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In this paper we present a pixel coloring algorithm, to be considered as a tool in
fuzzy classification. Such an algorithm is based upon a sequential application of a
divisive binary procedure on a fuzzy graph associated to the image to be classified,
taking into account surrounding pixels. Each color will suggest a possible class, if
homogeneous, and the hierarchical structure of colors will allow gradation between
classes.

1. Introduction

Classification in remotely sensing images quite often suggests techniques
based upon fuzzy models. This is mainly the case when there are no objects
to be classified. Objects, at least in a standard sense, use to present clear
borders, and classification can be developed just based upon a boundary
analysis and a previous knowledge of the shapes of the different objects
under consideration. On the contrary, many classification problems about
earth land use, for example, refer to classes showing gradation from one class
to the next class. There are no clear boundaries, and each class defines a
fuzzy set with no particular shape (see Bezdek and Harris6). In fact, there
is an increasing research on Fuzzy Sets Theory applied to in remote sensing
classification problems (see, e.g., Foody7).

Many different approaches can be found in remote sensing classification
literature. In Amo et al.3,5, for example, some of the authors proposed
a classification model based upon a modified outranking model, basically
taken from Pearman et al.12. But the output information appeared to be
difficult to be managed by non-qualified decision makers. A main need was
to develop fuzzy representation techniques. In particular, it was missing
some kind of coloring tool allowing a consistent and informative picture
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showing possible regions and gradation of membership to possible classes.
In this paper we propose an unsupervised crisp coloring methodology,

to be considered within a more elaborated fuzzy classification system, as
defined in Amo et a.2,4. The coloring procedure we present here is defined
by means of a divisive crisp binary coloring process, which seems promising
as a helpful tool in order to find out consistent regions and postulate pos-
sible fuzzy classes. In section 2 we introduce the basic pixels fuzzy graph
associated to an image, and in section 3 we present a crude coloring algo-
rithm. A final comments section shows the some particular improvements
actually under development (see Gómez et al.9).

2. The image and its associated pixels fuzzy graph

Let us consider an image as a bidimensional map of pixels, each one of them
being characterized by a fixed number of measurable attributes. These at-
tributes can be, for example, the values of the three bands of the visible
spectrum (red, green and blue), the whole family of spectrum band inten-
sities, or any other family of physical measures.

Our main objective is to determine a family of pixels suggesting to define
a class. This information should be taken into account in a later supervised
analysis where additional information may exist.

The image I under consideration is therefore divided into pixels (in-
formation units), and the whole information is summarized as a vector
of b measures for each pixel I =

{
(x1

i,j , . . . , xb
i,j) / (i, j) ∈ P

}
, where

P represents the associated set of pixels in which the image is divided,
P = {(i, j) / i ∈ {1, . . . , r} j ∈ {1, . . . , s}}, meaning that we are dealing
with an image of size r × s, each pixel being characterized by b numerical
measures.

Given such an image I, a standard crisp classification problem pursues a
partition in crisp regions, each one being a subset of pixels, to be considered
a candidate for a new class, in case such a region is homogeneous enough.
In this way, a crisp classification approach looks for a family of subsets of
pixels {A1, . . . , Ac} such that P = ∪c

k=1Ak but Ai ∩Aj = ∅, ∀i 6= j.
Our approach in this paper pursues to obtain an approximate gradation

by splitting each subset under consideration into two crisp classes every
time. The key tool will be a distance between the measured properties of
pixels d : P × P −→ [0,∞), which at a first stage can be based upon the
Euclidean distance in IRb. Of course, any other ad hoc distance can be taken
into account in a future research. Obviously, the classification process will
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be strongly dependent on the selection of the appropriate distance, to be
chosen taking into account all features of the image under consideration,
together with our particular classification objectives.

