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Abstract 

In t,he setting of the complex spectrum of a field of characteristic zero 
wn give complex analogs of the celebrated (real) Baer-Krull theorems relat- 

ing the orderings of a field c~mpat~ible with a given valuation ring with t,he 

ortlcririgs of the residue class field of that valuation ring. 

INTRODUCTION 
In the setting of the complex spectrum of a field of characteristic zero we 

want to give complex analogs of the celebrated (real) Baer-Krull theorems 

relating the orderings of a field compatible with a given valuation ring with 

the orderings of the residue class field of that valuation ring. 

Recall that a field K is called real if K admits orderings. The set of 

such orderings is denoted Spec, (K)  and called the real spectrum of K. Real 

fields are of zero characteristic. 

If B is a local ring, let rnn, UB and := B l m ~  respectively denote 

the maximal ideal, the group of units and the residue class field of B. If K 

is a field and B K is a valuation ring of K ,  then let X B  : K -+ RU {co), 
rn := K\{O)/UB and vs : K -+ TBu{oo) respectively denote the canonical 
place, the value group of B (additively written) and the canonical valuation 

associated to B. The restriction of X B  to B is the canonical residue class 
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3728 DE LA PUENTE 

iriorphism. Not,e t,hat t,he characteristic of K is zero if and only if B is finite 

over Q, i.e., Q is a subring of B .  

If K is a field and B is a valuation ring of K ,  recall that  

(a)  B is called residually real if the residue class field is real i.e., if 

Spw, (E)  # 0. 
(I,) If K is real and p belongs to Spec, ( K ) ,  then B is called p-convex if for 

d l  o E K .  h E B, the condition n2 <p b2 implies a E B. 

In the late 1920's and early 1930's it was proved -using a different 

laiiguage by Baer and Krull (see [Ba] and [Kr]) that: 

(Ba-Kr 1) If B is B-convex t,hen there exist,s a unique P in Spec,.(K) 

suc.11 that for all n: E UB, n. >p 0 if and only if XB(n:) > p  0. In particular, B 
is residually real. 

(Ba-Kr 2)  If B C: K is residually real, then for every y E Spec, (IT) there 

cxists f l  in Spec, ( K )  such that  for all n ,  b E B ,  the condition a <p b implies 

( ( I )  XB (1)). hforeover, y = and B is p-convex. 

Alrcatly considered in [Kr], tlie relationship between y and all possible 

/j satisfyiilg (Ba--Kr 2)  was completely elucidated in [Br]. The notion of real 

place (the place associated to a residually real valuation ring) was introduced 

and studied in [L]. 

Totlay, wc can deduce (Ba-Kr 1) and the second assertion in (Ba-Kr 2)  
froni the well-known fact that  t,he following statements are equivalent: 

(i) B is p--convex, 

(ii) mn is p-convex in 8, 

(iii) tllcre exists a unique a in Spec,.(K) with respect to which X B I B  : B -+ 

is an  order-preserving ring morphism, 

(iv) B c.oritains the valuation ring {n: E K : x2 <p n.2, some n. E N), 
(v)  thcrc exists y in Spec,.(K) such that for all a,  b E B ,  the condition 
n 2  1;' implies XB(n2) <, XB(b2). 

These are assertions about pushing down orderings from K to xi;. On 

the other hand, the first part of (Ba-Kr 2) is a lifting property for orderings 

from I;i to I<, under cert,ain circumstances. 

A previous unrefereed version of this paper is [Pull. 
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COMPLEX VERSION OF BAER-KRULL THEOREMS 3729 

NOTATIONS 

* An in~olut~ion of a ring A is an element T of the automorphism group 

 ant^ (A) such that  r2 = idA. In this paper we will assume, in addition, that  
in.?iolution.s are not  trivl:al, i.e., T # idA. If T is an  involution of A, then AT 

denotes t,he subring of A consisting of the fixed points of A; i t  is called the 

fixed ring of A. 

* If A,, A2 are subfields of a field Ag, then A1 . Az denotes the smallest 

s~~bf ie ld  of Ag containing A1 U A2. 

* Lrt E br an algebraically closed field. Then hiE denote the solutions of 

the cquation X 2  + 1 = 0 in E. When E is understood, we will simply write 

&i.  In this paper, F is always either i or 4. 

