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1. Introduction

LetY;,i=1,...,n, beindependent binomial random variables with parameters 7; and n;,i = 1, ..., n. We shall assume
that the parameters 7; = Pr(Y; = 1),i = 1, ..., n, depend on the unknown parameters 8 = (B, ..., ﬁk)T, Bi € (—o0, o0)
and explanatory variables x,T = (X0, . .-, X), Xio = 1,i =1, ..., nthrough the linear predictor

k
logit(m):Zx,-j,Bj, i=1,...,n (])
=0

where logit(p) = log (p/(1 — p)). In the following we shall denote the binomial parameter 7; by 7; = 7 (x] 8) and by X the
n x (k+ 1) matrix with rows x;,i = 1, ..., n. We also assume that rank(X) = k + 1.

In [4] a preliminary test estimator for B,ﬁ;ﬁabz (see (8) in Section 2) was considered. This estimator is based on the

restricted BZ‘; (see (7) in Section 2) and the unrestricted ﬁd,z (see (2) in Section 2) minimum ¢,-divergence estimators of

B. An important problem for the point estimation of B is to provide associated confidence sets. In this paper we consider
. . =P = -~ . .
asymptotic recentered confidence sets for g based on ¢r1e e ﬂ:g and B, and we study their coverage probabilities.

In Section 2 we present some notation as well as some preliminary results that will be necessary in the paper. Section 3
is devoted to the definition of recentered confidence sets as well as an analytical study of their asymptotic coverage
probabilities. Finally, in Section 4 a simulation study is carried out in order to analyze the coverage probabilities for small
and moderate sample sizes and different choices on the functions ¢; and ¢,.
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2. Background and notation

We denote by y; the number of “successes” associated with the binomial random variable Y;, i = 1, ..., n. Minimum
¢,-divergence estimator (M¢,E) of 8, Bd)z = B¢Z(Y1, ..., Y,) is defined as
Bq)z = arg Iﬂneig Z n:Dy, (D;, 7; (B)) (2)
i=1
where
= & n —Yi ) _ T _ T T L
p,_(nl " ) and n,(ﬁ)_(n<xiﬂ),1 n(x,.ﬂ)) , i=1,...,n, (3)

0 ={B= By, B1,---,Bx) : Bj € (—00,4+00),j=0,...,k} and Dy, (p;, m; (B)) is the ¢,-divergence measure between the
probability vectors p; and x; (), given by

Dy, (. 7 (B)) = 7 (x1) ¢2< oK )+(1—n(x?ﬂ))¢z (0;(;%)“) (4)

¢, € &, & is the class of all convex functions ¢, (x), x > 0, such thatatx = 1, ¢, (1) = ¢, (1) = 0, ¢ (1) > 0.In (4) we
shall assume the conventions 0¢, (0/0) = 0 and 0¢, (p/0) = plim,_, ¢, (1) /u. For a systematic study of ¢,-divergences
see Pardo [6].

For ¢,(x) = xlogx — x + 1 we obtain in (4) the Kullback-Leibler divergence,

Diun (pu T (ﬂ)) =Yi log ) + (nx yl) lOg ( (ni _YI)

7 (X; ﬁ 1—7(x{B)m)

and it is immediately seen that
2 D (B, (B)) = ~1(B) + k,

where ;(ﬂ) is the loglikelihood function defined by
1) = ilog (= (8)" (1- (x1))"™").

Therefore, the maximum likelihood estimator defined by B = arg maxgeo | (B) can also be defined by
B = argmin Y~ ni B . 8))

and the minimum ¢,-divergence estimator defined in (2) is a natural extension of the maximum likelihood estimator.
We denote N = 1, mj,

Wi () = diag (G (B)L1....,) diag ((Ci (B))i-1.....)

with
n 1/2 B T 1/2 .
c®) = ("xe (1-mep)) ((177WB) ) e 9
N —7(x; B) /
In the following we shall assume A; = limy_, o n;/N,i = 1, ..., n.Under the assumption that 7z has continuous second partial

derivatives in a neighborhood of the true value of the parameter g, and ¢, € @ is twice differentiable at x > 0, 8, verifies

VN (By, = Bo) = N (0. X'W (B X)), (6)

where W (B,) = limy_. .. Wy (B,). For more properties about ﬁm see Pardo et al. [5].

