

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Confidence sets and coverage probabilities based on preliminary estimators in logistic regression models

M.L. Menéndez a, L. Pardo b, M.C. Pardo b,*

ARTICLE INFO

Article history: Received 28 October 2007 Received in revised form 11 April 2008

MSC: 62F25

62F30 62F12

62J99

Keywords:
Preliminary test estimator
Asymptotic coverage probability
Minimum phi-divergence estimator
Recentered confidence set

ABSTRACT

In this paper we present recentered confidence sets for the parameters of a logistic regression model based on preliminary minimum ϕ -divergence estimators. Asymptotic coverage probabilities are given as well as a simulation study in order to analyze the coverage probabilities for small and moderate sample sizes.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let $Y_i, i = 1, ..., n$, be independent binomial random variables with parameters π_i and $n_i, i = 1, ..., n$. We shall assume that the parameters $\pi_i = \Pr(Y_i = 1), i = 1, ..., n$, depend on the unknown parameters $\boldsymbol{\beta} = (\beta_0, ..., \beta_k)^T$, $\beta_i \in (-\infty, \infty)$ and explanatory variables $\boldsymbol{x}_i^T = (x_{i0}, ..., x_{ik}), x_{i0} = 1, i = 1, ..., n$ through the linear predictor

$$\operatorname{logit}(\pi_i) = \sum_{i=0}^k x_{ij} \beta_j, \quad i = 1, \dots, n$$
(1)

where $\text{logit}(p) = \log{(p/(1-p))}$. In the following we shall denote the binomial parameter π_i by $\pi_i \equiv \pi\left(\mathbf{x}_i^T\boldsymbol{\beta}\right)$ and by \boldsymbol{X} the $n \times (k+1)$ matrix with rows \mathbf{x}_i , $i=1,\ldots,n$. We also assume that $\text{rank}(\boldsymbol{X}) = k+1$.

In [4] a preliminary test estimator for β , $\widehat{\beta}_{\phi_1,\phi_2}^{\text{Pre}}$ (see (8) in Section 2) was considered. This estimator is based on the restricted $\widehat{\beta}_{\phi_2}^{H_0}$ (see (7) in Section 2) and the unrestricted $\widehat{\beta}_{\phi_2}$ (see (2) in Section 2) minimum ϕ_2 -divergence estimators of β . An important problem for the point estimation of β is to provide associated confidence sets. In this paper we consider asymptotic recentered confidence sets for β based on $\widehat{\beta}_{\phi_1,\phi_2}^{\text{Pre}}$, $\widehat{\beta}_{\phi_2}^{H_0}$ and $\widehat{\beta}_{\phi_2}$ and we study their coverage probabilities. In Section 2 we present some notation as well as some preliminary results that will be necessary in the paper. Section 3

In Section 2 we present some notation as well as some preliminary results that will be necessary in the paper. Section 3 is devoted to the definition of recentered confidence sets as well as an analytical study of their asymptotic coverage probabilities. Finally, in Section 4 a simulation study is carried out in order to analyze the coverage probabilities for small and moderate sample sizes and different choices on the functions ϕ_1 and ϕ_2 .

E-mail address: mcapardo@mat.ucm.es (M.C. Pardo).

^a Department of Applied Mathematics, E.T.S.A.M., Technical University of Madrid, Spain

^b Department of Statistics and O.R. I, Complutense University of Madrid, Spain

^{*} Corresponding address: Department of Statistics and O.R. I, Complutense University of Madrid, Plaza de Ciencias, 3, 28040 Madrid, Spain. Tel.: +34 91 3944473; fax: +34 91 3944606.

2. Background and notation

We denote by y_i the number of "successes" associated with the binomial random variable Y_i , $i=1,\ldots,n$. Minimum ϕ_2 -divergence estimator $(M\phi_2E)$ of β , $\widehat{\beta}_{\phi_2}=\widehat{\beta}_{\phi_2}(Y_1,\ldots,Y_n)$ is defined as

$$\widehat{\boldsymbol{\beta}}_{\phi_2} = \arg\min_{\boldsymbol{\beta} \in \Theta} \sum_{i=1}^n n_i D_{\phi_2} \left(\widehat{\boldsymbol{p}}_i, \boldsymbol{\pi}_i \left(\boldsymbol{\beta} \right) \right)$$
 (2)

where

$$\widehat{\boldsymbol{p}}_{i} = \left(\frac{y_{i}}{n_{i}}, \frac{n_{i} - y_{i}}{n_{i}}\right)^{T} \quad \text{and} \quad \boldsymbol{\pi}_{i}\left(\boldsymbol{\beta}\right) = \left(\pi\left(\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}\right), 1 - \pi\left(\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}\right)\right)^{T}, \quad i = 1, \dots, n,$$
(3)

 $\Theta = \{ \boldsymbol{\beta} = (\boldsymbol{\beta}_0, \beta_1, \dots, \beta_k) : \beta_j \in (-\infty, +\infty), j = 0, \dots, k \}$ and $D_{\phi_2}(\widehat{\boldsymbol{p}}_i, \boldsymbol{\pi}_i(\boldsymbol{\beta}))$ is the ϕ_2 -divergence measure between the probability vectors $\widehat{\boldsymbol{p}}_i$ and $\boldsymbol{\pi}_i(\boldsymbol{\beta})$, given by

$$D_{\phi_2}\left(\widehat{\boldsymbol{p}}_i, \boldsymbol{\pi}_i\left(\boldsymbol{\beta}\right)\right) \equiv \pi\left(\boldsymbol{x}_i^{\mathrm{T}}\boldsymbol{\beta}\right) \phi_2\left(\frac{y_i}{\pi\left(\boldsymbol{x}_i^{\mathrm{T}}\boldsymbol{\beta}\right)n_i}\right) + \left(1 - \pi\left(\boldsymbol{x}_i^{\mathrm{T}}\boldsymbol{\beta}\right)\right) \phi_2\left(\frac{n_i - y_i}{\left(1 - \pi\left(\boldsymbol{x}_i^{\mathrm{T}}\boldsymbol{\beta}\right)\right)n_i}\right),\tag{4}$$

 $\phi_2 \in \Phi$, Φ is the class of all convex functions $\phi_2(x)$, x > 0, such that at x = 1, $\phi_2(1) = \phi_2'(1) = 0$, $\phi_2''(1) > 0$. In (4) we shall assume the conventions $0\phi_2(0/0) = 0$ and $0\phi_2(p/0) = p \lim_{u \to \infty} \phi_2(u)/u$. For a systematic study of ϕ_2 -divergences see Pardo [6].

For $\phi_2(x) = x \log x - x + 1$ we obtain in (4) the Kullback-Leibler divergence,

$$D_{Kull}\left(\widehat{\boldsymbol{p}}_{i},\boldsymbol{\pi}_{i}\left(\boldsymbol{\beta}\right)\right) = y_{i}\log\frac{y_{i}}{\pi\left(\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}\right)n_{i}} + (n_{i} - y_{i})\log\frac{(n_{i} - y_{i})}{(1 - \pi\left(\boldsymbol{x}_{i}^{T}\boldsymbol{\beta}\right)n_{i})}$$

and it is immediately seen that

$$\sum_{i=1}^{n} n_{i} D_{Kull}\left(\widehat{\boldsymbol{p}}_{i}, \boldsymbol{\pi}_{i}\left(\boldsymbol{\beta}\right)\right) = -l\left(\boldsymbol{\beta}\right) + k,$$

where $l(\beta)$ is the loglikelihood function defined by

$$l(\boldsymbol{\beta}) = \sum_{i=1}^{n} \log \left(\pi \left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} \right)^{y_{i}} \left(1 - \pi \left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta} \right) \right)^{n_{i} - y_{i}} \right).$$

Therefore, the maximum likelihood estimator defined by $\hat{\beta} = \arg\max_{\beta \in \Theta} l(\beta)$ can also be defined by

$$\widehat{\boldsymbol{\beta}} = \arg\min_{\boldsymbol{\beta} \in \boldsymbol{\Theta}} \sum_{i=1}^{n} n_{i} D_{Kull} \left(\widehat{\boldsymbol{p}}_{i}, \boldsymbol{\pi}_{i} \left(\boldsymbol{\beta} \right) \right)$$

and the minimum ϕ_2 -divergence estimator defined in (2) is a natural extension of the maximum likelihood estimator. We denote $N = \sum_{i=1}^{n} n_i$,

$$\mathbf{W}_{N}(\boldsymbol{\beta}) = \operatorname{diag}\left(\left(\mathbf{C}_{i}(\boldsymbol{\beta})\right)_{i=1,\dots,n}^{T}\right) \operatorname{diag}\left(\left(\mathbf{C}_{i}(\boldsymbol{\beta})\right)_{i=1,\dots,n}\right)$$

with

$$\boldsymbol{C}_{i}(\boldsymbol{\beta}) = \left(\frac{n_{i}}{N}\pi(\boldsymbol{x}_{i}^{\mathrm{T}}\boldsymbol{\beta})\left(1 - \pi(\boldsymbol{x}_{i}^{\mathrm{T}}\boldsymbol{\beta})\right)\right)^{1/2} \begin{pmatrix} \left(1 - \pi(\boldsymbol{x}_{i}^{\mathrm{T}}\boldsymbol{\beta})\right)^{1/2} \\ -\pi(\boldsymbol{x}_{i}^{\mathrm{T}}\boldsymbol{\beta})^{1/2} \end{pmatrix}, \quad i = 1, \dots, n.$$
(5)

In the following we shall assume $\lambda_i = \lim_{N \to \infty} n_i/N$, $i = 1, \ldots, n$. Under the assumption that π has continuous second partial derivatives in a neighborhood of the true value of the parameter β_0 , and $\phi_2 \in \Phi$ is twice differentiable at x > 0, $\widehat{\beta}_{\phi_2}$ verifies

$$\sqrt{N} \left(\widehat{\boldsymbol{\beta}}_{\phi_2} - \boldsymbol{\beta}_0 \right) \underset{N \to \infty}{\overset{L}{\longrightarrow}} \mathcal{N} \left(\mathbf{0}, \left(\mathbf{X}^{\mathsf{T}} \boldsymbol{W} \left(\boldsymbol{\beta}_0 \right) \mathbf{X} \right)^{-1} \right), \tag{6}$$

where $\pmb{W}\left(\pmb{\beta}_{0}\right)=\lim_{N\to\infty}\pmb{W}_{N}\left(\pmb{\beta}_{0}\right)$. For more properties about $\widehat{\pmb{\beta}}_{\phi_{2}}$ see Pardo et al. [5].