* E" denotes t,he algebraic closure of a field E. 

* We fix a field extension R C K wit,h R real. Then K has zero character- 

ist,ic, obviously. Thus, there exist field morphisms j : K --t C with C some 

alg~lmii(:ally closed field of zero characteristic and such a field C possesses 

ilivolutioi~s T t,hat. fix .i(R) point,wise (see [S] to learn about the abundance of 

i~wol~itions in zero characterist,ic algebraically closed fields). Let F E { i ic . )  
and take  triplet,^ (,j,-r, F) s~ich  t,hat C is algebraic over j ( R )  . r j ( R ) .  Say two 

triplets (:j,, 7,, c,) with s = 1 ,2  are equivalent if there exists a field isomor- 

pliislli ,f : C1 - C2 such t,hat f (6,) = ~ 2 ,  j2 = f jl and f lC;1 : Cp - CF is 

a field isomorphism (order-preserving, a fortiori). The points of the com- 
plex spectrum of K over R ,  Spec,(K/R), are equivalence classes [j, T, F] 

of such t,riplets. We have just explained that  Spec,(K/R) is non-empt,y, 

provided that  R is real. The complex spectrum has been studied by the 

autllor in [ P L I ~ ]  and earlier in [ P u ~ ] .  If K is also real then Spec,(K/R) ex- 

tends Spec,.(K) in the following sense. For each ordering P of K consider 
tlip real closure F of (K ,  P) .  Then Fa has a unique involution T fixing F 
and liavirig ~ ( 1 : )  = - i .  Thus P ++ [ j ,  T, i ]  defines a (canonical) mapping 
T : Sprc,.(K) -, Spec,.(K/R), where j : K + Fa is the field embedding 

considered above. (In this paper we only use the existence of T. However, 
as one woi~ld expect,, T is continuous and a homeomorphism onto the image, 

provided that the spectra are endowed with their usual topologies; see 2.5, 
2.6 and 2.7 [ P u ~ ] ) .  
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3730 DE LA PUENTE 

Lvt R C K he a field extension with R real. In this paper we will deal 

wltli jlmt a point in Spec, ( K l R )  at  a time, so that the notation z = [ j ,  r ,  F ]  

ran and will often be simplified to z = [K C C, r ,  F]; this conveys that j is 

the identity on K and each element of K is identified with its image in C .  

TVe h a w  then R C C' (although the notation does not make this explicit). 

Flrst we observe that z = [K c C,  7, F ]  induces a point in Spec,(K n C T ) ,  

namrlv the ordering induced by the real closed field C' on K n C'. Let us 

rlenotc it by re(z) Note that K & C' iff K = K n C T  iff T re(z) = z, 
n l th  T as in the notations We may say that the point z is real if any of 

tllc cqluvalent conditions above hold. Note that  Spec,(K/R) contains real 

pomts ~ f f  I< is real. 

Given z = [K C C, r, F ]  and n E K set NT(n) := or(o)  E CT and call it 

tllc r-vo~irt  of O. In fact, NT(o) is non-negative, being a sum of squares in 

C T  Intlced N,(o) = ( w ) 2  + (w)2. In general, NT(n) 6 K, since in 

~cl lcra l  r ( K )  g I - .  

1. Definitions. Let R C K be a field exter~sion with R real, B il va111- 

i~tioll I'jllg of K arid S K HIl,J/ s ~ ~ h s e t .  Let Z = [I( 2 C, 7, F ]  bd01lg to 

Sprc , . (KjR) .  
( it ,)  B is called z-con,ue:r (in, K )  if for all a E K, b E B, the condition 

NT ( a )  5 N, ( 0 )  irrlplies n E B. 
( / I , )  S is called r -iwunriant if r (S) = S, (eq~livalentl,y, if r (S) C S) .  

Tllongh (a) has been defined using a specific representative of z,  it is not 

lmrd to show that  t,his definition is independent of the representative chosen. . . ihotc illat, iu',(a) = a2, for all o E K ,  wile11 z is a real p o i ~ ~ i .  Tllus, both 

t1t:finitions (real and complex) of convexity agree in this case. 