Hence, our set of pixels P is being modeled as a planar fuzzy graph
(see, e.g., Kóczy10, Mordeson and Nair8, or Rosenfeld13) whose nodes are
pixels, described by means of their cartesian coordinates i ∈ {1, . . . , r} and
j ∈ {1, . . . , s}. The graph will be planar in the sense that two pixels (i, j)
and (i′, j′) cannot be linked if |i − i′| + |j − j′| > 1. Consequently, two
pixels could be adjacent only if they share one coordinate being the other
one contiguous.

Let G̃ = (V, Ẽ) be a fuzzy graph, where V is the node set and the
fuzzy edges set Ẽ is characterized by the matrix µ = (µij)i,j∈V , where
µij = µẼ({i, j}), ∀i, j ∈ V , and µẼ : V × V −→ M is the associated
membership function. Each element µij ∈ M represents the intensity level
of the edge {i, j} for any i, j ∈ V .

The set M is linearly ordered (µi,j ≺ µ′i′,j′ means that the intensity
level of edge {i, j} is lower than the intensity level of edge {i′, j′}). Hence,
the set M allows the literal graduation of the edge sets; for example, if
M = {n, l, h} the edges can be graduated as null (n), low (l) or high (h).

We can then denote by G̃(I) = (P, Ẽ) the graph associated to our image
I, where M = [0,∞) is the domain of the distance function d:

Ẽ =
{
{d((i, j); (i′, j′))} ∈ F / ∨

[
i = i′ |j − j′| = 1
j = j′ |i− i′| = 1

]}

Definition 2.1. Given the image I and a distance d between measured
properties of pixels, the pixels fuzzy graph is defined as the pair G̃(I) =
(P, Ẽ).

Notice that our pixels fuzzy graph G̃(I) can be also characterized by
the set P plus two r × s matrices, D1 and D2, where D1

i,j = d((i, j), (i +
1, j)),∀(i, j) ∈ {1, . . . , r− 1}×{1, . . . , s} and D2

i,j = d((i, j), (i, j +1)), ∀ ∈
{1, . . . , r}×{1, . . . , s−1}. Since our coloring procedure will be based upon
this alternative representation, from now on we shall denote our pixels fuzzy
graph G̃(I) by (r, s,D1, D2).

The key coloring algorithm proposed in the next section will take advan-
tage of the above alternative representation, which shows relation between
adjacent pixels in the pixels fuzzy graph G̃(I).
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3. A crude coloring algorithm

A c-coloring of a graph G = (V,E) (see, e.g., Pardalos et al.11) is a mapping
C : V −→ {1, . . . , c}, verifying C(v) 6= C(v′) if {v, v′} ∈ E. Any c-coloring
induces a crisp classification of the nodes set V , being each class associated
to one color: VC(k) = {v ∈ V / C(v) = k}, k ∈ {1, . . . , c}.

Our objective is to obtain a classification of pixels through a c-coloring
C of the pixels fuzzy graph G̃(I): the pixel (i, j) ∈ P will be classified as
k ∈ {1, . . . , c} if its color is C(i, j) = k.

In order to color a fuzzy graph, we consider Gα, the crisp graph defined
by the α-cut edge set Eα = {{e, e′} / µe,e′ ≥ α}. The values of this
parameter α will be selected in such a way that a successive binary coloring
process will be applied to some fuzzy subgraphs of G̃(I).

The first binary coloring analyzes the pixels set P classifying each pixel
as 0 or 1. The second binary coloring is applied separately to the subgraph
generated by those pixels colored as 0, to obtain the classes 00 and 01, and
to the subgraph generated by those pixels colored as 1, to obtain the classes
10 and 11. This hierarchical process of binary coloring is repeated in the
crude coloring process. In this way, a c-coloring C will be defined on G̃(I):
if C(i, j) = k, with k = 6 for instance, then the binary representation of
k − 1 = 5 is 101, i.e. the pixel (i, j) will be binary colored three times (1,
0 and 1, respectively).