Now we assume that we have the additional information that $\boldsymbol{\beta} \in \Theta_0 = \{\boldsymbol{\beta} \in \Theta/\mathbf{K}^T\boldsymbol{\beta} = \boldsymbol{m}\}$, where \mathbf{K}^T is any matrix of r rows and k+1 columns and \boldsymbol{m} is a vector of order r of specified constants. The minimum ϕ_2 -divergence estimator restricted to Θ_0 is given by

$$\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0} = \arg\min_{\boldsymbol{\beta} \in \phi_0} \sum_{i=1}^n n_i D_{\phi_2} \left(\widehat{\boldsymbol{p}}_i, \boldsymbol{\pi}_i \left(\boldsymbol{\beta} \right) \right). \tag{7}$$

We refer to it as the restricted minimum ϕ_2 -divergence estimator (RM ϕ_2 E) of $\beta \in \Theta_0$. The RM ϕ_2 E verifies

$$\sqrt{N}\left(\widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}}-\boldsymbol{\beta}_{0}\right) \overset{L}{\underset{N\to\infty}{\longrightarrow}} \mathcal{N}\left(\boldsymbol{0},\boldsymbol{H}^{*}\left(\boldsymbol{\beta}_{0}\right)\left(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{W}\left(\boldsymbol{\beta}_{0}\right)\boldsymbol{X}\right)^{-1}\right),$$

where
$$\mathbf{H}^{*}\left(\boldsymbol{\beta}_{0}\right) = \mathbf{I} - \left(\mathbf{X}^{\mathsf{T}}\mathbf{W}\left(\boldsymbol{\beta}_{0}\right)\mathbf{X}\right)^{-1}\mathbf{K}\left(\mathbf{K}^{\mathsf{T}}\left(\mathbf{X}^{\mathsf{T}}\mathbf{W}\left(\boldsymbol{\beta}_{0}\right)\mathbf{X}\right)^{-1}\mathbf{K}\right)^{-1}\mathbf{K}^{\mathsf{T}}$$
.

If we consider $\phi_2(x) = x \log x - x + 1$ in (7) we obtain the classical restricted maximum likelihood estimator.

In [3] in order to test the compatibility of the restricted and the unrestricted minimum ϕ_2 -divergence estimators $\hat{\beta}_{\phi_2}$ and $\hat{\beta}_{\phi_2}^{H_0}$, i.e., for testing

$$H_0: \mathbf{K}^{\mathrm{T}} \boldsymbol{\beta} = \mathbf{m}$$
 versus $H_1: \mathbf{K}^{\mathrm{T}} \boldsymbol{\beta} \neq \mathbf{m}$

the following family of ϕ -divergence statistics was considered

$$T_N^{\phi_1,\phi_2} = \frac{2}{\phi_1''(1)} \sum_{i=1}^n n_i D_{\phi_1} \left(\boldsymbol{\pi}_i(\widehat{\boldsymbol{\beta}}_{\phi_2}), \boldsymbol{\pi}_i(\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0}) \right),$$

where $\pi_i(\widehat{\boldsymbol{\beta}}_{\phi_2})$ and $\pi_i(\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0})$ are obtained from (3) replacing $\boldsymbol{\beta}$ by $\widehat{\boldsymbol{\beta}}_{\phi_2}$ and $\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0}$ respectively. We can observe that the statistic $T_N^{\phi_1,\phi_2}$ involves two functions ϕ_1 and ϕ_2 . The function ϕ_2 is used to compute the minimum ϕ_2 -divergence estimators $\widehat{\boldsymbol{\beta}}_{\phi_2}$ and $\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0}$, while ϕ_1 is used to calculate the "distance" between the two probability vectors.

It is interesting to observe that for $\phi_2(x) = \phi_1(x) = x \log x - x + 1$ we obtain $T_N^{\phi_1,\phi_2} = LR + o_P(1)$, where LR is the likelihood-ratio test.

If we accept H_0 we choose the RM ϕ_2 E and if we reject H_0 we choose the M ϕ_2 E, i.e., the preliminary minimum (ϕ_1,ϕ_2)-divergence estimator,

$$\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\operatorname{Pre}} = \widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0} I_{\left(0,\chi_{r,\alpha}^2\right)}(T_N^{\phi_1,\phi_2}) + \widehat{\boldsymbol{\beta}}_{\phi_2} I_{\left[\chi_{r,\alpha}^2,\infty\right)}(T_N^{\phi_1,\phi_2})$$

or equivalently

$$\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\text{Pre}} = \widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0} + \left(\widehat{\boldsymbol{\beta}}_{\phi_2} - \widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0}\right) I_{\left[\gamma_{\omega,\infty}^2\right]}(T_N^{\phi_1,\phi_2}),\tag{8}$$

where $I_A(y)$ denotes an indicator function taking the value 1 if $y \in A$ and 0 if $y \notin A$. Hence, the preliminary estimator depends on ϕ_1 and ϕ_2 .

In [4] the asymptotic bias and the asymptotic distributional quadratic risk for $\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\operatorname{Pre}}$, $\widehat{\boldsymbol{\beta}}_{\phi_2}$ and $\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0}$ were studied. A closely related problem is the confidence sets based on the preliminary test estimators. Our interest in this paper is to provide asymptotic recentered confidence sets based on $\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\operatorname{Pre}}$, $\widehat{\boldsymbol{\beta}}_{\phi_2}$ and $\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0}$, for contiguous alternative hypotheses and to obtain the asymptotic expressions for their coverage probabilities. Whereas exact expressions have been studied in the multinomial distributional problem, [1] among others, in logistic regression models it is not possible to obtain exact results. Recentered confidence sets are well documented in [7] for different statistical problems.

3. Coverage probabilities: An analytical study

We define the recentered confidence set based on the estimator $\widehat{\boldsymbol{\beta}}_{\phi}^*$, where $\widehat{\boldsymbol{\beta}}_{\phi}^*$ is equal to $\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\operatorname{Pre}}$, $\widehat{\boldsymbol{\beta}}_{\phi_2}$ or $\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0}$, as

$$C_{\beta}\left(\widehat{\boldsymbol{\beta}}_{\phi}^{*}\right) = \left\{\boldsymbol{\beta}: N \left\|\boldsymbol{\beta} - \widehat{\boldsymbol{\beta}}_{\phi}^{*}\right\|_{\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\widehat{\boldsymbol{\beta}}_{\phi_{n}})\boldsymbol{X}}^{2} \leq \chi_{k+1,\alpha}^{2}\right\},$$

where $\|\mathbf{Y}\|_{C}^{2} = \mathbf{Y}^{T}\mathbf{C}\mathbf{Y}$.

We are going to see the asymptotic behavior of $\widehat{\beta}_{\phi_1,\phi_2}^{\text{Pre}}$, $\widehat{\beta}_{\phi_2}$ and $\widehat{\beta}_{\phi_2}^{H_0}$ under fixed alternative hypotheses defined by

$$H_1: \mathbf{K}^{\mathrm{T}}\boldsymbol{\beta} = \mathbf{m} + \mathbf{s}$$

with $\mathbf{s} \in \mathbb{R}^r$ and fixed. The main results are presented in the following theorem:

Theorem 1. Under fixed alternative hypotheses $H_1: \mathbf{K}^T \boldsymbol{\beta} = \mathbf{m} + \mathbf{s}$ with $\mathbf{s} \in \mathbb{R}^r$, we have:

(a)
$$\sqrt{N}\left(\widehat{\boldsymbol{\beta}}_{\phi_{1},\phi_{2}}^{\text{Pre}}-\boldsymbol{\beta}\right)=\sqrt{N}\left(\widehat{\boldsymbol{\beta}}_{\phi_{2}}-\boldsymbol{\beta}\right)+o_{P}\left(1\right).$$

(b) $\sqrt{N}\left(\widehat{\pmb{\beta}}_{\phi_2}^{\mathsf{H}_0} - \pmb{\beta}\right)$ has a degenerate asymptotic distribution.