Now we assume that we have the additional information that 8 € 6y = {8 € 6/K"B = m}, where K" is any matrix of r
rows and k + 1 columns and m is a vector of order r of specified constants. The minimum ¢,-divergence estimator restricted
to @y is given by

~H —— ~
B4, = argmin y " niDy, (B, i (B)) . (7)
Beeo T
We refer to it as the restricted minimum ¢,-divergence estimator (RM¢,E) of 8 € ©,. The RM¢,E verifies
~H . B
VN (Bgs — Bo) > N (0, H' (Bo) X'W (B) X)),

where H* (B,) =1 — (XTW (8,)X) 'K (KT XTW (By) X) ' 1()7l KT.
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If we consider ¢, (x) = xlogx — x + 1in (7) we obtain the classical restricted maximum likelihood estimator.
In [3] in order to test the compatibility of the restricted and the unrestricted minimum ¢,-divergence estimators g, and

Bzg i.e., for testing
Ho:K'B=m versus H;:K'B+m

the following family of ¢-divergence statistics was considered

n
19— ¢,1,2( 5 2o, (riBoy). B
where n,-(ﬁq,z) and ni(ﬁgg) are obtained from (3) replacing B by ﬁq,z and ﬁgg respectively. We can observe that the statistic
Tﬁ”’z involves two functions ¢; and ¢,. The function ¢, is used to compute the minimum ¢,-divergence estimators ﬁ¢2 and
ﬁ:‘; while ¢, is used to calculate the “distance” between the two probability vectors.

It is interesting to observe that for ¢,(x) = ¢1(x) = xlogx — x + 1 we obtain Tf,’"‘bz = LR + op(1), where LR is the
likelihood-ratio test.

If we accept Hp we choose the RM¢,E and if we reject Hy we choose the M¢;E, i.e., the preliminary minimum (¢1,¢,)-
divergence estimator,

~Pre

~H ~ 4
Borgn = Basl(0.2) T8 + B2,y T ™)
or equivalently

~Pre

H o —h
ﬁ¢1»¢2 =ﬂ¢(2) + (ﬂti’z _ﬂ¢2)1[x%a,oo)(Tﬁl'¢2), (8)
where I4(y) denotes an indicator function taking the value 1ify € Aand 0 ify ¢ A. Hence, the preliminary estimator depends
on ¢ and ¢,.

In [4] the asymptotic bias and the asymptotic distributional quadratic risk for E;:e . Em and ﬁgg were studied. A closely
related problem is the confidence sets based on the preliminary test estimators. Our interest in this paper is to provide
asymptotic recentered confidence sets based on E;:E b ﬁ¢2 and Egg for contiguous alternative hypotheses and to obtain the
asymptotic expressions for their coverage probabilities. Whereas exact expressions have been studied in the multinomial
distributional problem, [1] among others, in logistic regression models it is not possible to obtain exact results. Recentered
confidence sets are well documented in [7] for different statistical problems.

3. Coverage probabilities: An analytical study

) . . - % . ~PI > -
We define the recentered confidence set based on the estimator /3;, where ,B; is equal to Bq;le_ #y0 Bo, OT ﬂ;‘;, as

2

o (B;) = [B:n]6 - B,

2
~ < s
XTWN(ﬂ¢2 X — Xit1,a }

where ||Y|2 = Y'CY.
We are going to see the asymptotic behavior of ﬁs,rf b ﬁ¢2 and ﬁgg under fixed alternative hypotheses defined by

Hi:K'B=m+s

with s € R" and fixed. The main results are presented in the following theorem:

Theorem 1. Under fixed alternative hypotheses H; : K'8 = m + s with s € R", we have:

(a) VN (Byyg, = B) = VN (By, = B) +0r (1.
(b) v/N (E:g - /3) has a degenerate asymptotic distribution.

Proof. (a) First we are going to establish that Tf,’l"bz — 00 as N — oo. On the one hand
VN (K'By, —m) = VNK'B,, — vNm — VNK"B + VNK'B
= VNK" (B4, — B) + VN (K" — m)
= JNK' (B¢2 - ﬂ) + +/Ns
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and in [3] we obtain,
o~ T o~
o \/N(I(Tﬂ¢2 - m) (K" (X"Wy (ﬂ)X)‘1K)“W(I(Tﬂ¢2 - m) +o0p(1)
o~ T o~
= \FN(/sd,2 - ﬂ) KK"(X"Wy (8) X)"'K)~'vVNK" <ﬂ¢2 - ﬂ)
+ /NsT(KT(X"Wy (8) X)~'K)~'/Ns + 2N (E¢2 - ﬂ)TI((KT(XTWN B)X)"'K)"s.

