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Nonrelativistic limit in the 2+1 Dirac oscillator: A Ramsey-interferometry effect
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We study the nonrelativistic limit of a paradigmatic model in relativistic quantum mechanics, the two-
dimensional Dirac oscillator. Remarkably, we find a different kind of Zitterbewegung which persists in this
nonrelativistic regime, and leads to an observable deformation of the particle orbit. This effect can be inter-
preted in terms of a Ramsey-interferometric phenomenon, allowing an insightful connection between relativ-

istic quantum mechanics and quantum optics. Furthermore, subsequent corrections to the nonrelativistic limit,
which account for the usual spin-orbit Zitterbewegung, can be neatly understood in terms of a Mach-Zehnder

interferometer.
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I. INTRODUCTION

The natural relativistic extension of the quantum har-
monic oscillator, known as the Dirac oscillator [1], has be-
come a cornerstone in relativistic quantum mechanics. It was
initially introduced as a relativistic effective model to de-
scribe mesons, since it presents interesting quark-
confinement properties [2,3]. Moreover, subsequent studies
have revealed several amazing properties of the Dirac oscil-
lator in different contexts. Beyond its exact solvability, the
energy spectrum presents certain peculiar degeneracies,
which can be related to a nontrivial symmetry Lie algebra
[4]. Furthermore, its solvability can be traced back to an
exact Foldy-Wouthuysen transformation [5], and its special
properties are related to a hidden supersymmetry [6]. Addi-
tionally, the positive- and negative-energy solutions are as-
sociated to supersymmetrical partners, which ensures the sta-
bility of the Dirac sea under the Dirac oscillator coupling [7].

Some analogies between the dynamics of this relativistic
model and the typical Jaynes-Cummings (JC) dynamics in
quantum optics [8] have been discussed in [9], and some of
its nonrelativistic properties have been discussed in [10-12].
Remarkably, in a two-dimensional setup this analogy be-
comes an exact equivalence between the 2+ 1 Dirac oscilla-
tor Hamiltonian and the Anti-Jaynes-Cummings (AJC) inter-
action [13], which builds a bridge between two unrelated
fields, quantum optics and relativistic quantum mechanics,
and favors a fruitful exchange of ideas between both com-
munities [14]. Relativistic effects such as the Zitter-
bewegung, a helicoidal motion performed by the average po-
sition of a free relativistic fermion, can be reinterpreted with
the language of quantum optics. This dynamical phenom-
enon also becomes observable in the spin and orbital degrees
of freedom, where it can be surprisingly interpreted in terms
of optical Rabi oscillations. In this work we shall be con-
cerned with the extension of this perspective onto the non-
relativistic limit of the two-dimensional Dirac oscillator. In
this manner, we are able to identify a feature of the Zitter-
bewegung, which is interpreted as a Ramsey-interferometry
effect [15]. This remarkable effect shows that the standard
nonrelativistic limit described in relativistic quantum me-
chanics textbooks should be reconsidered in this unusual sce-
nario [16].
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This paper is organized as follows: in Sec. II, we review
the properties of the two-dimensional Dirac oscillator and
the exact mapping onto an AJC Hamiltonian. In Sec. III the
nonrelativistic limit is considered from a quantum optics per-
spective, which allows the prediction of a different kind of
Zitterbewegung which is interpreted as a Ramsey-
interferometric phenomenon in Sec. IV. In this section we
also discuss how the effects of this interference process have
strong consequences in the electron trajectory. In Sec. V, the
analysis of additional corrections to the nonrelativistic limit
is discussed in terms of a Mach-Zehnder interferometer.
There, we find that the first order nontrivial correction al-
ready shows a perturbative spin-orbit Zitterbewegung [14].
Finally, we conclude reviewing the consequences of our
work in Sec. VI. In Appendixes A and B we give detailed
derivations of the standard nonrelativistic limit and its com-
plete perturbative series, respectively.