Proof. (a) First we are going to establish that $T_N^{\phi_1,\phi_2} \to \infty$ as $N \to \infty$. On the one hand

$$\begin{split} \sqrt{N} \left(\mathbf{K}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{\phi_2} - \mathbf{m} \right) &= \sqrt{N} \mathbf{K}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{\phi_2} - \sqrt{N} \mathbf{m} - \sqrt{N} \mathbf{K}^{\mathrm{T}} \boldsymbol{\beta} + \sqrt{N} \mathbf{K}^{\mathrm{T}} \boldsymbol{\beta} \\ &= \sqrt{N} \mathbf{K}^{\mathrm{T}} \left(\widehat{\boldsymbol{\beta}}_{\phi_2} - \boldsymbol{\beta} \right) + \sqrt{N} \left(\mathbf{K}^{\mathrm{T}} \boldsymbol{\beta} - \mathbf{m} \right) \\ &= \sqrt{N} \mathbf{K}^{\mathrm{T}} \left(\widehat{\boldsymbol{\beta}}_{\phi_2} - \boldsymbol{\beta} \right) + \sqrt{N} \mathbf{s} \end{split}$$

and in [3] we obtain,

$$T_{N}^{\phi_{1},\phi_{2}} = \sqrt{N} \left(\mathbf{K}^{\mathsf{T}} \widehat{\boldsymbol{\beta}}_{\phi_{2}} - \mathbf{m} \right)^{\mathsf{T}} \left(\mathbf{K}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{W}_{N} (\boldsymbol{\beta}) \mathbf{X})^{-1} \mathbf{K} \right)^{-1} \sqrt{N} \left(\mathbf{K}^{\mathsf{T}} \widehat{\boldsymbol{\beta}}_{\phi_{2}} - \mathbf{m} \right) + o_{P} (1)$$

$$= \sqrt{N} \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \boldsymbol{\beta} \right)^{\mathsf{T}} \mathbf{K} (\mathbf{K}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{W}_{N} (\boldsymbol{\beta}) \mathbf{X})^{-1} \mathbf{K})^{-1} \sqrt{N} \mathbf{K}^{\mathsf{T}} \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \boldsymbol{\beta} \right)$$

$$+ \sqrt{N} \mathbf{s}^{\mathsf{T}} (\mathbf{K}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{W}_{N} (\boldsymbol{\beta}) \mathbf{X})^{-1} \mathbf{K})^{-1} \sqrt{N} \mathbf{s} + 2N \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \boldsymbol{\beta} \right)^{\mathsf{T}} \mathbf{K} (\mathbf{K}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{W}_{N} (\boldsymbol{\beta}) \mathbf{X})^{-1} \mathbf{K})^{-1} \mathbf{s}.$$

It is not difficult to see that

$$\sqrt{N}K(K^{T}(X^{T}W_{N}(\beta)X)^{-1}K)^{-1/2}\left(\widehat{\boldsymbol{\beta}}_{\phi_{2}}-\boldsymbol{\beta}\right) \xrightarrow[N \to \infty]{L} \mathcal{N}(\boldsymbol{0},\boldsymbol{I})$$

and

$$N\mathbf{s}^{\mathsf{T}}(\mathbf{K}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{W}_{N}(\boldsymbol{\beta})\mathbf{X})^{-1}\mathbf{K})^{-1}\mathbf{s} \xrightarrow[N \to \infty]{L} \infty$$

$$2N\left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \boldsymbol{\beta}\right)^{\mathsf{T}}\mathbf{K}(\mathbf{K}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{W}_{N}(\boldsymbol{\beta})\mathbf{X})^{-1}\mathbf{K})^{-1}\mathbf{s} \xrightarrow[N \to \infty]{L} \infty.$$

Therefore $T_N^{\phi_1,\phi_2} \to \infty$.

In order to establish (a) we consider, based on (8), the quadratic difference

$$N \left\| \widehat{\boldsymbol{\beta}}_{\phi_{1},\phi_{2}}^{\operatorname{Pre}} - \widehat{\boldsymbol{\beta}}_{\phi_{2}} \right\|_{\mathbf{X}^{\operatorname{T}}\mathbf{W}_{N}(\boldsymbol{\beta})\mathbf{X}}^{2} = N \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right)^{\operatorname{T}} \mathbf{X}^{\operatorname{T}}\mathbf{W}_{N}(\boldsymbol{\beta})\mathbf{X} \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) I_{\left[0,\chi_{r,\alpha}^{2}\right)}(T_{N}^{\phi_{1},\phi_{2}})$$

$$= \left[T_{N}^{\phi_{1},\phi_{2}} + o_{P}(1) \right] I_{\left[0,\chi_{r,\alpha}^{2}\right)}(T_{N}^{\phi_{1},\phi_{2}}) \leq \left[\chi_{r,\alpha}^{2} + o_{P}(1) \right] I_{\left[0,\chi_{r,\alpha}^{2}\right)}(T_{N}^{\phi_{1},\phi_{2}}).$$

Therefore

$$\lim_{N\to\infty} E\left[N\left\|\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\text{Pre}} - \widehat{\boldsymbol{\beta}}_{\phi_2}\right\|_{\mathbf{X}^T\mathbf{W}_N(\boldsymbol{\beta})\mathbf{X}}^2\right] \leq \lim_{N\to\infty} E\left[\left[\chi_{r,\alpha}^2 + o_P(1)\right]I_{\left[0,\chi_{r,\alpha}^2\right)}(T_N^{\phi_1,\phi_2})\right] = 0$$

which means

$$\sqrt{N}\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\operatorname{Pre}} - \sqrt{N}\widehat{\boldsymbol{\beta}}_{\phi_2} \overset{q.m.}{\underset{N \to \infty}{\longrightarrow}} 0$$

and $\sqrt{N}\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\text{Pre}} - \sqrt{N}\widehat{\boldsymbol{\beta}}_{\phi_2} \stackrel{P}{\underset{N \to \infty}{\longrightarrow}} 0$. Then,

$$\sqrt{N}\left(\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\mathrm{Pre}}-\boldsymbol{\beta}\right)=\sqrt{N}\left(\widehat{\boldsymbol{\beta}}_{\phi_2}-\boldsymbol{\beta}\right)+o_P(1).$$

(b) Based on Pardo et al. [5]

$$\widehat{\boldsymbol{\beta}}_{\phi_{2}} = \boldsymbol{\beta}_{0} + \left(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N}\left(\boldsymbol{\beta}\right) \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathsf{T}} \operatorname{diag}\left(\left(\boldsymbol{C}_{i}\left(\boldsymbol{\beta}_{0}\right)\right)_{i=1,\dots,n}^{\mathsf{T}}\right) \operatorname{diag}\left(\boldsymbol{p}\left(\boldsymbol{\beta}^{0}\right)^{-1/2}\right) \left(\widehat{\boldsymbol{p}} - \boldsymbol{p}\left(\boldsymbol{\beta}^{0}\right)\right) + o_{P}(N^{-1/2})$$
(9)

and based on Menéndez et al. [3],

$$\widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} = \boldsymbol{\beta}_{0} + \boldsymbol{H}_{N}\left(\boldsymbol{\beta}_{0}\right)\left(\boldsymbol{X}^{T}\boldsymbol{W}_{N}\left(\boldsymbol{\beta}_{0}\right)\boldsymbol{X}\right)^{-1}\boldsymbol{X}^{T}\operatorname{diag}\left(\left(\boldsymbol{C}_{i}\left(\boldsymbol{\beta}_{0}\right)\right)_{i=1,\dots,n}^{T}\right)\operatorname{diag}\left(\boldsymbol{p}\left(\boldsymbol{\beta}^{0}\right)^{-1/2}\right)\left(\widehat{\boldsymbol{p}}-\boldsymbol{p}\left(\boldsymbol{\beta}_{0}\right)\right) + o_{P}(N^{-1/2}).$$

Therefore,

$$\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0} - \boldsymbol{\beta} = \widehat{\boldsymbol{\beta}}_{\phi_2} - \boldsymbol{\beta} - \left(\mathbf{X}^{\mathsf{T}} \mathbf{W}_N(\boldsymbol{\beta}) \mathbf{X} \right)^{-1} \mathbf{K} (\mathbf{K}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{W}_N(\boldsymbol{\beta}) \mathbf{X})^{-1} \mathbf{K})^{-1} \left(\mathbf{K}^{\mathsf{T}} \widehat{\boldsymbol{\beta}}_{\phi_2} - \mathbf{m} \right) + o_P(N^{-1/2}).$$

Now taking into account that $\mathbf{m} = \mathbf{K}^{\mathrm{T}} \boldsymbol{\beta} - \mathbf{s}$ we have

$$\begin{split} \sqrt{N} \left(\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0} - \boldsymbol{\beta} \right) &= \sqrt{N} \left(\widehat{\boldsymbol{\beta}}_{\phi_2} - \boldsymbol{\beta} \right) - \left(\mathbf{X}^{\mathsf{T}} \mathbf{W}_N(\boldsymbol{\beta}) \mathbf{X} \right)^{-1} \boldsymbol{K} (\boldsymbol{K}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{W}_N(\boldsymbol{\beta}) \mathbf{X})^{-1} \boldsymbol{K})^{-1} \sqrt{N} \left(\boldsymbol{K}^{\mathsf{T}} \widehat{\boldsymbol{\beta}}_{\phi_2} - \boldsymbol{K}^{\mathsf{T}} \boldsymbol{\beta} + \mathbf{s} \right) \\ &= \sqrt{N} \left(\widehat{\boldsymbol{\beta}}_{\phi_2} - \boldsymbol{\beta} \right) - \left(\mathbf{X}^{\mathsf{T}} \mathbf{W}_N(\boldsymbol{\beta}) \mathbf{X} \right)^{-1} \boldsymbol{K} (\boldsymbol{K}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{W}_N(\boldsymbol{\beta}) \mathbf{X})^{-1} \boldsymbol{K})^{-1} \sqrt{N} \boldsymbol{K}^{\mathsf{T}} \left(\widehat{\boldsymbol{\beta}}_{\phi_2} - \boldsymbol{\beta} \right) + \sqrt{N} \mathbf{s}, \end{split}$$

and the asymptotic distribution of $\sqrt{N}\left(\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0} - \boldsymbol{\beta}\right)$ is degenerated under the fixed alternative hypotheses $H_1: \boldsymbol{K}^{\mathrm{T}}\boldsymbol{\beta} = \boldsymbol{m} + \boldsymbol{s}$.