2. Remarks. (a) Assume t,llat l3 is r-invariant. Then all m,B, UB and K 
arc 7-invariant,. Call 7' the restriction of T to K .  Then T' = idK iff K 2 C T  

iff z is real. 
( I ) )  Assi~nle that  K is algebraically closed, T is an  involution of K and B is 

r illvariant,. Then the mapping defined by ?(2 + m,B) = ~ ( z )  + m . ~ ,  for all 

:I. E B, is an  involution of ?T (note that i E UB, since B is integrally closed, 

ahrncr  7(i  + ntg) = -1: + m,g # i + m,B, so that ? # i dx )  In particular, 

X n 7  = ? A H .  Conversely, if u is any involution of R such that  X B r  = aXB, 

then B is r-invariant and a = 7. 

(c) The condition X B r  = oXB obviously implies XBNT = N,XB. 
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COMPLEX VERSION OF BAER-KRULL THEOREMS 3731 

3. Proposition. Let R c K be a field extension with R real, z = [K s 
C, T, F] a point in Spec,(K/R) and B a z-convex val~iation ring of K .  Then 

the following hold true: 
(i) B is finite over Q and char K = 0, 
(ii) B n CT is a re(z)-convex val~lation ring of K n CT, 
(iii) if K is r-invariant then B is r-invariant. 

Pro0.f. (i) We have n.-2 = N,(n,-l) < N,(l) = 1, hence n-l E B ,  for all 

1 < 7). E N, whence Q is a subring of B and of R. 
(ii) I~nmediat~e. 

(iii) r ( K )  = K implies r ( B )  = B simply because r ( a ) ' ~  K ,  B is z-convex 
and N, ( r ( a ) )  = ~ ( 0 . )  = N,(a), for all a E B. . 
4. Proposition. Let R 2 K he a field extension with R real, z = [K C 
C,  7, F] a point in Spec, (KIR) and B a vahation ring of K .  If B is r-invariant 

ill~d B n Cc' is rr(z)-convex, then B is z-convex. 

Plmf .  Suppose t,hat a E I<, b E B and N, (a )  5 N, (b). Since r ( B )  = B ,  

then N,(b) = br(b) lies in B n C', whence N,(a) = a r ( a )  also lies in B n C', 

by re(z)-convexity. Moreover if n @ B then a-' E m,g, whence ~ ( a )  = 

(I-'nr(n) E 7nn E B = r ( B ) .  Applying T we get a E B ,  a contradiction. 

Therefore, a E B holds, as was to be shown. . 
Since we will only be interested in z-convex valuation rings, then we will 

rrstrict ourselves to valuation rings finite over Q, by Proposition 3 (i). 

Let z = [K C, T, F] be a point in Spec,(K/R) and set 'H := {Z E 

I< : N,(n:) 5 71.~:  some n E N). Then Fl 11s a z-con,vez valuation. rin.g in. _K. 

Intlrcd, it is easy t>o verify t,hat 'H is closed under products and sums, using 

t liat NT(:t: + ? j )  5 4 max{NT (z), NT(y), N,(zT(Y)), 1) , for a11 Z,  y E K. It is 
also clear t,hat a: E K \ 'H implies Z-l E 'H. 

5. Proposition. Let R s K he a field extension with R real, z = [K g 
C, r ,  F] a point in Spec,(K/R). If B is any valuation ring of K finite over Q, 

then tlle following are eq~iivalent: 

(8.) B is z-convex in K ,  

(h)  7 n , ~  is z-convex in B ,  

(c)  'H B.  

Pmqf. ( a )  * (b) Let a E B ,  b E m.B and suppose N,(a) < N,(b). If 
t)  = O then O = N,(a) = a = r (a) ,  whence a belongs to m.B. If a # 0 then 
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3732 DE LA PUENTE 

1, $; 0, N , ( F 1 )  5 N,(np1) and b-' 6 B ,  whence n,-' 6 B ,  by  z-convexity o f  
B. Thus,  n belongs to  m ~ .  

( 1 1 )  3 ( c )  Let z E K be such that N,(z) 5 n,', for some n E N .  
S~lppose r @ B .  Then n # 0 ,  z-' E rn,B and n,-' 5 N,(z-') whence n.-I 
belongs to  m,g, by z-convexity o f  rn.B and finiteness o f  B over Q. It follows 
that 1 belongs to  m.5, which is absurd. 