II. TWO-DIMENSIONAL DIRAC OSCILLATOR

The physical laws that describe the properties of micro-
scopic particles are accurately described by quantum me-
chanics, and in particular, by the Schrodinger equation.
Nonetheless, quantum phenomena occurring at high energies
cannot be properly addressed by such theory, and one must
employ relativistic quantum mechanics [16]. A relativistic
spin-1/2 particle of mass m is described by the Dirac equa-
tion

W)

iﬁ%:[ca-p+ﬁmc2]|\1’>, (1)

where |W) is the four-component Dirac spinor, «;
:=off-diag(o;,0;), and B:=diag(l,,-l,) are known as the
Dirac matrices which can be expressed in terms of the usual
Pauli matrices o;, p is the momentum operator, and ¢ stands
for the speed of light.

The Dirac oscillator is obtained after the introduction of a

peculiar coupling in the above equation (1),

L2 [ca- (p—impBwr) + Bmc]| V), (2)
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where w stands for the Dirac oscillator frequency, and r rep-
resents the particle position. The relativistic coupling p
—imBor, known as a Dirac string, cannot be understood as a
simple minimal coupling procedure, and is responsible for
the special properties of this relativistic system. In particular,
the nonrelativistic limit of the aforementioned Dirac oscilla-
tor (2) leads to the usual nonrelativistic harmonic oscillator
with an additional spin-orbit coupling, which shows the in-
trinsic spin structure of the relativistic theory [1].

The restriction to two-spatial dimensions appreciably sim-
plifies the relativistic problem, since the Dirac matrices be-
come 2 X2 matrices, which can be identified with the so-
called Pauli matrices a,=0,, a,=0y, B=o. In .this
manner,
and the Dirac oscillator model now takes the form

2
E C(Tj(p/ - im(rza)r") + O'ch2 w).  (3)

j=1

uh g
oty
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This two-dimensional system was algebraically solved [14]
by introducing chiral creation and annihilation operators

1
a,:=—=(a,-ia,)), a}=—=(al+ia}),
V2 Y \5
. i 1 T
a;:= _/—(ax + lay), ap = ?(ax - la\')’ (4)
\1’2 Vz i

where a,, T y,a;,

tors a;——z(z I i%pi), and A=\A/mw represents thﬁ: ground
state oscillator width. These operators allow an insightful

derivation of the energy spectrum

are the usual annihilation-creation opera-

E=*E,=* mc?\1 +4én,, (5)

where the integer n; stands for the number of left-handed
orbital quanta, and &:=fw/mc? is an important parameter
that specifies the importance of relativistic effects in the
Dirac oscillator. A different approach, based on the solution
of differential equations, has also been discussed in [17]. The
associated eigenstates are found to be

|+ En1> = anl|nl>|XT> - iBn1|nl - 1>|XL>7

|_En1>=Bnl|nl>|XT>+ianl|nl_ 1>|XL>’ (6)

where [y;):=(1,0) and [x;):=(0,1)" are known as
the Pauli spinors, and a,:= \(Enl+mc2)/ 2E, and B,
(En] mc )/2E,,] are real normalization constants.

The notation in Eq. (6) clearly shows that the relativistic
eigenstates exhibit entanglement between the orbital and spin
degrees of freedom. This entanglement property is essential
in order to obtain the relativistic effect of spin-orbit Zitter-
bewegung, where certain oscillations in the orbital and spin
angular momentum are unambiguously identified with the
interference of positive- and negative-energy components.
Introducing the spin and angular momentum operators
S.=3to. and L.=fi(ala,~aja)), and considering the initial
state [W(0)):=|n;—1)|x|), one immediately finds the so-
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called spin-orbit oscillations associated to the Zitter-

bewegung
4én
(L), =- +aén ———+# sin’ w, t—h(n,—l)
n
g n .2
(S, = 4§n,ﬁ sin® @, f — >
1
<Jz>l=ﬁ E_nl 5 (7)

where J,=L,+S, stands for the z component of the total an-
gular momentum and is obviously a conserved quantity.