The result in the previous theorem is important because it reveals that in order to obtain meaningful asymptotic coverage probabilities of the confidence set $C_{\beta}\left(\widehat{\boldsymbol{\beta}}_{\phi}^{*}\right)$ we must consider contiguous alternative hypotheses to H_{0} , i.e., we shall consider hypotheses of the type,

$$H_{1,N}: \boldsymbol{\beta}_N = \boldsymbol{\beta}_0 + N^{-1/2} \boldsymbol{\Delta},$$

with $\boldsymbol{\beta}_0 \in \Theta_0$ and $\boldsymbol{\Delta} \in \mathbb{R}^{k+1}$.

If we consider the function $g(\beta) = \mathbf{K}^T \beta - \mathbf{m}$ it is clear that $\Theta_0 = \{ \beta \in \Theta : g(\beta) = \mathbf{0} \}$ and the hypothesis $H_{1,N}$ is equivalent to the hypothesis

$$H_{1,N}^* : g(\boldsymbol{\beta}_N) = \boldsymbol{N}^{-1/2} \delta(H_{1,N}^* : \boldsymbol{K}^T \boldsymbol{\beta}_N = \boldsymbol{m} + \boldsymbol{N}^{-1/2} \delta).$$

A Taylor expansion of $g(\boldsymbol{\beta}_N)$ around $\boldsymbol{\beta}_0 \in \Theta_0$ yields

$$g(\boldsymbol{\beta}_N) = g(\boldsymbol{\beta}_0) + \boldsymbol{K}^{T}(\boldsymbol{\beta}_N - \boldsymbol{\beta}_0) + o(1),$$

but $g(\boldsymbol{\beta}_0) = 0$ and $\boldsymbol{\beta}_N - \boldsymbol{\beta}_0 = N^{-1/2} \boldsymbol{\Delta}$, hence

$$g(\boldsymbol{\beta}_N) = N^{-1/2} \boldsymbol{K}^{\mathrm{T}} \boldsymbol{\Delta} + o(1).$$

Now if we consider $\delta = \mathbf{K}^{T} \Delta$ we have the equivalence in the limit.

On the other hand, we know that

$$N \left\| \boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi}^{*} \right\|_{\mathbf{X}^{T}\mathbf{W}_{N}(\widehat{\boldsymbol{\beta}}_{\phi_{1}})\mathbf{X}}^{2} - N \left\| \boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi}^{*} \right\|_{\mathbf{X}^{T}\mathbf{W}_{N}(\boldsymbol{\beta}_{0})\mathbf{X}}^{2} \stackrel{P}{\to} 0.$$

Therefore in order to study the asymptotic behavior of $C_{\beta}\left(\widehat{\boldsymbol{\beta}}_{\phi}^{*}\right)$ we shall consider that our recentered confidence sets are given by

$$C_{\boldsymbol{\beta}_{N}}\left(\widehat{\boldsymbol{\beta}}_{\phi}^{*}\right) = \left\{\boldsymbol{\beta}_{N}: N \left\|\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi}^{*}\right\|_{\mathbf{X}^{T}\mathbf{W}_{N}(\boldsymbol{\beta}_{\Omega})\mathbf{X}}^{2} \leq \chi_{k+1,\alpha}^{2}\right\}.$$

We need an auxiliary lemma to obtain the asymptotic coverage probabilities of $C_{\pmb{\beta}_N}\left(\widehat{\pmb{\beta}}_{\phi_2}^{H_0}\right)$ and $C_{\pmb{\beta}_N}\left(\widehat{\pmb{\beta}}_{\phi_1,\phi_2}^{Pre}\right)$.

Lemma 2. We denote by $\Gamma = (\Gamma_1^T, \Gamma_2^T)^T$, $(\Gamma_1$ is an $r \times (k+1)$ matrix and Γ_2 a $(k+1-r) \times (k+1)$ matrix), the orthogonal matrix that diagonalizes the idempotent matrix

$$(\mathbf{X}^{\mathsf{T}}\mathbf{W}_{N}(\boldsymbol{\beta}_{0})\mathbf{X})^{-1/2}\mathbf{K}^{\mathsf{T}}(\mathbf{K}^{\mathsf{T}}(\mathbf{X}^{\mathsf{T}}\mathbf{W}_{N}(\boldsymbol{\beta}_{0})\mathbf{X})^{-1}\mathbf{K})^{-1}\mathbf{K}(\mathbf{X}^{\mathsf{T}}\mathbf{W}_{N}(\boldsymbol{\beta}_{0})\mathbf{X})^{-1/2},$$

 $\eta_N^T = (\eta_1^T, \eta_2^T)$ (η_1 is an $r \times 1$ random vector and η_2 a $(k+1-r) \times 1$ random vector) the random vector defined as

$$\eta_{N} = \sqrt{N} \left(\Gamma(\mathbf{X}^{\mathsf{T}} \mathbf{W}_{N} (\boldsymbol{\beta}_{0}) \mathbf{X})^{1/2} \widehat{\boldsymbol{\beta}}_{\phi_{0}} - \Gamma(\mathbf{X}^{\mathsf{T}} \mathbf{W}_{N} (\boldsymbol{\beta}_{0}) \mathbf{X})^{-1/2} \mathbf{K} (\mathbf{K}^{\mathsf{T}} (\mathbf{X}^{\mathsf{T}} \mathbf{W}_{N} (\boldsymbol{\beta}_{0}) \mathbf{X})^{-1} \mathbf{K})^{-1} \mathbf{m} \right) + o_{P} (1) . \tag{10}$$

Then, we have:

(a)
$$\eta_N - E[\eta_N] \xrightarrow[N \to \infty]{L} \mathcal{N}(\mathbf{0}, \mathbf{I}^*)$$
 where $\mathbf{I}^* = \begin{pmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{I}_{k+1-r} \end{pmatrix}$.

(b)
$$N \| \boldsymbol{\beta}_N - \widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\text{Pre}} \|_{\mathbf{X}^T \mathbf{W}_N(\boldsymbol{\beta}_0) \mathbf{X}}^2 = \| E[\boldsymbol{\eta}_1] - \boldsymbol{\eta}_1 I_{[\boldsymbol{\chi}_{r,\alpha}^T,\infty)} (\boldsymbol{\eta}_1^T \boldsymbol{\eta}_1 + o_P(1)) \|^2 + \| E[\boldsymbol{\eta}_2] - \boldsymbol{\eta}_2 \|^2 + o_P(1).$$

Proof. Part (a). Based on the definition of η_N , given in (10), we have

$$\boldsymbol{\eta}_{N} - E[\boldsymbol{\eta}_{N}] = \Gamma(\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{1/2}\sqrt{N}\left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \boldsymbol{\beta}_{N}\right).$$

Now by (6) we obtain

$$\eta_N - E[\eta_N] \xrightarrow{L} \mathcal{N}(\mathbf{0}, \mathbf{I}^*).$$

Now we consider part (b). The matrix Γ verifies

$$\Gamma(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{-1/2}\boldsymbol{K}^{\mathsf{T}}(\boldsymbol{K}^{\mathsf{T}}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{-1}\boldsymbol{K})^{-1}\boldsymbol{K}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{-1/2}\boldsymbol{\Gamma}^{\mathsf{T}} = \begin{pmatrix} \mathbf{I}_{r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix}.$$

In [3] it was obtained,

$$T_N^{\phi_1,\phi_2} = \sqrt{N} \left(\mathbf{K}^T \widehat{\boldsymbol{\beta}}_{\phi_2} - \mathbf{m} \right)^T \left(\mathbf{K}^T (\mathbf{X}^T \mathbf{W}_N (\boldsymbol{\beta}_0) \mathbf{X})^{-1} \mathbf{K} \right)^{-1} \sqrt{N} \left(\mathbf{K}^T \widehat{\boldsymbol{\beta}}_{\phi_2} - \mathbf{m} \right) + o_P(1).$$

Now we have,

$$\begin{split} T_N^{\phi_1,\phi_2} &= \sqrt{N} \left(\pmb{K}^T \widehat{\pmb{\beta}}_{\phi_2} - \pmb{m} \right)^T \left(\pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1} \pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1/2} \\ &\times \left(\pmb{X}^T \pmb{W}_N (\pmb{\beta}_0) \pmb{X} \right)^{-1/2} \pmb{K} (\pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1} \pmb{K} \right)^{-1} \sqrt{N} \left(\pmb{K}^T \widehat{\pmb{\beta}}_{\phi_2} - \pmb{m} \right) + o_P(1) \\ &= \sqrt{N} \left(\pmb{\Gamma} (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{1/2} \widehat{\pmb{\beta}}_{\phi_2} - \pmb{\Gamma} (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1/2} \pmb{K} (\pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1/2} \pmb{K} (\pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1/2} \pmb{K} (\pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1/2} \pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1} \pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1/2} \pmb{\Gamma}^T \\ &\times \pmb{\Gamma} (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1/2} \pmb{K} (\pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1} \pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1/2} \pmb{\Gamma}^T \sqrt{N} \pmb{\Gamma} (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{1/2} \widehat{\pmb{\beta}}_{\phi_2} \pmb{K}^{-1} \\ &- \sqrt{N} \pmb{\Gamma} (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1/2} \pmb{K} \pmb{K}^T (\pmb{X}^T \pmb{W}_N \left(\pmb{\beta}_0 \right) \pmb{X} \right)^{-1} \pmb{m} + o_P(1). \end{split}$$

Therefore,

$$T_N^{\phi_1,\phi_2} = \boldsymbol{\eta}_N^{\mathsf{T}} \begin{pmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{I}_r & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{pmatrix} \boldsymbol{\eta}_N + o_P(1) = \boldsymbol{\eta}_1^{\mathsf{T}} \boldsymbol{\eta}_1 + o_P(1)$$

and the asymptotic distribution of $T_N^{\phi_1,\phi_2}$ is a noncentral chi-square with r degrees of freedom and noncentrality parameter

$$\lambda = E \left[\boldsymbol{\eta}_1^{\mathsf{T}} \boldsymbol{\eta}_1 \right] = \boldsymbol{\Delta}^{\mathsf{T}} \boldsymbol{K}^{\mathsf{T}} (\boldsymbol{K}^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W} (\boldsymbol{\beta}_0) \boldsymbol{X})^{-1} \boldsymbol{K} \boldsymbol{\Delta}. \tag{11}$$

This result follows since $\sqrt{N}(\eta_1 - E[\eta_1])$ converges in law to an r-normal random vector with mean vector zero and variance covariance matrix \mathbf{I}_r .