3.1. The basic binary coloring procedure

A natural way of introducing the basic binary coloring procedure is to
classify two adjacent pixels as 0 and 1 if and only if the distance between
them is greater or equal than a prescribed threshold α. Notice that, in
this way, only adjacent pixels are classified as distinct (if distance between
them is high), while a standard approach classifies two arbitrary pixels in
the same class if that distance is low (no matter they are adjacent or not).

Formally, and in order to define the first binary coloring procedure, given
a value α, let Gα denote the α-cut of the fuzzy graph G̃(I): Gα = (P, Eα),
where

Eα =
{{(i, j), (i + 1, j)} / d1

i,j < α
} ⋃{{(i, j), (i, j + 1)} / d2

i,j < α
}

The set Eα is the set of all pairs of adjacent pixels with a distance d lower
than α.

Let col : P −→ {0, 1} be a binary coloring of Gα. The first binary
coloring can be obtained assigning an arbitrary color (”0” or ”1”) to certain
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pixel and fixing an order in which pixels will be colored. That first pixel
to be colored could be, for example, the pixel (1, 1) in the left top corner
of the image; then pixels will be colored from left to right and up to down
depending on a fixed threshold α. In general, given a colored pixel (i, j) the
adjacent pixels (i + 1, j) and (i, j + 1) will be subsequently colored. Since
pixel (i + 1, j + 1) can be alternatively colored either from pixel (i + 1, j)
or from pixel (i, j +1), a natural constraint is that both colors must be the
same; otherwise, the coloring will be denoted as inconsistent.

Definition 3.1. Given a pixel set P a square is a subset of four pixels

sq(i, j) ≡ {(i, j); (i + 1, j); (i, j + 1); (i + 1, j + 1)}
being i ∈ {1, . . . , r − 1} and j ∈ {1, . . . , s− 1}.

We shall then denote by PS the set of all squares, PS = {sq(i, j) / i ∈
{1, . . . , r − 1}, j ∈ {1, . . . , s− 1}}.
Definition 3.2. Given a pixels fuzzy graph (r, s,D1, D2), a square
sq(i, j) ∈ PS is consistent at level α if given an arbitrary color col(i, j), the
above binary coloring procedure assigns the same color to pixel (i+1, j+1),
no matter if it is done from pixel (i, j + 1) or pixel (i + 1, j). Otherwise,
the pixel square is inconsistent.

Consequently, the above binary coloring of pixels fuzzy graph depends
on the chosen threshold value α, and we have two extreme cases: α =
max(i,j)∈P {d1

i,j ; d
2
i,j} (if we fix a threshold α > α, then the whole picture

is considered as a unique class (col(i, j) = col(1, 1) ∀(i, j) ∈ P ); and α =
min(i,j)∈P {d1

i,j ; d
2
i,j} (in case α < α, the picture looks like a chess board,

being all adjacent pixels alternatively classified as ”0” and ”1”). Only the
interval [α, α] should be properly considered.

Indeed, determining an appropriate intermediate α level is not a trivial
task. But once a level α is given, the inconsistent squares can be detected
with the binary function

inconsisα(i, j,D1, D2) =
{

1 if sq(i, j) is inconsistent at level α

0 otherwise

where each value inconsisα(i, j, D1, D2) depends on the square values d1
i,j ,

d1
i,j+1, d2

i,j and d2
i+1,j .

Pseudocode for computations relative to listing consistent and inconsis-
tent squares, inconsis(i, j, α, D1, D2), has been developed by the authors
in terms of four additional 0− 1 variables (see Gómez et al.9).
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Definition 3.3. Given a value α, the pixels fuzzy graph (r, s, D1, D2) is
consistent at level α if all squares sq(i, j) ∈ PS are consistent at level α.

Definition 3.4. Given a pixels fuzzy graph (r, s, D1, D2), its consistency
level, denoted as α∗, is the maximum value α ∈ [α, α] for which the fuzzy
graph is consistent.