(c) + ( a )  Let n E K ,  b E B and suppose N,(a) < N,(b). I f  b = 0 
tlirn 0 = N,(n) = n = ~ ( n ) .  I f  b # 0 t,hen N,(ab-') 5 1 whence ab-' E 7-1, c 
B and so o = (nbF1)b E B. w 

6. Definitions. Let R E K he a field extension with R real. Consider 
2 = [I< C C ,  T ,  F ]  E Spec,(K/R).  Let E ,  F be intermediate fields with 

R c E c K c F c C .  
( a )  C is algebraic over K . T ( K )  whence also algebraic over F . r ( F ) .  W e  
rl($inr the es:tcnsion o,f z to  F to be the point [ F  c C ,  r ,  F ]  E Spec,(F/R) 

i 1 ~ 1  rl(~noto i t  h,y ext>(z,  F ) .  
( l ) )  Lct C' he the algebraic c l o s ~ m  o f  E .  r ( E )  inside C .  C1earl.y F belongs to 
C'. Now, for every a E C' ,  ~ ( a )  is a root o f  the image b y  T o f  the minimal 
po l~~orn ia l  of n over E . r ( E ) ,  whence ~ ( a )  belongs to C' .  It follows that the 

~wti . icf ion T' (if T to C' is a n  in~.ol~ltion (if r' = idc! then C' would embed 

illto ;I r d  c,loscd field, contradicting that C' is algebraically closed). The 
point [ E  C C ' :  r l ,  F ]  belongs to Spec,(E/R) and is called the restriction of z 
to E and denoted res(z, E ) .  

Tlic cxtcnsions o f  z to all intermediate fields F are dominated by the 
cxtmsion to C ,  in the sense that ex t ( z ,  F )  = res(ext(z, C ) ,  F ) .  For short, 
write z t  = ext(,, C )  

The  proof o f  the following result is immediate. 

7. Proposition. Let R 2 E C_ I( be a field extens~on with R real. Let 
;. = [I( C C, T ,  F ]  he a pomt 111 Spec,(K/R) and B 5: K a valllation ring. 

C ~ J I S I ~ ~ J  7~ = res(z, E )  E Spec,(E/R).  I f  B is z-convex then B n E is 
11) -( onvex. W 

8. Definition and Proposition. Let R 5 K C C be a field extension 
with R real and C algebraically closed. Let B be a snbring o f  K and T an 
i n r d ~ ~ t i o n  o f  C .  The set 

O,(B)  := {n: E C : N, (z) 5 N,(b), some b E B )  
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is called the r-cowex hull of B.  It is a w-convex, T-invariant val~iation ring 

of C,  where w = [C c C, T, E ]  E Specc(C/R). In addition, if B is a vahlation 
ring of K then B is z-convex if and only if 0, (B) is an extension of B,  i.e., 
u,(B) n K = B. 

Plnnf. It is easy to verify that OT(B) is closed under products and sums, 

11sing t.llat~ N7(n: + v) 5 4max{N,(z), NT(y), NT(zr(y)),  11, for all z, y E C. 
It is st,raightforward to show that OT(B) is a w-convex valuation ring. It 
is T-invariant just because NT(z) = N,(T(x)). Finally, it is immediate to 

realize that 0 , (B)  n K = B if and only if B is z-convex. . 
From here on, we set f (m) = co, for any map f 

9. Construction: Complex (Ba-Kr 1). Let B C K be a valuation ring 
finite over Q and z = [K C C, 7, F] E Spec,(K/R). Write for the residue 

(.lass field of t,he valuation ring B n R. Suppose that B is z-convex. Then 

B n II! is convex in R wit,h respect to the ordering induced by CT.  

Eas,y case: Suppose K = C.  Then K is algebraically closed and T- 

invariant. By Proposition 3 (iii), B is T-invariant. By Remarks 2 (b), T 

ind~~ces an involution '? on such that XBr = TAB Moreover - K is alge- 

Imimlly closed, by [PC] lemlna 17, page 47. The fixed field zT contains 
- 
R, since R C K T .  In this situat,ion, we say that z and B  induce th,e p o d  

--  
z. := [Ti E , T ,  XB(F)]  E Specc(K/R). Such a point z~ is unique in 

- - 
Spec,.(I(/R) with the conditions X B r  = TAB and XB(c) appearing in the last 

entry (clearly XB ( F )  E { h i ) ) .  