Using the definition of $\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\text{Pre}}$ given in (8), we obtain

$$\begin{split} N \left\| \boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{1},\phi_{2}}^{\text{Pre}} \right\|_{\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\beta_{0})\boldsymbol{X}}^{2} \\ &= \sqrt{N} \left((\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{1/2} \left(\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) - (\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{1/2} \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) I_{\left[\boldsymbol{\chi}_{r,\alpha}^{2},\infty\right)} \left(\boldsymbol{\eta}_{1}^{T}\boldsymbol{\eta}_{1} + o_{P}(1) \right) \right)^{T} \\ &\times \sqrt{N} \left((\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{1/2} \left(\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) - (\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{1/2} \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) I_{\left[\boldsymbol{\chi}_{r,\alpha}^{2},\infty\right)} \left(\boldsymbol{\eta}_{1}^{T}\boldsymbol{\eta}_{1} + o_{P}(1) \right) \right) \\ &= \sqrt{N} \left(\Gamma(\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{1/2} \left(\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) - \Gamma(\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{1/2} \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) I_{\left[\boldsymbol{\chi}_{r,\alpha}^{2},\infty\right)} \left(\boldsymbol{\eta}_{1}^{T}\boldsymbol{\eta}_{1} + o_{P}(1) \right) \right)^{T} \\ &\times \sqrt{N} \left(\Gamma(\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{1/2} \left(\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) - \Gamma(\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X})^{1/2} \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) I_{\left[\boldsymbol{\chi}_{r,\alpha}^{2},\infty\right)} \left(\boldsymbol{\eta}_{1}^{T}\boldsymbol{\eta}_{1} + o_{P}(1) \right) \right) \\ &= \boldsymbol{\xi}_{N}^{T} \boldsymbol{\xi}_{N} \end{split}$$

where

$$\boldsymbol{\xi}_{N} = \sqrt{N} \boldsymbol{\Gamma} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} (\boldsymbol{\beta}_{0}) \boldsymbol{X})^{1/2} \left(\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) - \boldsymbol{\Gamma} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} (\boldsymbol{\beta}_{0}) \boldsymbol{X})^{1/2} \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right) I_{\left[\chi_{\Gamma\alpha}^{2}, \infty\right)} \left(\boldsymbol{\eta}_{1}^{\mathsf{T}} \boldsymbol{\eta}_{1} + o_{P}(1) \right). \tag{12}$$

Denoting

$$A = \sqrt{N} \mathbf{\Gamma} (\mathbf{X}^{\mathsf{T}} \mathbf{W}_{N} (\boldsymbol{\beta}_{0}) \mathbf{X})^{1/2} \left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right),$$

we can write

$$\begin{split} A &= \sqrt{N} \Gamma(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{1/2} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{-1} \boldsymbol{K} (\boldsymbol{K}^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{-1} \boldsymbol{K})^{-1} (\boldsymbol{K}^{\mathsf{T}} \widehat{\boldsymbol{\beta}}_{\phi_{2}} - \boldsymbol{m}) + o_{P}(1) \\ &= \sqrt{N} \left(\Gamma(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{-1/2} \boldsymbol{K} (\boldsymbol{K}^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{-1} \boldsymbol{K})^{-1} \boldsymbol{K}^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{-1/2} \boldsymbol{\Gamma}^{\mathsf{T}} \right) \\ &\times \left(\Gamma(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{1/2} \widehat{\boldsymbol{\beta}}_{\phi_{2}} - \Gamma(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{-1/2} \boldsymbol{K} (\boldsymbol{K}^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{-1} \boldsymbol{K})^{-1} \boldsymbol{m} \right) + o_{P}(1) \\ &= \begin{pmatrix} \boldsymbol{I}_{r} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{pmatrix} \begin{pmatrix} \boldsymbol{\eta}_{1} \\ \boldsymbol{\eta}_{2} \end{pmatrix} + o_{P}(1) = \begin{pmatrix} \boldsymbol{\eta}_{1} \\ \boldsymbol{0} \end{pmatrix} + o_{P}(1) \end{split}$$

and denoting $B = \sqrt{N} \Gamma(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{W}_{N} (\boldsymbol{\beta}_{0}) \boldsymbol{X})^{1/2} (\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}})$,

$$\begin{split} \boldsymbol{B} &= \sqrt{N} \boldsymbol{\Gamma} (\boldsymbol{X}^{\mathrm{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{1/2} \left(\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}} + \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X}\right)^{-1} \boldsymbol{K} (\boldsymbol{K}^{\mathrm{T}} (\boldsymbol{X}^{\mathrm{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{-1} \boldsymbol{K})^{-1} \left(\boldsymbol{K}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{\phi_{2}} - \boldsymbol{m}\right)\right) + o_{P} \left(1\right) \\ &= \sqrt{N} \boldsymbol{\Gamma} (\boldsymbol{X}^{\mathrm{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{1/2} \left(\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}\right) + \sqrt{N} \boldsymbol{\Gamma} (\boldsymbol{X}^{\mathrm{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{-1/2} \boldsymbol{K} (\boldsymbol{K}^{\mathrm{T}} (\boldsymbol{X}^{\mathrm{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{-1} \boldsymbol{K})^{-1} \left(\boldsymbol{K}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}_{\phi_{2}} - \boldsymbol{m}\right) + o_{P} \left(1\right) \\ &= \sqrt{N} \boldsymbol{\Gamma} (\boldsymbol{X}^{\mathrm{T}} \boldsymbol{W}_{N} \left(\boldsymbol{\beta}_{0}\right) \boldsymbol{X})^{1/2} \left(\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}\right) + \begin{pmatrix} \boldsymbol{\eta}_{1} \\ \boldsymbol{0} \end{pmatrix} + o_{P} \left(1\right). \end{split}$$

But

$$\boldsymbol{\eta} - E\left[\boldsymbol{\eta}\right] = \left(\boldsymbol{\eta}_{1}^{\mathsf{T}}, \, \boldsymbol{\eta}_{2}^{\mathsf{T}}\right)^{\mathsf{T}} - \left(E\left[\boldsymbol{\eta}_{1}\right]^{\mathsf{T}}, E\left[\boldsymbol{\eta}_{2}\right]^{\mathsf{T}}\right)^{\mathsf{T}} = \Gamma(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{W}_{N}\left(\boldsymbol{\beta}_{0}\right)\boldsymbol{X})^{1/2}\sqrt{N}\left(\widehat{\boldsymbol{\beta}}_{\phi_{2}} - \boldsymbol{\beta}_{N}\right)$$

and

$$\sqrt{N}\Gamma(\boldsymbol{X}^{\mathrm{T}}\boldsymbol{W}_{N}\left(\boldsymbol{\beta}_{0}\right)\boldsymbol{X})^{1/2}\left(\boldsymbol{\beta}_{N}-\widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}}\right)=\left(E\left[\boldsymbol{\eta}_{1}\right]^{\mathrm{T}},\left(E\left[\boldsymbol{\eta}_{2}\right]-\boldsymbol{\eta}_{2}\right)^{\mathrm{T}}\right)^{\mathrm{T}}.$$

Therefore, the random vector ξ_N defined in (12) can be written as

$$\boldsymbol{\xi}_{N} = \begin{pmatrix} E\left[\boldsymbol{\eta}_{1}\right] \\ E\left[\boldsymbol{\eta}_{2}\right] - \boldsymbol{\eta}_{2} \end{pmatrix} - \begin{pmatrix} \boldsymbol{\eta}_{1} \\ \mathbf{0} \end{pmatrix} I_{\left[\boldsymbol{\chi}_{r,\alpha}^{T},\infty\right)} \left(\boldsymbol{\eta}_{1}^{T} \boldsymbol{\eta}_{1} + o_{P}(1)\right) + o_{P}(1)$$

and

$$N \left\| \boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{1},\phi_{2}}^{\operatorname{Pre}} \right\|_{\mathbf{X}^{\mathsf{T}}\mathbf{W}_{N}(\boldsymbol{\beta}_{0})\mathbf{X}}^{2} = \left\| E\left[\boldsymbol{\eta}_{1}\right] - \boldsymbol{\eta}_{1}I_{\left[\boldsymbol{\chi}_{r,\alpha}^{2},\infty\right)} \left(\boldsymbol{\eta}_{1}^{\mathsf{T}}\boldsymbol{\eta}_{1} + o_{P}(1)\right) \right\|^{2} + \left\| E\left[\boldsymbol{\eta}_{2}\right] - \boldsymbol{\eta}_{2}\right\|^{2} + o_{P}(1). \quad \blacksquare$$

In the following theorem we are going to obtain the coverage probabilities of the sets $C_{\beta_N}(\widehat{\boldsymbol{\beta}}_{\phi}^*)$ with $\widehat{\boldsymbol{\beta}}_{\phi}^*$ equal to $\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0}$ or $\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\operatorname{pre}}$.