Existence of such a consistency level α∗ is always assured, at least mean-
while our image contains a finite number of pixels. If some inconsistency
is detected for a given α level, a decreasing procedure can be introduced in
order to find a lower level α∗ assuring consistency. Such a procedure will
be initialized with α∗ = α, and then we search among inconsistent pixels
sq(i, j), by means of a new function newalpha (see Gómez et al.9). We can
therefore look for a value α∗ assuring consistency. Pixels are being classi-
fied either into a class ”0” or a class ”1” and in the next step we proceed
to get a more precise color for both classes (class ”0” will switch either into
”00” or ”01”). This will be done by alternatively activating only one of the
classes already colored in a previous stage. Analogously, such a binary col-
oring process is applied in subsequent stages to those activated pixels under
consideration (a subset of pixels P ′ ⊂ P ). This subset of pixels P ′ getting
a more precise color at each stage can be also characterized by a matrix act

such that act(i, j) = 1, ∀(i, j) ∈ P ′ and act(i, j) = 0 ∀(i, j) 6∈ P ′.
We can compute the interval [α, α] for the activated pixels, by means of a

procedure initalpha(r, s, D1, D2, act). It may be the case that two adjacent
pixels are not activated, and therefore the process should stop. This situa-
tion can be easily detected in the associated pseudocode initalpha, where
the lowest distance between activated pixels α is initialized as a very big
value (the greatest value of distances between activated pixels is initialized
as 0).

Again, notice that a given square can be consistent for a value α but
inconsistent for another value α′ < α. Hence, a decreasing procedure must
be repeated for the overall set PS until we find a new level α∗ assuring that
all squares are made consistent in the new coloring environment.

Then, a function called consislevel is the core of our algorithm: it will
iteratively compute the consistency level α∗ for the family of pixels being
actually activated (the initializing value will be α, which is obtained from
the procedure initalpha). The input arguments of consislevel are the pixels
fuzzy graph (r, s, D1, D2) and the r × s matrix act. The interval [α, α] is
computed after the procedure initalpha is called, being α∗ the returned
value. The associated consislevel(r, s, D1, D2, act) pseudocode computes
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the consistency level α∗(act), for a given a subset P ′ ⊂ P of activated
pixels. Following the standard order in the activated pixels (at every stage)
the level α∗(act) assures a valid binary coloring col procedure. In order to
perform these computations, a procedure bincolα(r, s, D1, D2, act, col) will
compute the binary coloring of activated pixels at level α, the fist call to
this procedure taking as initialization col(i, j) = 0, ∀(i, j) ∈ P (see Gómez
et al.9).

4. Final comments

The final objective of the algorithm we propose in this paper is to show
decision maker several possible pictures of the image, each one obtained by
means of an automatic coloring procedure of each pixel based upon a par-
ticular distance. Such a coloring procedure takes into account behavior of
each pixel with respect to its surrounding pixels, and each color will suggest
a possible class. Our coloring process is based upon a basic binary proce-
dure, which is again and again applied, leading to a hierarchical structure
of colors (i.e., possible classes). This basic binary procedure evaluates the
distance of the measurable description between adjacent pixels, assigning a
color depending on whether such a distance is either lower or higher than a
previously chosen threshold. Each colored picture can be analyzed by de-
cision makers in a posterior classification procedure: certain homogeneous
regions can be identified, and a subsequent comparison may lead to a fuzzy
classification, if we are able to evaluate the degree of concordance of each
pixel to each one of those identified regions (see Amo et al.1).

Due to space limitations, pseudocodes have not been included in this
paper, but they can be obtained from the authors under request, plus ad-
ditional details (see Gómez et al.9). Of course, the classification process
induced by the previous binary coloring can be refined, and an appropriate
relaxed coloring algorithm should be tried in order to bypass the computa-
tional inefficiency of the above crude coloring algorithm (see Gómez et al.9

for details). Once our basic binary coloring process has been successively
applied t times, we shall be able to distinguish 2t classes. Our complete
coloring process is therefore equivalent to a hierarchical classification proce-
dure, obtaining as output a set of nested clusters, to be properly analyzed.
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