It is not difficult to see that

VNK(K"(X™Wy, (B) X)"'K)~1/2 (E¢2 - B) N_L> N(0,1)
and

Ns"T(KT(X™Wy (B) X)'K)'s N_L> 00

o~ T
2N (By, - ﬂ) K(K"(X"Wy (,B)X)”K)’lsN—L> 0.
— 00

Therefore T?""%2 — oo.
In order to establish (a) we consider, based on (8), the quadratic difference

~Pre o~ 2 ~ ~Ho\ T - H D1,9:
N B = By = N (Bon = BE2) XWalBIX (B, — B2 o 2, (T8)
= [T+ or(D)]1f0,5,) (") =[x+ 0D 107, TR ).
Therefore
. —~Pre = 2 . 2 D1.9:
i W [B, = Bos [ ) = i E [ 0nD] o, 18] =0
which means

~Pre -~ q.m.
mﬂd’l«bz - mﬁ(l)z N:)OCO
and Wﬁ;ﬂem — Wﬁm N:P>OO 0. Then,

IN(Bgr g, — B) = VN (By, — B) + 0p(1).
(b) Based on Pardo et al. [5]

,,,,,

B, = Bo+ (X'Wy (B)X) ' X'diag ((C Bo)L, ) diag (p(8°) ) (B~ (%)) +on( ") (9)
and based on Menéndez et al. [3],

Bl = Bo+ B (Bo) (X'Wa (B0)X) ' X'diag (G (BoDL, ) diag (p(8°) ") @ — b (Bo)) + on( 1.
Therefore,

B —B =By — B~ (XWy(BX) KU X" Wy (B)X)K)"" (K'By, —m) +0p(N""72).
Now taking into account that m = K8 — s we have

N (B~ B) = VN (By, — B) — (XWu(BX) ' KK (X"Wy (8)X)'K) VN (K'B,,, — K'B +5)

= VN (Bs, — B) — (X'Wy(B)X) ' K(K"(X"Wi (B)X)"'K)"'VNK" (B, — B) + Vs,

and the asymptotic distribution of /N (ﬁgg — ﬂ) is degenerated under the fixed alternative hypothesesH; : K8 = m-+s.
|

The result in the previous theorem is important because it reveals that in order to obtain meaningful asymptotic coverage
probabilities of the confidence set Cg (ﬂ:;,) we must consider contiguous alternative hypotheses to Hy, i.e., we shall consider
hypotheses of the type,

Hin: By =Bo+N?A,

with B, € Gp and A € R¥1.
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If we consider the function g(8) = K'8 —mit s clear that 6, = {8 € © : g(B) = 0} and the hypothesis H; y is equivalent
to the hypothesis

Hiy:g(By) = N""28(H;  : K'By = m + N7'/%§).
A Taylor expansion of g(8,) around B, € 6 yields
g(By) =8(Bo) + K'(By — Bo) +0(1),
but g(8,) = 0and 8, — B, = N~'/2A, hence
g(By) =N""PK'A +0(1).

Now if we consider § = KTA we have the equivalence in the limit.
On the other hand, we know that

N8y B ~N|g- B,

2 P

— —
XTWy (B, )X XTWy (89)X

Therefore in order to study the asymptotic behavior of Cg (B;;) we shall consider that our recentered confidence sets are
given by

Cy (E:’) = {BN :N HﬂN - B;Z

2

2
< .
XTWN(ﬁg)X — Xk+l,a}

We need an auxiliary lemma to obtain the asymptotic coverage probabilities of Cg, (ﬁgg) and Cg, (ﬁ;r]e ¢2).