Finally, we recall the interesting mapping between the
two-dimensional Dirac oscillator and the AJC model [14],
where the relativistic Hamiltonian can be written as

H= f'L(g(fra;r +goa) + o, (8)

with o":= , o7:=|x)Xx;| as the spin raising and

lowering operators, g:= 2imc2\s"T§/ f as the coupling strength
between orbital and spin degrees of freedom, and where
8:=mc? can be interpreted as a detuning parameter. In quan-
tum optics, this Hamiltonian describes an Anti-Jaynes-
Cummings interaction, and can be implemented with trapped
ions [13]. Within this perspective, the electron spin can be
associated with a two-level atom, and the orbital circular
quanta with the ion quanta of vibration, i.e., phonons. Note
that there is also the possibility to map this relativistic
Hamiltonian onto the more standard Jaynes-Cummings
model [18]. In the following section, we derive the nonrela-
tivistic limit of the two-dimensional Dirac oscillator (8), and
discuss the nature of the physical properties described in
Egs. (5)—(7) in this nonrelativistic scenario.

III. NONRELATIVISTIC LIMIT IN QUANTUM OPTICS

The original quantum optics perspective of the two-
dimensional Dirac oscillator in Eq. (8) stimulates the use of
quantum optical tools in a relativistic quantum framework,
and vice versa. In particular, we can use the quasidegenerate
perturbation theory [19] in order to derive an effective
Hamiltonian in the nonrelativistic limit. This regime is at-
tained when the relativistic parameter fulfills &én;< 1, which
allows the usual description of the Dirac oscillator Hamil-
tonian in Eq. (8),

H=Hy+\V, )
where H is the unperturbed Hamiltonian
H,= do,, (10)
and AV represents the following perturbation:
\V=\(o"a] - 07ay), (11)

where the interaction coupling \ == 2imc2\€ satisfies |\| < &,
and consequently, the coupling in Eq. (11) can be treated as
a small perturbation. In this regime, the Hilbert space can be
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FIG. 1. (Color online) Schematic diagram of the Dirac oscillator
couplings in the nonrelativistic limit. The subspaces H; and H
become disconnected in this regime.

divided into two approximately disconnected subspaces
H = HT O H 1> (12)
where

Hy =span{|np)|x;): n;=0,1...},

H| =span{|n)|x,); n;=0,1...}. (13)

This is easily understood from the fact that én; << 1 is equiva-
lent to fiw< 8, which implies that the perturbation in Eq.
(11) does not suffice to induce transitions between the spinor
components. In this manner, the subspaces corresponding to
the spinor degrees of freedom become decoupled, and we
may describe the effective dynamics in such subspaces (see
Fig. 1).

In order to obtain the effective Hamiltonian, we rewrite
the perturbation in Eq. (11) as follows:

A\V=2NALB,, (14)
o

where u=1,2, the operators A,=aq,, A2=a2' describe the
slow varying orbital degrees of freedom, whereas the opera-
tors B;=0", B,=0" represent the coupling of the fast spino-
rial degrees of freedom, and \;=g, N,=g". The effective
Hamiltonians correspond to

1
Hlp= 6+ 2 (xiIN BN B XA A,

HS—
" 60—-H,

| 1

Hye=—- 0+ E <Xl|)\ﬂBﬂm)\M’B#'|Xl>AMAM" (15)
pp' 0

which can be readily evaluated as

y me? + Zﬁwa;a, 0 (16)
e 0 —mc? - Zhwala;

The effect of the relativistic corrections in this regime can be
understood as a level shift with respect to the rest mass en-
ergy that depends on the number of left-handed quanta. The
nonrelativistic energies associated to the corresponding
eigenstates |n;)|x;) and |n,)—1)|x,) are

E|"1>|XT> = +mc*(1+2én),
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Ejpvlyy==mc*(1+2¢n), (17)

which are equivalent to the leading order correction of the
exact eigenvalues (5) in the limit &n;<< 1, namely,

E= *mc*\1 +4én,~ + mc*(1+2én) + 0((én)?).