Theorem 3. We have, under $H_{1,N}$:

(a)
$$\lim_{N\to\infty} \Pr\left(C_{\beta_N}(\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\operatorname{Pre}})\right) = G_r(\chi_{r,\alpha}^2;\lambda)G_{k+1-r}(\chi_{k+1,\alpha}^2 - \lambda;0) + \lim_{N\to\infty} \int_0^{\chi_{k+1,\alpha}^2} \Pr(\|E[\eta_1] - \eta_1\|^2 \le \chi_{k+1,\alpha}^2 - t; \|\eta_1\|^2 > \chi_{r,\alpha}^2) dG_{k+1-r}(t;0).$$

 $\text{(b) } \lim\nolimits_{N\to\infty}\Pr\left(\mathcal{C}_{\pmb{\beta}_N}(\widehat{\pmb{\beta}}_{\phi_2}^{H_0})\right)=\mathcal{G}_{k+1-r}(\chi_{k+1,\alpha}^2-\lambda;\,0).$

By $G_a(b; \mu)$ we are denoting the distribution function of a noncentral chi-square random variable with noncentrality parameter μ and "a" degrees of freedom evaluated at "b".

Proof. (a) We denote $l = \lim_{N \to \infty} \Pr\left(C_{\beta_N}(\widehat{\beta}_{\phi_1,\phi_2}^{\text{Pre}})\right)$. We have,

$$\begin{split} &l = \lim_{N \to \infty} \Pr\left(\left\| E\left[\eta_{1} \right] - \eta_{1} I_{\left[\chi_{r,\alpha}^{2},\infty\right)} \left(\eta_{1}^{T} \eta_{1} + o_{P}(1) \right) \right\|^{2} + \left\| E\left[\eta_{2} \right] - \eta_{2} \right\|^{2} \leq \chi_{k+1,\alpha}^{2} \right) \\ &= \lim_{N \to \infty} \Pr\left(\left\| E\left[\eta_{1} \right] \right\|^{2} + \left\| E\left[\eta_{2} \right] - \eta_{2} \right\|^{2} < \chi_{k+1,\alpha}^{2}; \left\| \eta_{1} \right\|^{2} \leq \chi_{r,\alpha}^{2} \right) \\ &+ \lim_{N \to \infty} \Pr\left(\left\| E\left[\eta_{1} \right] - \eta_{1} \right\|^{2} + \left\| E\left[\eta_{2} \right] - \eta_{2} \right\|^{2} < \chi_{k+1,\alpha}^{2}; \left\| \eta_{1} \right\|^{2} > \chi_{r,\alpha}^{2} \right) \\ &= G_{r}(\chi_{r,\alpha}^{2}; \lambda) G_{k+1-r}(\chi_{k+1,\alpha}^{2} - \lambda; 0) + \lim_{N \to \infty} \int_{0}^{\chi_{k+1,\alpha}^{2}} \Pr\left(\left\| E\left[\eta_{1} \right] - \eta_{1} \right\|^{2} \leq \chi_{k+1,\alpha}^{2} - t; \left\| \eta_{1} \right\|^{2} > \chi_{r,\alpha}^{2} \right) dG_{k+1-r}(t; 0). \end{split}$$

(b) It is well known that $\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\operatorname{Pre}}=\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0}$ if $T_N^{\phi_1,\phi_2}<\chi_{r,\alpha}^2$, therefore based on the previous Lemma we have

$$N \left\| \boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}} \right\|_{\mathbf{X}^{T}\mathbf{W}_{1}(\boldsymbol{\beta}_{0})\mathbf{X}}^{2} = \left\| E\left[\boldsymbol{\eta}_{1}\right] \right\|^{2} + \left\| E\left[\boldsymbol{\eta}_{2}\right] - \boldsymbol{\eta}_{2} \right\|^{2}.$$

Therefore

$$\lim_{N \to \infty} \Pr\left(C_{\beta_N}(\widehat{\boldsymbol{\beta}}_{\phi_2})\right) = \lim_{N \to \infty} \Pr\left(\left\|E\left[\boldsymbol{\eta}_1\right]\right\|^2 + \left\|E\left[\boldsymbol{\eta}_2 - \boldsymbol{\eta}_2\right]\right\|^2 \le \chi_{k+1,\alpha}^2\right)$$

$$= \lim_{N \to \infty} \Pr\left(\left\|E\left[\boldsymbol{\eta}_2\right] - \boldsymbol{\eta}_2\right\|^2 \le \chi_{k+1,\alpha}^2 - \lambda\right)$$

$$= G_{k+1-r}(\chi_{k+1,\alpha}^2 - \lambda; 0). \quad \blacksquare$$

Remark 4. We know that under $H_{1,N}$

$$\lim_{N \to \infty} \Pr\left(N \left\| \boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}} \right\|_{\mathbf{X}^{\mathsf{T}} \mathbf{W}_{N}(\beta_{0}) \mathbf{X}}^{2} \leq \chi_{k+1, \alpha}^{2} \right) = 1 - \alpha$$

and this probability does not depend on λ , i.e.,

$$\lim_{N\to\infty} \Pr\left(C_{\boldsymbol{\beta}_N}(\widehat{\boldsymbol{\beta}}_{\phi_2})\right) = 1 - \alpha.$$

If we consider

$$C_{\boldsymbol{\beta}_{N}}(\widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}}) = \left\{\boldsymbol{\beta}_{N}: N \left\|\boldsymbol{\beta}_{N} - \widehat{\boldsymbol{\beta}}_{\phi_{2}}^{H_{0}}\right\|_{\boldsymbol{X}^{T}\boldsymbol{W}_{N}(\boldsymbol{\beta}_{0})\boldsymbol{X}}^{2} \leq \chi_{k+1,\alpha}^{2}\right\},$$

we have by (b) in Theorem 3 that

$$\lim_{N\to\infty} \Pr\left(C_{\beta_N}(\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0})\right) = G_{k+1-r}(\chi_{k+1,\alpha}^2 - \lambda; 0).$$

We can observe that $G_{k+1-r}(\chi^2_{k+1,\alpha} - \lambda; 0)$ is a decreasing function on λ . At $\lambda = 0$, it attains the maximum value $G_{k+1-r}(\chi^2_{k+1,\alpha}; 0)$ and it tends to zero as $\lambda \to \chi^2_{k+1,\alpha}$. The coverage probabilities of $C_{\beta}(\widehat{\boldsymbol{\beta}}_{\phi_2})$ and $C_{\beta}(\widehat{\boldsymbol{\beta}}_{\phi_2}^{H_0})$ are equal if $\lambda = \chi^2_{k+1,\alpha} - G^{-1}_{k+1-r}(1-\alpha; 0)$.

The asymptotic coverage probability of $C_{\beta_N}(\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\rm Pre})$ depends on the noncentrality parameter λ in the following way:

Theorem 5. The following results hold:

(i) If
$$0 \le \lambda < \chi^2_{k+1,\alpha}$$
, then

$$\lim_{N\to\infty} \Pr\left(C_{\boldsymbol{\beta}_N}(\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\operatorname{Pre}})\right) \geq 1-\alpha.$$

(ii) If
$$\chi^2_{k+1,\alpha} \leq \lambda \leq \left((\chi^2_{k+1,\alpha})^{1/2} + (\chi^2_{r,\alpha})^{1/2} \right)^2$$
, then
$$\lim_{N \to \infty} \Pr\left(C_{\boldsymbol{\beta}_N}(\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\operatorname{Pre}}) \right) \leq 1 - \alpha.$$

(iii) If
$$\lambda > \left((\chi_{k+1,\alpha}^2)^{1/2} + (\chi_{r,\alpha}^2)^{1/2} \right)^2$$
, then
$$\lim_{N \to \infty} \Pr\left(C_{\beta_N}(\widehat{\boldsymbol{\beta}}_{\phi_1,\phi_2}^{\text{Pre}}) \right) = 1 - \alpha.$$

Proof. (i) We assume $\lambda < \chi^2_{k+1}$ we denote

$$l = \lim_{N \to \infty} \Pr\left(C_{\boldsymbol{\beta}_N}(\widehat{\boldsymbol{\beta}}_{\phi_1, \phi_2}^{\text{Pre}})\right),\tag{13}$$