T
Lemma 2. We denote by T = (Iﬁ I‘ZT) ,(Trisanr x (k+ 1) matrix and T'y a (k + 1 — r) x (k + 1) matrix), the orthogonal
matrix that diagonalizes the idempotent matrix

XTWy (Bo) X)™ 2K (K" (X"Wy (Bo) X)™'K) 'K (X"Wy (By) X)~ /%,

n% = (%, 93) (n, is anr x 1 random vector and n, a (k+ 1 —r) x 1 random vector) the random vector defined as
My = VN (TX"Wy (Bo) X)'/2By, — T (X" Wiy (Bo) X) ™2 K(K™ (X" Wy (Bo) X)'K)~'m) + 0p (1) . (10)
Then, we have:

L % « _ (Ir 0
(@) ny — E[nN]mN(O,I ) whereI* = (0 lk+1—r> .

~Pre

2
() N | By — Birg,

2 2
XTWa(Bp)X HE[’h] — M2, (nimy + OP(U)” + |E[n2] = n2|” + 0 (1)

Proof. Part (a). Based on the definition of 5y, given in (10), we have
My — Elny] = T(X"Wiy (Bo) X)'/V/N (B, — By) -

Now by (6) we obtain
My — Elny] = N (©0.1).

Now we consider part (b). The matrix T verifies

TOWy (Bo) X)X Wiy (80) X) KO KW (Bo) 0T = (3 ).

In [3] it was obtained,
197 = VN (K'B,, —m) (K'(X"Wy (B) X)"'K)"'VN (KB, —m) + 0p(1).
Now we have,
19 = VN (K"By, —m)' (K" (X" Wi (Bo) X)~'K) KT (X" Wy (Bo) X)
x (XTWy(Bo)X) 2K (K™ (X"Wy (8,) X)"'K)'VN (I(T@,,2 - m) + 0p(1)
— VN (CXWy (B0 X)' B, — DKWy (Bo) X)~ K (K" (X" Wiy (B) X)~'K) 'm)’
x T (X"Wy (B0) X) ™K (K" (X"Wy (B0) X)'K) 'K" (X" Wy, (Bo) X)~1/°T"
x T(X"Wy (Bo) X) ™ 2K (K" (X"Wy (B) X)'K)'K" (X" Wy (Bo) X)™"/’T" /NI (X"Wy (Bo) X) /B 5, K~
— VNL(X"Wy (B) X)~2KK" (X"Wy, (Bo) X) ™ 'm + 0p(1).



198 M.L. Menéndez et al. / Journal of Computational and Applied Mathematics 224 (2009) 193-203

Therefore,

I, 0\ 0
T]‘\Z]’1~¢2 — n% <0 0) <0 0) U + Op(l) = ﬂ-{ﬂ] + 0[’(1)

and the asymptotic distribution of Tﬁl“”z is a noncentral chi-square with r degrees of freedom and noncentrality parameter
A= E[q{nl] = ATKT(K"(X"W (8,) X)'K) " 'KA. (11)

This result follows since ~/N(3; — E[5,]) converges in law to an r-normal random vector with mean vector zero and variance
covariance matrix I,. .
Using the definition of ﬂd,r:qsz given in (8), we obtain

—rre 2
N HﬂN - ﬂ;],m ‘XTWN(ﬂo)X
= VN (X"Wy (B0) X' (B — Bi2) — X Wa (B) X" (By, — B2) 2, o0y (171 +00(D))

~Hyp

X VN (X" Wi (B0) X)'/2 (B — Bys) — X "Wy (B) X0 (B, — Bin) I o0y (m101 + 0p(D)))
= VN (W (Bo)X)'2 (B — BL) — TX"Wy (B) X)'7 (B, — Bi2) 1,2, ) (w1 + 00(D))'
x VN (TXWi (Bo) X' (By — Byp) — TX"Way (Bo) X)'/2 (B, — Bip ) I[,2,.00) (W01 + 00(D)))
= Enky
where
£ = VNEXTWy (B0) X)'7? (B — Byy) = TX'Wx (B0) X)'* (B, = Byy) I[,2,.) (1101 + 0p(1) (12)
Denoting
A= NEXWy (80) X" (By, — By )
we can write
A = VNT (X" Wiy (Bo) X)'/2 (X Wy (Bo) X) ™ K(K" (X" Wiy (Bo) X)™'K) ™' (KB, — m) + 0p(1)
= VN (TX"Wi (B0) X)™ 2K (K" (X" Wy (Bo) X)™'K) K" (X Wy (Bo) X)~/°T")
x (T(X"Wiy (Bo) X)'*By, — T (X" Wy (B) X) ™K (K™ (X" Wiy (B5) X)™'K)~'m) + 0p(1)