Gmeral case: If K is not necessarily equal to C ,  then extend z to zi E 

Spec, (ClR)  and consider H := 0,(B) ,  which is a zt-convex valuation ring 

of C extending B,  using Definitions 6 and 8. To zt and H we apply the 

cwlstruction of the previous easy case, thus obtaining an induced point ( z t ) ~ .  
- - 

It lies in Spec,(C/R), being (respectively, R) the residue class field of H 
(r~spectively, of H n R = B n R). 

The condition H n K = B conveys inclusions B 2 H and r n ~  m ~ .  
They induce a field embedding 1 : K -+ ??. In particular, the place AH : 

C -+ U {co) satisfies = XHIB. If we identify each element of R with 
its image by 1 then AH is an extension of X B  to C and we will simply write 

X for (Gtlwr X U  or XII. Now, the field extension R .  ? ( x )  C_ is algebraic, 
sinw I( . r (K)  G C is algebraic. We have a point r e ~ ( ( z t ) ~ , R )  that will 
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3734 DE LA PUENTE 

--  

be denoted z~ and called poin,t in.duced by z an,d I3 1:n Spec,(K/R), namely, 

z ,  = [77 c E,7,A,(f)] .  

Note that  H is T-invariant. Thus the equality AT = 7 X  holds and it 

follows that  AN, = N7A. 

How does th,is fit with th,e real (Ba-Krl)? re(zt) is nothing - but the 

unique ordering of C T  and re((zt)H) is - the unique ordering of c T .  Thus 

rc(zn) is tlie ordering induced on fi; n GT. Then th,e ordering re(z) given, by 
the real (Bn-Kr 1) coin.cides with re(zB). Indeed, given n: E UB n CT, we 

lravc A(n) >m 0 iff r >,.,(,I 0 iff r = n2, for some a E C T  \ (0). This 

implics t,liat O # A(:{.) = A(n)2 and this holds iff X(n:) >,(,B) 0. 

10. Definition. Let R C_ K he a field extension with R real, B a valmtion 

~.ing of I<. S~lppose that the residue class field R of B n R is a real subfield 
--  

of K. If w = [fi; D ,  u, F] belongs to Spec,(K/R), then a liftin.9 of w via 

A n  is A point z in Spec,(K/R), s~lch that B is z-convex and z~ = w. 

'flw gc:rioralization of (Ba-Kr  2)  to t,he conlplex spectrum cl~i rns  t,kiat 

liftirigs exist,. It will follow easily from the next result, the proof of which is 

t l ~ i c l  to A .  Prcst,c?l. 

11. Proposition. Let R 2 I( be a field extension with R real, B K a 
r ~ i i l ~ ~ a  tion ring, D an algebraically closed extension of fi; with char D = 0, u 

;,n invol~ltion of D. S ~ ~ p p o s e  that the residue class field R of B n R satisfies 
- 
R c Do. Then there exist an algebraically closed extension C*  of K and an 

i~ lvo l~~ t ion  T* of C*  s ~ ~ c h  that for some extension H* of l3 to C* we have 
- - 

j:!) Ei* is r*-inlvz-imt (iznd t h i s  T* indxos  ar, invo!!ltinr! T* nf C*),  

( 1 1 )  D C C' and 7 extends a, 

(0 R c (c")". 

Plao,f. It is well known t,hat there exists an  extension va of V B  to the 

algc1)rdc closure K a  and that the value group of va is the divisible hull A 

of r l1 .  Tliere exist,s an embedding of R into Du((A))  as valued fields (see 

[lia], p ; ~ g ~  318). Since Du( (A) )  is real closed then some real closure E of 

R inside K a  embeds into Du((A))  as ordered compatibly-valued fields, by 

[PC] page 118, theorem 27. Write C = D((A)) ,  denote by 11, the canonical 

valuat,ion of C and by T the canonical involution in C extending u (so that  

Ti = 0 holds and CT = Du((A))) .  The embedding (E, valE) - (c', T&) 