(18)

Therefore, we obtain the so-called energy shift term AE
=2mc*(1+2¢n,;), which is usually known as a dynamical
Stark shift term in the quantum optics literature [20]. In op-
tics, the nonrelativistic effective Hamiltonian (16) achieved
for large enough detuning is equivalent to the dispersive lin-
ear susceptibility and the real part of the refraction index,
with opposite contributions from the excited and ground
states [21].

This noteworthy interpretation of the nonrelativistic limit
in terms of measurable optical quantities is shown to be
equivalent to the standard nonrelativistic limit in relativistic
quantum mechanics in Appendix A. In the following section,
we shall use this remarkable perspective to describe a sign of
the Zitterbewegung, which can be understood in terms of a
Ramsey-interferometry effect [15].

IV. ZITTERBEWEGUNG IN THE NONRELATIVISTIC
LIMIT

As discussed in previous sections, the interference be-
tween positive- and negative-energy components gives rise
to a relativistic oscillatory behavior known as Zitter-
bewegung. This phenomenon has a pure relativistic nature,
and therefore it is usually believed to vanish in the nonrela-
tivistic limit. Contrary to common belief, we show in this
section how a peculiar Zitterbewegung effect can still arise in
the nonrelativistic regime if the initial state is appropriately
prepared. Furthermore, we also discuss how this dynamics
might be interpreted as a Ramsey-interferometry phenom-
enon, and how it can lead to measurable effects in the par-
ticle trajectory.

Let us consider an initial state |W(0)):=aln)|x;)+Bln,
-1) X|)» which involves both spinorial components, where
a,BEC are correctly normalized |a|*+|8|>=1. One directly
observes that this state mixes the positive- and negative-
energy solutions in Eq. (17), which is the fundamental ingre-
dient leading to the Zitterbewegung. In order to obtain such
an effect, we derive the time evolution under the effective
Hamiltonian (16),

[W(2)) = ae_mﬂzt|nl>|)(T) + ,Be+iQ”1’|nl - 1>|Xl>’ (19)
where ), = mc?(1+2¢n,))/h. The corresponding spin-orbit
expected values (7) become

(L)=~h(n+|BP),

h
(59,= 3 (af’ - 18P,

h
=2 2n+ laf* =318, (20)
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where any remainder of the original oscillatory Zitter-
bewegung in Eq. (7) has completely vanished. Nevertheless,
positive- and negative-energy components are simulta-
neously involved in the initial state, and therefore there must
exist some kind of Zitterbewegung.

The possibility to observe such an effect can be achieved
if we consider the superposition of states with different en-
ergy modulus |E, |. This Zirterbewegung can be exemplified
by a Ramsey interferometer in which the field is prepared in
a coherent state and the atom in a 50% superposition of its
excited and ground states (i.e., a|x;)+8|x|)) by resonant in-
teraction with a classical laser beam [15]. Afterwards, the
effective interaction produces a different field evolution con-
ditioned to the atomic level. Finally, resonant interaction of
the atom with a second laser beam mixes the contributions
from the upper and lower levels leading to the interference of
the positive- and negative-energy evolutions. Therefore, the
Ramsey fringes such as the ones in Refs. [22] can be re-
garded as suitable examples of Zitterbewegung in this par-
ticular regime.

Let us exemplify this Ramsey-Zitterbewegung with the
following initial state prepared in a superposition of the
two-spinor  states |W(0)):=|z)(e|x;)+Blx)), where |z)
= e“zl‘z’ZZn[zf’ﬂn,)/ Vn,! represents a left-handed coherent
state with z; € C. This initial state also involves positive- and
negative-energy components, and its time evolution is

|W (1) = ae_iQ°t|Zz€_2W>|XT> + ,Be+mlt|zle+2iwt>|)(i>-
(21)