SO e
and denoting B = v/NT' (X"Wy (B,) X)!/? (ﬂN - ﬁgg) ’

B = VNE(X"Wiy (Bo) X)'/2 (B — By, + (X" Wi (B) X)'K(K" (X" Wy (Bo) X)'K) ™" (K"B,, —m)) + 0 (1)
= VNT(X"Wiy (Bo) X)'/2 (By — By, ) + vND (X" Wy (Bo) X) ™K (K™ (X" Wiy (Bo) X)~'K) ™" (K"B,;, — m) + 0p (1)

= VNFXWi (B0) X)'/2 (By — By, ) + (’Q) + op(1).

But

n—Ell = (n}md) — (En " EDna")’ = TXTW (B) %)V (B, — B)
and

NE(X "Wy (B) X072 (B — BY) = (Eln T Elmo] —n)")
Therefore, the random vector &, defined in (12) can be written as

f0= (g ) = () i) (101 + 00(D) + 00D
and

~Pre

2
N[ By = Bors,

g = [EUT = 102,y (1801 + 00(D) [+ [E L] = o + 00 (1)




M.L. Menéndez et al. / Journal of Computational and Applied Mathematics 224 (2009) 193-203 199

In the following theorem we are going to obtain the coverage probabilities of the sets Cg, (ﬁ;) with ﬁ:; equal to ng or
~Pre

ﬂ¢1,¢2'

Theorem 3. We have, under Hy y:

. ~p . it
(@) limy-ao Pr(Cp, By, ) = Gr(ai MGis1 (10 — 2 0) +limyog fo  Pr(IED ] = miI2 < xEyqq — & 2
> X?,a)deJrlfr(t; 0)
. “H
(b) limpy oo Pr (Cp, (B)) = Ges1 (1.4 — 25 0)-
By G, (b; ) we are denoting the distribution function of a noncentral chi-square random variable with noncentrality parameter
 and “a” degrees of freedom evaluated at “b”.

~Pre

Proof. (a) We denote | = limy_, o, Pr (CﬁN (ﬂ¢1,¢2))- We have,

I [\Jll_)l‘l;lo Pr (HE[’M = Mil[2,.00) (ﬂ’h + op(1)>H2 + [Eny] - ’72”2 = Xf+1,a)

. 2 2 2
Jim Pr([ED ][>+ [EDna] = m2)® < 3o Il = )

+ Jim Pr([ED] =1 |* + [EDn2] = mal® < vt [mi]* > xa)

2
k+1,a

. X
= Gr(XEa; )\-)Gk+17r(X£+1’a - )\; O) + I\}Lngo‘/o Pr (”E[n]] — M ”2 < X£+],a -t M ”2 > X%,a> deJrlfr(t; 0)

(b) It is well known that E;rle b = [Aigg if T,?f]’d’2 < X%,a’ therefore based on the previous Lemma we have

~Hp || 2 2 2
N 1By = Boa |y = IETII + [EDm] = nal”
Therefore
Jim Pr (Cg, By,)) = lim Pr([Em ]I + [0, — m,1I° < 211.)

. 2
Jim Pr([E(ma] = m2]* = xEra — 1)

= Gk+1—r(X§+],a — )\; 0) | |

Remark 4. We know that under H; y

. > 2 2 _
Nh—>ngo Pr (N HﬂN ~ By, XTWy (89)X = X"“’O‘) =l-a
and this probability does not depend on A, i.e.,
Jlim Pr (cﬁN (ﬂ¢2)) =1-a.
If we consider
~H, ~Hq 12
CBN(B(;)(ZJ) = {ﬂN N HﬂN - ﬂ(pg HXTWN(/HO)X = Xzﬂ,a} ’
we have by (b) in Theorem 3 that
. “H
Jim Pr (g, (By))) = Ges1-+(iar.q — 35 0)-

We can observe that Gy q_, ()2 +1.« — A 0) is a decreasing function on A. At A = 0, it attains the maximum value
Gk+1—r(Xf+1,,x; 0) and it tends to zero as A — Xfﬂ,a- The coverage probabilities of Cﬂ(ﬁ¢2) and Cg (ﬁg‘z’) are equal if
A= Xngl,a - ijrllfr(l - O)