Iias a canonical e~t~ension to some embedding of E ( i )  into C as valued fields. 
'P So we hai,e (E( i ) ,  vag( i ) )  - (C, ? I , ) ,  for some embedding p. We would like 
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COMPLEX VERSION OF BAER-KRULL THEOREMS 3735 

t,o extend p to some embedding of (Ka,va) into some extension (C*, v*) of 

(C ,  71). 
By general model theory (see [Prl] page 125 or [Pr2] page 47), there 

exist,s a card(K)+-saturated elementary extension (C*, u*,  T*) of the struc- 

t,we (C, 71 ,~) .  NOW, all the conditions in [K-PI, claim in page 192, are 

sat,isficd for K1 = E( i ) ,  K2 = K a  and K *  = C*. Indeed, E( i )  and 

C* are obviously henselian valued fields. Their residue class fields satisfy 

E(i) K" g C" and E(i.) is algebraically closed (in 5). And their 

valur groups satisfy va(E(i)) 5 A C 71,*(C*) and the residue class group 
A/va(E(i))  is t,orsion-free, since va(E(i))  is divisible. Thus, by [K-PI, cp 

~ x t , ~ ~ i d s  t,o (Ka ,va)  (C* t,o*). 
Clcarly, r* is an involution extending T and thus p(R) (c*)" . If we 

now identify each element of K a  with its image by cp then (c) holds. 
The tlefinit,ion of T implies t,hat p r  = up, where p denotes the canonical 

place of C .  Therefore the associat,ed valuat,ion ring H 5 C is r-invariant, by 

Remarks 2 (b). This means that ?r(n:) 2 0 implies 7rr(n:) 2 0, for n: E C. If 
If* 5 C* tlenot,es t,he valuation ring associated to u* then (a) follows, since 
the extension is elementary. 

The condit,ion H* fl C = H conveys inclusions H C H *  and m.w 5 m H . .  

Tliry induce a field embedding 1 : D + C*. If we identify each element of D 
wit,ll its image by I then 7lD = 7 = u and (b) holds. . 

Notr t.liat for a power series to be ~aturat~ed,  t,he value group must be 

sat,~mt,f?d. For i~istance, C = @((Q)) is not saturated. 

12. Corollary: Complex (Ba-Kr 2). Let R C K be a field extension 
with R real, B a valuation ring of K .  Suppose that the residue class field i? of 

- - 
B n  R is a real s~~bfield of I?. Then for each w = [E E D, u, F] E Spec,(K/R) 

there exists a lifting of w via X B .  

Proof. We apply Proposition 11 and obtain C*,  T* and H * ,  with the no- 

tations of the previous proof. Take 5 E p-'(t) n {f i)  and consider the points 

z* = [C* c C*,  r * ,  S] E Spec,(C*/R) and z = res(z*, K )  E Spec,(K/R). We 

liave z = [K c C', T', S] where C' is the algebraic closure of K . T* ( K )  in C* 
and T' is t,he restriction of T* to C'. We must verify that B is z-convex and 

Z s  = 7U. 

Using the notations in the proof of Proposition 11, recall tJhat C' is 

an ordrred coinpat.ibly-valued field, which implies that H n C T  is a convex 

valuation ring of CT.  BY Provosition 4. H is t-convex. where t = 1C C 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
.
 
C
o
m
p
l
u
t
e
n
s
e
 
D
e
 
M
a
d
r
i
d
]
 
A
t
:
 
1
4
:
1
3
 
1
8
 
M
a
y
 
2
0
1
1

fefernan
Rectángulo



3736 DE LA PUENTE 

C ,  r, 61. This means that ~ ( b )  > 0, br(b) - w ( a )  = c2 and c = ~ ( c )  imply 

ii(n) 2 0, for o , b , c  E C.  Since the extension is elementary then H* is 

z* -ronvcx. Thus B = H* n K is z-convex, by Proposition 7. 
Finallv, z~ = w because the extensions of z to C' (respectively, of z~ 

and w to C') are dominated by z* (respectively, by ( z * ) ~ . ) .  . 
The proof of the existence of liftings of w,  in the case R = Q is simpler 

than the proof given above. I t  uses a version of Proposition 11, which does 

not call for saturated structures. We just embed K into D ( ( A ) )  as valued 

ficlrls and, of course, this embedding maps Q into D u ( ( A ) ) .  

Tlio question of determining all the liftings of w via X B  does not seem 

to follow easily from the above. 

It scelns possible to derive a complex (Ba-Kr 2) from 2.12 in [HI 
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