As time elapses, the phase evolution of the orbital coherent
state is strongly correlated to the internal spinorial degree of
freedom, just as the Ramsey-interferometric time evolution.
This peculiar correlated dynamics is a clear consequence of
the coexistence of positive- and negative-energy modes in
the initial state, and therefore it stands as a direct symptom
of Zitterbewegung. The final step in the Ramsey-
interferometric experiment is to recombine both spinor com-
ponents leading to the interference of positive- and negative-
energy modes. The measurement of S, after this mixing
effect is equivalent to the measurement of the x component
of the spin angular momentum S: :%o-x in the state (21)

(S, =hV(t)cos[ (Qy + Q)1 + |z|? sin(4wt) + arg(a”*B)],
(22)

where V(t)=|ae"‘ﬂ|e‘2‘z1|2 sin2e1) can be identified with a peri-
odic visibility factor which precedes the desired Ramsey-
interference term. Therefore, an oscillatory behavior in the
x-spin component can be directly traced back to a Zitter-
bewegung in the nonrelativistic limit. Note that this phenom-
enon is a consequence of an appropriate preparation of the
initial state, involving both energy modes, rather than the
pure dynamical effect in Egs. (7).

This Ramsey-interferometric dynamics (21) can lead to
measurable effects in the electron trajectory, since the inter-
ference of both energy modes undeniably causes a deforma-
tion of the particle orbit. The electron trajectory is described
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FIG. 2. (Color online) Electron trajectory for different initial
states _where the coherent state phase is ¢=m/2, and ¢
={1,v2/3,V1/2}, with i=1,2,3. Note that ;=1 corresponds to the
circular Zitterbewegung-free evolution in Eq. (24), as compared to
the elliptic orbits caused by a Zitterbewegung interference.

by the following position operators x=A(a,+al +a,+aj)/2,
y=iA(a,—a'—a;+a])/2, whose expectation values evolve
according to

()= Alz|[]al* cos2wr = ¢) + |B* cos2wrt + ¢))],

)= Alz|[| B sin2wt + ¢) ~ |af? sin(2wr - ¢)],
(23)

where we have used z,=|z|e!?. The particle trajectory de-
scribed in Eq. (23) has a remarkable periodic character, and
must be compared to the Zitterbewegung-free trajectory of an
initial state |W(0)):=|z;)|x), which is described by a circular
orbit

()= +AlzfcosQawt - ¢)),

(7)== Alz/lsinor - ). (24)

Comparing both trajectories in Egs. (23) and (24), we realize
that the Zitterbewegung phenomenon leads to a deformation
of the electron circular orbit (24) (see Fig. 2).

In light of the results presented in this section, we may
conclude that Zitterbewegung phenomena may also arise in a
nonrelativistic regime as long as the initial state involves
both energy modes, which is still a relativistic property. The
initial state, which can be described by a coherent superpo-
sition of positive- and negative-energy solutions, cannot be
described in the realm of nonrelativistic quantum mechanics.
Therefore, the persistence of Zitterbewegung in the nonrela-
tivistic regime can be traced back to the relativistic nature of
the initial state, when carefully prepared.

Furthermore, we have also described how this interfer-
ence effect can be unexpectedly interpreted in terms of Ram-
sey fringes in the context of quantum optics. The effect of
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this relativistic interference can be observed in oscillations in
the x-spin component, or even more drastically in the defor-
mation of the electron circular orbit into an elliptic trajectory.

V. CORRECTIONS TO THE NONRELATIVISTIC
LIMIT

In Sec. III we have discussed the nonrelativistic limit of
the two-dimensional Dirac oscillator, where the decoupling
of the spinor components leads to a dynamical Stark shift in
the energy levels. It was precisely this energy shift, which
allowed the surprising description of the Zitterbewegung in
terms of a Ramsey-interferometry effect in Sec. IV. In the
present section, we consider how relativistic effects modify
such a picture as the parameter & increases, and interpret the
usual spin-orbit Zirterbewegung described in Egs. (7) as a
first order perturbation term. The picture developed in Sec.
IIT is no longer valid, since it assumes the decoupling of the
spinor subspaces (13), which forbids this peculiar dynamics.
Therefore, we discuss a description which allows the inter-
pretation of the spin-orbit Zitterbewegung in terms of a
Mach-Zehnder interferometer.