we have

$$\begin{split} l &= \lim_{N \to \infty} \Pr \left\{ \left\| E\left[\eta_{2} \right] - \eta_{2} \right\|^{2} + \lambda \leq \chi_{k+1,\alpha}^{2}; \left\| \eta_{1} \right\|^{2} \leq \chi_{r,\alpha}^{2} \right\} \\ &+ \lim_{N \to \infty} \int_{0}^{\chi_{k+1,\alpha}^{2}} \Pr \left(\left\| E\left[\eta_{1} \right] - \eta_{1} \right\|^{2} \leq \chi_{k+1,\alpha}^{2} - t; \left\| \eta_{1} \right\|^{2} > \chi_{r,\alpha}^{2} \right) \mathrm{d}G_{k+1-r}(t;0) \\ &= \lim_{N \to \infty} \int_{0}^{\chi_{k+1,\alpha}^{2}} \Pr \left\{ \left\| E\left[\eta_{1} \right] \right\|^{2} \leq \chi_{k+1,\alpha}^{2} - t; \left\| \eta_{1} \right\|^{2} \leq \chi_{r,\alpha}^{2} \right\} \mathrm{d}G_{k+1-r}(t;0) \\ &+ \lim_{N \to \infty} \int_{0}^{\chi_{k+1,\alpha}^{2}} \Pr \left(\left\| E\left[\eta_{1} \right] - \eta_{1} \right\|^{2} \leq \chi_{k+1,\alpha}^{2} - t; \left\| \eta_{1} \right\|^{2} > \chi_{r,\alpha}^{2} \right) \mathrm{d}G_{k+1-r}(t;0) \\ &\geq \lim_{N \to \infty} \int_{0}^{\chi_{k+1,\alpha}^{2}} \Pr \left(\left\| E\left[\eta_{1} \right] - \eta_{1} \right\|^{2} \leq \chi_{k+1,\alpha}^{2} - t; \left\| \eta_{1} \right\|^{2} \leq \chi_{r,\alpha}^{2} \right) \mathrm{d}G_{k+1-r}(t;0) \\ &+ \lim_{N \to \infty} \int_{0}^{\chi_{k+1,\alpha}^{2}} \Pr \left(\left\| E\left[\eta_{1} \right] - \eta_{1} \right\|^{2} \leq \chi_{k+1,\alpha}^{2} - t; \left\| \eta_{1} \right\|^{2} > \chi_{r,\alpha}^{2} \right) \mathrm{d}G_{k+1-r}(t;0) \\ &= \lim_{N \to \infty} \Pr \left\{ \left\| E\left[\eta_{1} \right] - \eta_{1} \right\|^{2} + \left\| E\left[\eta_{2} \right] - \eta_{2} \right\|^{2} \leq \chi_{k+1,\alpha}^{2} \right\} \\ &= \lim_{N \to \infty} \Pr \left(\eta^{T} \eta \leq \chi_{k+1,\alpha}^{2} \right) = \Pr \left(\chi_{k+1}^{2} \leq \chi_{k+1,\alpha}^{2} \right) = 1 - \alpha. \end{split}$$

(ii) We assume $\chi^2_{k+1,\alpha} \le \lambda \le \left((\chi^2_{k+1,\alpha})^{1/2} + (\chi^2_{r,\alpha})^{1/2} \right)^2$. On the other hand we have established before that

$$l = G_r(\chi_{r,\alpha}^2;\lambda)G_{k+1-r}(\chi_{k+1,\alpha}^2 - \lambda;0) + \lim_{N \to \infty} \int_0^{\chi_{k+1,\alpha}^2} \Pr\left(\left\|E\left[\eta_1\right] - \eta_1\right\|^2 \le \chi_{k+1,\alpha}^2 - t; \left\|\eta_1\right\|^2 > \chi_{r,\alpha}^2\right) dG_{k+1-r}(t;0),$$

where l was defined in (13). But if $\lambda \geq \chi^2_{k+1,\alpha}$ then $\lambda \geq \chi^2_{k+1,\alpha} \geq \chi^2_{r,\alpha}$, hence $\chi^2_{r,\alpha} - \lambda \leq 0$ and $G_{k+1-r}(\chi^2_{k+1,\alpha} - \lambda; 0) = 0$. Therefore

$$\begin{split} l &= \lim_{N \to \infty} \int_{0}^{\chi_{k+1,\alpha}^{2}} \Pr\left(\|E[\eta_{1}] - \eta_{1}\|^{2} \leq \chi_{k+1,\alpha}^{2} - t; \|\eta_{1}\|^{2} > \chi_{r,\alpha}^{2} \right) dG_{k+1-r}(t; 0) \\ &\leq \lim_{N \to \infty} \int_{0}^{\chi_{k+1,\alpha}^{2}} \Pr\left(\|E[\eta_{1}] - \eta_{1}\|^{2} \leq \chi_{k+1,\alpha}^{2} - t \right) dG_{k+1-r}(t; 0) \\ &= \lim_{N \to \infty} \Pr\left(\|E[\eta_{1}] - \eta_{1}\|^{2} + \|E[\eta_{2}] - \eta_{2}\|^{2} \leq \chi_{k+1,\alpha}^{2} \right) \\ &= \Pr\left(\chi_{k+1}^{2} < \chi_{k+1,\alpha}^{2} \right) = 1 - \alpha. \end{split}$$

(iii) If $\lambda > \left((\chi_{k+1,\alpha}^2)^{1/2} + (\chi_{r,\alpha}^2)^{1/2} \right)^2$, then $G_{k+1-r}(\chi_{k+1,\alpha}^2 - \lambda; 0) = 0$, hence

$$l = \lim_{N \to \infty} \int_0^{\chi_{k+1,\alpha}^2} \Pr\left(\|E[\eta_1] - \eta_1\|^2 \le \chi_{k+1,\alpha}^2 - t; \|\eta_1\|^2 > \chi_{r,\alpha}^2 \right) dG_{k+1-r}(t;0).$$

On the other hand if $\left((\chi^2_{k+1,\alpha})^{1/2} + (\chi^2_{r,\alpha})^{1/2}\right)^2 < \lambda$ then $(\chi^2_{k+1,\alpha})^{1/2} + (\chi^2_{r,\alpha})^{1/2} < \lambda^{1/2}$ and further

$$\|E[\eta_1] - \eta_1\|^2 \le \chi_{k+1,\alpha}^2 - t \Longrightarrow \|E[\eta_1] - \eta_1\| \le \sqrt{\chi_{k+1,\alpha}^2 - t},$$

then

$$||E[\eta_1]|| - ||\eta_1|| = \lambda^{1/2} - ||\eta_1|| \le ||\eta_1 - E[\eta_1]|| \Longrightarrow \lambda^{1/2} \le ||\eta_1|| + \sqrt{\chi_{k+1,\alpha}^2 - t}$$

Since

$$\sqrt{\chi_{k+1,\alpha}^2 - t} + (\chi_{r,\alpha}^2)^{1/2} \le (\chi_{k+1,\alpha}^2)^{1/2} + (\chi_{r,\alpha}^2)^{1/2} < \lambda^{1/2} \le \|\eta_1\| + \sqrt{\chi_{k+1,\alpha}^2 - t}$$

hence
$$\|\boldsymbol{\eta}_1\| > (\chi_{r,\alpha}^2)^{1/2} \Longrightarrow \|\boldsymbol{\eta}_1\|^2 > \chi_{r,\alpha}^2$$
.

$$\begin{split} l &= \lim_{N \to \infty} \int_{0}^{\chi_{k+1,\alpha}^{2}} \Pr\left(\left\| E\left[\boldsymbol{\eta}_{1} \right] - \boldsymbol{\eta}_{1} \right\|^{2} \leq \chi_{k+1,\alpha}^{2} - t; \left\| \boldsymbol{\eta}_{1} \right\|^{2} > \chi_{r,\alpha}^{2} \right) \mathrm{d}G_{k+1-r}(t;0) \\ &= \lim_{N \to \infty} \int_{0}^{\chi_{k+1,\alpha}^{2}} \Pr\left(\left\| E\left[\boldsymbol{\eta}_{1} \right] - \boldsymbol{\eta}_{1} \right\|^{2} \leq \chi_{k+1,\alpha}^{2} - t \right) \mathrm{d}G_{k+1-r}(t;0) \\ &= \Pr(\chi_{k+1}^{2} \leq \chi_{k+1,\alpha}^{2}) = 1 - \alpha. \quad \blacksquare \end{split}$$

4. Simulation results

We study the coverage probability (CP) of the confidence sets based on preliminary minimum (ϕ_1,ϕ_2) -divergence test estimators, $\widehat{\beta}_{\phi_1,\phi_2}^{\rm Pre}$, under the null hypothesis as well as under contiguous alternative hypotheses using Monte Carlo experiments. Our idea is to check the advantage of using the minimum ϕ -divergence estimators instead of the MLE as well as ϕ -divergence test statistics instead of the classical likelihood-ratio test or Pearson test statistic. In our study we shall consider the power divergence measures introduced and studied in [2], the expression of the function associated with this family of divergence measures is

$$\phi_{\lambda}(x) = \begin{cases} \frac{x^{\lambda+1} - x - \lambda (x-1)}{\lambda (\lambda+1)}, & \lambda \neq 0, -1\\ x \log x - x + 1, & \lambda = 0\\ \log x + x - 1, & \lambda = -1. \end{cases}$$

This family will be used for testing and estimating. That it is to say, we consider for our study the family of preliminary test estimators

$$\widehat{\pmb{\beta}}_{\lambda_1,\lambda_2}^{\mathrm{Pre}} \equiv \widehat{\pmb{\beta}}_{\phi_{\lambda_1},\phi_{\lambda_2}}^{\mathrm{Pre}} = \widehat{\pmb{\beta}}_{\phi_{\lambda_2}}^{H_0} I_{\left(0,\chi_{l,\alpha}^2\right)}(T_N^{\phi_{\lambda_1},\phi_{\lambda_2}}) + \widehat{\pmb{\beta}}_{\phi_{\lambda_2}} I_{\left[\chi_{l,\alpha}^2,\infty\right)}(T_N^{\phi_{\lambda_1},\phi_{\lambda_2}}),$$

for some choices of the parameters λ_1 and λ_2 . More concretely we shall use $\lambda_1 = -1/2, 0, 2/3, 1$ and 2 and $\lambda_2 = 0, 2/3$ and 1. It is interesting to note that for $\lambda_2 = 0$, $\widehat{\beta}_{\phi_0}$ and $\widehat{\beta}_{\phi_0}^{H_0}$ are the unrestricted and restricted MLE of β respectively. Note that $T_N^{\phi_0,\phi_0} = LR + o_P(1)$, where LR is the likelihood-ratio test.

The logistic regression model considered in the simulation study consists of a dichotomous dependent variable and three normally distributed with zero mean and unit variance explanatory variables. We generated 10 000 samples of different sample sizes $\mathbf{n}=(n_1,\ldots,n_n)^{\mathrm{T}}\in\mathcal{N}=\{n^1,n^2,n^3,n^4,n^5\}$ with $n_i^1=15,n_i^2=30,\ n_i^3=80,i=1,\ldots,8,\ n^4=(25,25,25,25,10,10,10,10)$ and $n^5=(40,40,15,15,5,5,25,25)$. The regression coefficients $\boldsymbol{\beta}^{\mathrm{T}}=(\beta_0,\beta_1,\beta_2,\beta_3)$ were generated from a uniform over (0,2).