The asymptotic coverage probability of CﬂN(ﬁ;r: #,) depends on the noncentrality parameter 2 in the following way:

Theorem 5. The following results hold:
(1) If 0 < A < X710 then

. ~Pre
Nll_)l‘l(‘)lo Pr (CﬁN(ﬂ%@)) >1-oq.
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. 2
() I 3ira = 2 = (ORir) 2+ OEDV2), then
. ~Pre
Nll_)rroloPr (CﬁN(ﬂtﬁ],d)z)) <1l-o.
2
(iii) 1 2 > (G212 + (2)V2) . then
. ~Pre
A}erolol’r (CﬁN(ﬂqﬁmz)) =1-oa.
Proof. (i) We assume A < xz,, ,. We denote
P
[= lim Pr (cﬂN(ﬂq;fm)) (13)

we have

[= lim PF{HE[nz] )+ <

ml? < 1)

”2 > Xf_u) dGiy1-+(t; 0)

+ hm/ e Pr HE[m]—mH < Xirta =G

. X£+1,a
lim Pr{[ElmII* < xEire =t [m]” < X2} dGus1 (5 0)

N—o0 Jo

+ llm/ P ([Em ] =l = e — 6 Iml® > 2) dGia i (6:0)

? < x2.) dGes1+(t; 0)

. Xf+1,m
fim P ([ED] = ] < o0 =

N—oo

v

I > x2.) dGis1+(5; 0)

2
Xk 1l
+ lim [P (B[] = m]® < e — 6

N—oo

Jlim Pr{HE[nll =11 |* + [EDn2] = mal® = xina
= lim Pr(n"n < xy10) = Pr (i = K1) = 1 -

2
(ii) We assume x2.,, <X < (2.1 )% + (x?,)/?) . On the other hand we have established before that
k+1,a k+1, ro

”2 > Xia) dGi1-(; 0),

I = Gr(XE,a; )‘)Gkﬂ—r()(iﬂ,a -2 0) + hm / " Pr HE[771] - U1H = Xk+1 o« 5

where | was defined in (13). Butif > x¢,, , then 2 > x¢,, , > x7,. hence x?, — A < 0and Gy1_(xf,1,, — 2: 0) = 0.

Therefore
. Xl%+1,o(
t=Jim [5Pr([ED] = ml” < e =6 Inl” > Ky) dGar(:0)
. X£+1,(x 2
< Jim J5 P (JED] = ] < o0~ £) Gl (:0)

= lJl_flgo PT(HE[TH] — 1 HZ + [E[n] —n, HZ =< XE+1,a>
= Pr(X%H = X£+1,a) =1-a

2
(iii) IfA > ((x2, )%+ (x2)?), then Gep1-r(x2., , — A; 0) = 0, hence
k+1,a r,o k+1,a

”2 > Xf,a> de+17r(t; 0)

XE+1.Q
[= lim PI'(HE[ﬂ]]—’hHZ = X£+1,a_t’

2
On the other hand if ((X£+1,a)]/2 + (xﬁa)l/z) < Athen (x2,1)"* 4+ (x2,)"* < AV? and further

|E[n:] - 771”2 < Ko —t= [Elm]—m] = . Xer1.0 — b

then

IE[m Il = i =22 = 1] < |m = Elm]| = 272 < ]+ xia0 — ¢

Since

Viie = 0+ 00" = OGP + 002 < 22 < Il + ote —
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1/2

hence [, > (7o)"> = [m]” > Ao

Therefore

2
. Xi+1,0
L= lim [ Pr (] = m|® < xire — 6 Imil® > x2e) dGes1 (5 0)

N—00 Jo

. Xﬁ 1o
fim [ Pr(JEDn] = mi[* = X110 — £) dGir1(5: 0)

N—o0 Jo

= Pr(XfH = X%‘Fl,ﬂl) =1-a N

4. Simulation results

We study the coverage probability (CP) of the confidence sets based on preliminary minimum (¢1,¢;)-divergence

test estimators, B;:e@ under the null hypothesis as well as under contiguous alternative hypotheses using Monte Carlo
experiments. Our idea is to check the advantage of using the minimum ¢-divergence estimators instead of the MLE as well
as ¢-divergence test statistics instead of the classical likelihood-ratio test or Pearson test statistic. In our study we shall
consider the power divergence measures introduced and studied in [2], the expression of the function associated with this
family of divergence measures is

Pl _x—A(x—=1)

A+ 1) ;A0
$(x) = xlogx —x+1, A=0
logx+x—1, A =-—1.

