D?. Then there exist an algebraically closed extension C* of K and an

involution 7* of C* such that for some extension H* of B to C* we have

. * 3 * 3 ‘. *
{a) H* is 7 —invariant {and thus r

(b) D € C* and T* extends o,
(c) RC(C*).

induces an involution 7 of C*),

Proof. It is well known that there exists an extension v® of vp to the
algebraic closure K and that the value group of v® is the divisible hull A
of T'j3. There exists an embedding of R into D?((A)) as valued fields (see
[Ka], page 318). Since D7((A)) is real closed then some real closure E of
R inside K® embeds into D7((A)) as ordered compatibly—valued fields, by
[PC] page 118, theorem 27. Write C = D((A)), denote by u the canonical
valuation of C and by 7 the canonical involution in C extending ¢ (so that
7 = o holds and C7 = D((A))). The embedding (E,v%|g) — (C7,uCT)
has a canonical extension to some embedding of E(i) into C as valued fields.
So we have (E(#), v*E(7)) 4 (C,u), for some embedding ¢. We would like
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to extend ¢ to some embedding of (K®,v®) into some extension (C*,v*) of
(C)v).

By general model theory (see [Prl] page 125 or [Pr2] page 47), there
exists a card(K)*-saturated elementary extension (C*,u*, 7*) of the struc-
ture (C,u,7). Now, all the conditions in [K-P}, claim in page 192, are
satisfied for K1 = E(i), K = K® and K* = C*. Indeed, E(i) and
C* are obviously henselian valued fields. Their residue class fields satisfy
E@) ¢ K* € C* and E(i) is algebraically closed (in K¢). And their
value groups satisfy v*(E(i)) € A C »*(C*) and the residue class group
A/v*(E(7)) is torsion—free, since v*(E(i)) is divisible.. Thus, by [K-P], ¢
extends to (K, v*%) & um).

Clearly, 7* is an involution extending 7 and thus @(R) C (C*)7 . If we
now identify each element of K* with its image by ¢ then (c) holds.

The definition of 7 implies that pr = op, where p denotes the canonical
place of C'. Therefore the associated valuation ring H C C' is T7-invariant, by
Remarks 2 (b). This means that u(r) > 0 implies ur(z) > 0, for x € C. If
H* C C* denotes the valuation ring associated to »* then (a) follows, since
the extension is elementary.

The condition H*NC = H conveys inclusions H C H* and myg C my-.
They induce a field embedding [ : D — C*. If we identify each element of D
with its image by I then 7*|p =7 = ¢ and (b) holds. m

Note that for a power series to be saturated, the value group must be
saturated. For instance, C = C((Q)) is not saturated.

12. Corollary: Complex (Ba-Kr 2). Let R C K be a fleld extension
with R real, B a valuation ring of K. Suppose that the residue class field R of
BNR is a real subfield of K. Then for eachw = [K C D, 0,¢] € Spec.(K /R)
there exists a lifting of w via Ap.

Proof. We apply Proposition 11 and obtain C*, 7* and H*, with the no-
tations of the previous proof. Take § € p~!(e)N{#£i} and consider the points
z* =[C* C C*, 7%, 6] € Spec(C*/R) and z = res(z*, K) € Spec.(K/R). We
have z = [K C C’, 7/, 6] where C" is the algebraic closure of K - 7*(K) in C*
and 7' is the restriction of 7* to C’. We must verify that B is z—convex and
2 = w.

Using the notations in the proof of Proposition 11, recall that C™ is
an ordered compatibly-valued field, which implies that H N CT™ is a convex
valuation ring of C7. By Proposition 4, H is t-convex, where t = [C C

L
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C,7,8]. This means that u(b) > 0, br(b) — ar(a) = ¢ and ¢ = 7(c) imply
u{a) > 0, for a,b,c € C. Since the extension is elementary then H* is
z*-convex, Thus B = H* N K is z—convex, by Proposition 7.

Finally, zg = w because the extensions of z to ' (respectively, of zp
and w to C7) are dominated by z* (respectively, by (z*)g~). B

The proof of the existence of liftings of w, in the case R = Q is simpler
than the proof given above. It uses a version of Proposition 11, which does
not call for saturated structures. We just embed K into D((A)) as valued
ficlds and, of course, this embedding maps @ into D7((A)).

The question of determining all the liftings of w via Ap does not seem
to follow easily from the above.

It seems possible to derive a complex {Ba-Kr 2) from 2.12 in [H].
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