We analyze the CP under the null hypothesis $\beta \in \Theta_0$ as well as the contiguous alternative hypotheses

$$H_{1N}: \beta_N = \beta + N^{-1/2} \Delta$$

with $\beta \in \Theta_0$ and different values of Δ , $\Delta_1 = (0,0,0,30)$, $\Delta_2 = (0,0,0,20)$, $\Delta_3 = (0,0,0,-20)$ and $\Delta_4 = (0,0,0,-30)$. We present the results obtained in Tables 1–5.

Table 1 CP of the estimates for $\Delta=0$

λ_1	λ_2	n^1	n ²	n^3	n^4	n ⁵
0	-1/2	0.9734	0.9670	0.9606	0.9757	0.9720
	0	0.9658	0.9670	0.9655	0.9692	0.9651
	2/3	0.9484	0.9551	0.9578	0.9437	0.9421
	1	0.9344	0.9440	0.9512	0.9259	0.9299
	2	0.9022	0.9015	0.9238	0.8790	0.8874
2/3	-1/2	0.9738	0.9673	0.9607	0.9760	0.9714
	0	0.9647	0.9661	0.9658	0.9684	0.9628
	2/3	0.9461	0.9538	0.9571	0.9406	0.9396
	1	0.9312	0.9426	0.9506	0.9226	0.9260
	2	0.8990	0.8980	0.9227	0.8754	0.8817
1	-1/2	0.9739	0.9672	0.9612	0.9759	0.9711
	0	0.9647	0.9663	0.9659	0.9677	0.9627
	2/3	0.9446	0.9530	0.9568	0.9391	0.9382
	1	0.9304	0.9417	0.9502	0.9219	0.9249
	2	0.8975	0.8972	0.9218	0.8738	0.8802

Table 2 CP of the estimates for $\Delta = \Delta_1$

1.	λ ₂	n ¹	n ²	n ³	n^4	n ⁵
λ_1	~2	n n	n	n .	n n	п
0	-1/2	0.9572	0.9378	0.9000	0.9637	0.9558
	0	0.9066	0.8953	0.8618	0.9144	0.9147
	2/3	0.8231	0.8142	0.8027	0.8451	0.8560
	1	0.7891	0.7786	0.7748	0.8151	0.8326
	2	0.7145	0.7016	0.6973	0.7542	0.7787
2/3	-1/2	0.9552	0.9322	0.8893	0.9626	0.9545
	0	0.9023	0.8883	0.8495	0.9109	0.9129
	2/3	0.8178	0.8027	0.7838	0.8413	0.8525
	1	0.7822	0.7669	0.7546	0.8119	0.8286
	2	0.7078	0.6886	0.6758	0.7509	0.7751
1	-1/2	0.9542	0.9290	0.8845	0.9619	0.9541
	0	0.9012	0.8846	0.8430	0.9101	0.9123
	2/3	0.8162	0.7989	0.7751	0.8398	0.8515
	1	0.7804	0.7635	0.7435	0.8105	0.8277
	2	0.7059	0.6831	0.6653	0.7499	0.7725

Table 3 CP of the estimates for $\Delta = \Delta_2$

λ ₁	λ_2	n^1	n ²	n ³	n^4	n ⁵
0	-1/2	0.9587	0.9481	0.9232	0.9664	0.9612
	0	0.9336	0.9309	0.9169	0.9429	0.9461
	2/3	0.8844	0.8933	0.8917	0.9014	0.9140
	1	0.8603	0.8741	0.8736	0.8770	0.8974
	2	0.7968	0.8220	0.8328	0.8178	0.8564
2/3	-1/2	0.9581	0.9475	0.9200	0.9665	0.9610
	0	0.9330	0.9301	0.9136	0.9427	0.9460
	2/3	0.8841	0.8916	0.8888	0.9008	0.9139
	1	0.8594	0.8720	0.8708	0.8767	0.8971
	2	0.7961	0.8191	0.8296	0.8170	0.8558
1	-1/2	0.9581	0.9466	0.9192	0.9665	0.9612
	0	0.9331	0.9296	0.9116	0.9425	0.9461
	2/3	0.8840	0.8911	0.8878	0.9006	0.9140
	1	0.8595	0.8714	0.8699	0.8766	0.8970
	2	0.7961	0.8182	0.8279	0.8161	0.8554

Table 4 CP of the estimates for $\Delta=\Delta_3$

λ ₁	λ_2	n^1	n^2	n^3	n^4	n ⁵
0	-1/2	0.7939	0.7717	0.8021	0.7704	0.7928
	0	0.8547	0.8229	0.8350	0.8230	0.8238
	2/3	0.8945	0.8644	0.8574	0.8748	0.8696
	1	0.9048	0.8742	0.8647	0.8859	0.8803
	2	0.9185	0.8890	0.8728	0.8991	0.8899
2/3	-1/2	0.8307	0.8057	0.8270	0.8189	0.8622
	0	0.8808	0.8487	0.8545	0.8646	0.8869
	2/3	0.9122	0.8824	0.8749	0.9000	0.9140
	1	0.9200	0.8919	0.8788	0.9080	0.9185
	2	0.9307	0.8999	0.8841	0.9144	0.9207
1	-1/2	0.8466	0.8194	0.8366	0.8384	0.8835
	0	0.8934	0.8615	0.8646	0.8814	0.9073
	2/3	0.9197	0.8922	0.8824	0.9121	0.9265
	1	0.9267	0.9003	0.8844	0.9188	0.9281
	2	0.9354	0.9064	0.8891	0.9214	0.9298

From Tables 2 and 3 that correspond with Δ_1 , Δ_2 it is clear that $\widehat{\beta}_{0,-1/2}^{Pre}$ is preferred to the rest. For $\Delta=\mathbf{0}$, this estimator is the first or second best. However, for Δ_3 , Δ_4 it can be seen from Tables 4 and 5 that $\widehat{\beta}_{1,2}^{Pre}$ is preferred to the rest. Therefore, $\widehat{\beta}_{2/3,2/3}^{Pre}$ can be considered as a good compromise for all the cases. Note that if we want to use the LRT ($\lambda_1=0$) statistic for the preliminary estimator, the largest CP corresponds to $\lambda_2=-1/2$ for $\Delta=\mathbf{0}$, Δ_1 , Δ_2 and $\Delta_2=2$ for Δ_3 and Δ_4 . So, $\widehat{\beta}_{0,2/3}^{Pre}$ is a good compromise between these two. On the other hand, we can fix the MLE ($\lambda_2=0$) for obtaining the preliminary

Table 5 CP of the estimates for $\Delta = \Delta_4$

λ_1	λ_2	n^1	n^2	n ³	n^4	n ⁵
0	-1/2	0.9613	0.9473	0.9353	0.9552	0.9456
	0	0.9637	0.9581	0.9472	0.9549	0.9605
	2/3	0.9670	0.9606	0.9486	0.9608	0.9660
	1	0.9688	0.9605	0.9469	0.9616	0.9669
	2	0.9708	0.9585	0.9402	0.9625	0.9665
2/3	-1/2	0.9618	0.9483	0.9385	0.9575	0.9482
	0	0.9642	0.9588	0.9488	0.9579	0.9616
	2/3	0.9674	0.9610	0.9493	0.9621	0.9664
	1	0.9692	0.9609	0.9479	0.9631	0.9671
	2	0.9711	0.9589	0.9407	0.9635	0.9669
1	-1/2	0.9622	0.9490	0.9395	0.9583	0.9489
	0	0.9647	0.9593	0.9491	0.9588	0.9624
	2/3	0.9678	0.9614	0.9497	0.9629	0.9665
	1	0.9696	0.9612	0.9483	0.9636	0.9674
	2	0.9713	0.9590	0.9411	0.9638	0.9671

estimator and to look for the best statistic. In this case, for $\Delta = 0$, Δ_1 , Δ_2 LRT is the best but for Δ_3 , Δ_4 the minimum chi-square statistic is the best, so a good compromise for all Δ seems to be the statistic corresponding with $\lambda_1 = 2/3$.

Acknowledgements

The research in this paper was supported in part by Grants MTM2006-06872 and UCM2007-910707.

References

- [1] P.C. Chiou, A.K.Md.E. Saleh, Preliminary test confidence sets for the mean of a multivariate normal distribution, Journal of Propagations in Probability and Statistics 2 (2002) 177–189.
- [2] N. Cressie, T.R.C. Read, Multinomial goodness-of-fit tests, Journal of the Royal Statistical Society, Series B 46 (1984) 440–464.
- [3] M.L. Menéndez, J.A. Pardo, L. Pardo, Phi-divergence test statistics for testing linear hypotheses in logistic regression models, Communication in Statistics (Theory and Methods) 37 (4) (2008) 494–507.
- [4] M.L. Menéndez, L. Pardo, M.C. Pardo, Preliminary phi-divergence test estimators for linear restrictions in a logistic regression model, Statistical Papers (2008), doi:10.1007/s00362-007-0078-z.
- [5] J.A. Pardo, L. Pardo, M.C. Pardo, Minimum φ-divergence estimators in Logistic Regression Models, Statistical Papers 47 (2005) 92–108.
- [6] L. Pardo, Statistical Inference Based on Divergence Measures, Chapman & Hall/CRC, New York, 2006.
- [7] A.K.Md.E. Saleh, Theory of Preliminary Test and Stein-Type Estimation with Applications, John Wiley, 2006.