This family will be used for testing and estimating. That it is to say, we consider for our study the family of preliminary test
estimators

~Pre __ —~Pre _ 7Ho Doy P -~ DD
Biiis = Bo,, s, = Boy L0.2) )+ Boy, I200) N7,
for some choices of the parameters A; and A,. More concretely we shalluse A; = —1/2,0,2/3, 1and 2 and A, = 0, 2/3 and

1. It is interesting to note that for A, = 0, Bd’o and ﬁZg are the unrestricted and restricted MLE of B respectively. Note that

T,‘fo'd’o = LR + o0p(1), where LR is the likelihood-ratio test.

The logistic regression model considered in the simulation study consists of a dichotomous dependent variable and three
normally distributed with zero mean and unit variance explanatory variables. We generated 10 000 samples of different
sample sizesn = (ny,...,n,)" € N = {n',n? n n* n’} withn! = 15,2 = 30, n’ = 80,i = 1,...,8,n* =
(25, 25, 25, 25, 10, 10, 10, 10) and n® = (40, 40, 15, 15, 5, 5, 25, 25). The regression coefficients 87 = (8, B1, B2, B3) were
generated from a uniform over (0, 2) .

We analyze the CP under the null hypothesis 8 € &, as well as the contiguous alternative hypotheses
Hin: By =B +N12A,

with B € o and different values of A, A; = (0, 0,0, 30), A, = (0,0, 0,20), A3 = (0,0,0,—20) and A4 = (0, 0, 0, —30).
We present the results obtained in Tables 1-5.

Table 1

CP of the estimates for A = 0

A %) nl n? n3 nt nd

0 -1/2 0.9734 0.9670 0.9606 0.9757 0.9720
0 0.9658 0.9670 0.9655 0.9692 0.9651
2/3 0.9484 0.9551 0.9578 0.9437 0.9421
1 0.9344 0.9440 0.9512 0.9259 0.9299
2 0.9022 0.9015 0.9238 0.8790 0.8874

2/3 -1/2 0.9738 0.9673 0.9607 0.9760 0.9714
0 0.9647 0.9661 0.9658 0.9684 0.9628
2/3 0.9461 0.9538 0.9571 0.9406 0.9396
1 0.9312 0.9426 0.9506 0.9226 0.9260
2 0.8990 0.8980 0.9227 0.8754 0.8817

1 —1/2 0.9739 0.9672 0.9612 0.9759 0.9711
0 0.9647 0.9663 0.9659 0.9677 0.9627
2/3 0.9446 0.9530 0.9568 0.9391 0.9382
1 0.9304 0.9417 0.9502 0.9219 0.9249

2 0.8975 0.8972 0.9218 0.8738 0.8802
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Table 2

CP of the estimates for A = Ay

A1 Ao n! n2 n3 n# n°

0 —1/2 0.9572 0.9378 0.9000 0.9637 0.9558
0 0.9066 0.8953 0.8618 0.9144 0.9147
2/3 0.8231 0.8142 0.8027 0.8451 0.8560
1 0.7891 0.7786 0.7748 0.8151 0.8326
2 0.7145 0.7016 0.6973 0.7542 0.7787

2/3 —1/2 0.9552 0.9322 0.8893 0.9626 0.9545
0 0.9023 0.8883 0.8495 0.9109 0.9129
2/3 0.8178 0.8027 0.7838 0.8413 0.8525
1 0.7822 0.7669 0.7546 0.8119 0.8286
2 0.7078 0.6886 0.6758 0.7509 0.7751

1 —1/2 0.9542 0.9290 0.8845 0.9619 0.9541
0 0.9012 0.8846 0.8430 0.9101 0.9123
2/3 0.8162 0.7989 0.7751 0.8398 0.8515
1 0.7804 0.7635 0.7435 0.8105 0.8277
2 0.7059 0.6831 0.6653 0.7499 0.7725

Table 3

CP of the estimates for A = A,

M Ao nl n2 n3 n* n°

0 —1/2 0.9587 0.9481 0.9232 0.9664 0.9612
0 0.9336 0.9309 0.9169 0.9429 0.9461
2/3 0.8844 0.8933 0.8917 0.9014 0.9140
1 0.8603 0.8741 0.8736 0.8770 0.8974
2 0.7968 0.8220 0.8328 0.8178 0.8564

2/3 —1/2 0.9581 0.9475 0.9200 0.9665 0.9610
0 0.9330 0.9301 0.9136 0.9427 0.9460
2/3 0.8841 0.8916 0.8888 0.9008 0.9139
1 0.8594 0.8720 0.8708 0.8767 0.8971
2 0.7961 0.8191 0.8296 0.8170 0.8558

1 —1/2 0.9581 0.9466 0.9192 0.9665 0.9612
0 0.9331 0.9296 09116 0.9425 0.9461
2/3 0.8840 0.8911 0.8878 0.9006 0.9140
1 0.8595 0.8714 0.8699 0.8766 0.8970
2 0.7961 0.8182 0.8279 0.8161 0.8554

Table 4

CP of the estimates for A = A3

M A nl n2 n3 n* n°

0 —1/2 0.7939 0.7717 0.8021 0.7704 0.7928
0 0.8547 0.8229 0.8350 0.8230 0.8238
2/3 0.8945 0.8644 0.8574 0.8748 0.8696
1 0.9048 0.8742 0.8647 0.8859 0.8803
2 0.9185 0.8890 0.8728 0.8991 0.8899

2/3 —1/2 0.8307 0.8057 0.8270 0.8189 0.8622
0 0.8808 0.8487 0.8545 0.8646 0.8869
2/3 0.9122 0.8824 0.8749 0.9000 0.9140
1 0.9200 0.8919 0.8788 0.9080 0.9185
2 0.9307 0.8999 0.8841 0.9144 0.9207

1 —-1/2 0.8466 0.8194 0.8366 0.8384 0.8835
0 0.8934 0.8615 0.8646 0.8814 0.9073
2/3 0.9197 0.8922 0.8824 0.9121 0.9265
1 0.9267 0.9003 0.8844 0.9188 0.9281
2 0.9354 0.9064 0.8891 09214 0.9298

From Tables 2 and 3 that correspond with Ay, A, it s clear that Bgtuz is preferred to the rest. For A = 0, this estimator

is the first or second best. However, for A3, A, it can be seen from Tables 4 and 5 that ﬁ?rz is preferred to the rest. Therefore,

Fz’;z,m can be considered as a good compromise for all the cases. Note that if we want to use the LRT (A; = 0) statistic for

the preliminary estimator, the largest CP corresponds to A, = —1/2 for A =0, Ay, A; and A, = 2 for A; and Ay4. So, B{fiﬁ
is a good compromise between these two. On the other hand, we can fix the MLE (A, = 0) for obtaining the preliminary
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Table 5

CP of the estimates for A = Ay

A %) nl n? n3 n# nd

0 -1/2 0.9613 0.9473 0.9353 0.9552 0.9456
0 0.9637 0.9581 0.9472 0.9549 0.9605
2/3 0.9670 0.9606 0.9486 0.9608 0.9660
1 0.9688 0.9605 0.9469 0.9616 0.9669
2 0.9708 0.9585 0.9402 0.9625 0.9665

2/3 —1/2 0.9618 0.9483 0.9385 0.9575 0.9482
0 0.9642 0.9588 0.9488 0.9579 0.9616
2/3 0.9674 0.9610 0.9493 0.9621 0.9664
1 0.9692 0.9609 0.9479 0.9631 0.9671
2 0.9711 0.9589 0.9407 0.9635 0.9669

1 —1/2 0.9622 0.9490 0.9395 0.9583 0.9489
0 0.9647 0.9593 0.9491 0.9588 0.9624
2/3 0.9678 0.9614 0.9497 0.9629 0.9665
1 0.9696 0.9612 0.9483 0.9636 0.9674
2 0.9713 0.9590 0.9411 0.9638 0.9671

estimator and to look for the best statistic. In this case, for A = 0, A;, A, LRT is the best but for A3, A4 the minimum
chi-square statistic is the best, so a good compromise for all A seems to be the statistic corresponding with 1, = 2/3.
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