Let us consider the AJC mapping of the two-dimensional
Dirac oscillator (8), which allows the description of the Hil-
bert space as a series of invariant subspaces H=EB;°,°[=1H,,],

where

n = Dlxp}. (25)

The relativistic Hamiltonian in these subspaces reads

M, = span{[n)|x;).

H,= mc(o, - nnl(ry), (26)

where we have introduced a parameter 17,[/=2\s"§—n, directly
related to the small relativistic parameter én;<< 1. This inter-
action can be considered as a rotation of the o, term along
the x axis

H,= me*\1 + nﬁle_‘onz‘fxoze‘e"z%, (27)

where the rotation angle satisfies tan(26, ):= 1, [23]. The
unitary time evolution operator can be expressed as follows:

Unl = ¢ Wty = =100 05160 (002100 0 (28)

where
2

¢, (=" 1+ (29)

This evolution has a clear interferometric interpretation in
terms of a Mach-Zehnder interferometer (see Fig. 3).

We can understand the interferometric process clearer in
the three-step process of Fig. 4. Here, the term e'% repre-
sents a beam splitter at the entrance of the interferometer

i cos 6, —1sin 6y,
610”/0“’ = , (30)

—1sin 6, ~ cos b,

the following term e~'%#()7: describes the dephasing process
in the two arms of the interferometer

PHYSICAL REVIEW A 77, 033832 (2008)

/ |+ En,)
| + En,)
[no)xt) | = En)
Or,
Ine = 1)Ix1)

FIG. 3. (Color online) Mach-Zehnder interferometer diagram of
the Dirac oscillator evolution operator.

_i¢n 0
_i¢n (t)o'z = ¢ ! . 3 1
e 1 |: 0 eHdJﬂ[ :| B ( )

and the remaining term e~'%x stands for the final beam split-
ter, which produces the interference between the dephased
beams that have traveled through different paths of the inter-
ferometer

b o cos 0,11 isin 0,11

e =| . (32)
1sin 0,,1 cos 6,1[

Remarkably enough, this three-step process captures the es-
sence of the relativistic dynamical properties in the two-
dimensional Dirac oscillator. The two incoming beams might
be interpreted as the upper and lower components of the
relativistic spinor. The first beam splitter is responsible for
the mixture of these components so that the two arms of the
interferometer can be associated to positive- and negative-
energy solutions (6). In such manner, the time evolution in-
side the interferometer can be understood as a phase shift
between the positive- and negative-energy solutions since
their phases evolve with opposite sign. Finally, the second
beam splitter is responsible for the interference of the inter-
ferometer beams, which consequently represents the interfer-
ence of positive- and negative-energy solutions. This is ex-
actly the essence of the Zitterbewegung in relativistic
quantum mechanics [14], which can be surprisingly identi-
fied with a simple interferometric mechanism for the two-
dimensional Dirac oscillator.

In the nonrelativistic regime described in Sec. III, the in-
terferometric picture is significantly simplified. In this limit,
the parameter 7, satisfies 7, <1 for significative values of
the initial number of orbital quanta n;,. Therefore, we can
approximate

|+ En,)

[n0)[x1) [na)x1)

[ny — 1>‘Xi | - Em) [ — 1>|Xl>

FIG. 4. (Color online) Schematic Mach-Zehnder interferometer
diagram of the Dirac oscillator evolution operator.
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1 . 10
J1+ 7]2[ ~1+ 57’%1’ e'nx = {0 ] ], (33)

and thus the rotation angle 6,,[20 becomes vanishingly
small. In this manner, the action of the two beam splitters in
Fig. 3 is negligible, and the nontrivial remaining effect is the
dephasing of the upper and lower components of the relativ-
istic spinor in Eq. (29), which yields

2
¢nl(t) =~ [% + 2wn,}t= :int. (34)

As discussed in the preceding section, these phase shifts can
manifest themselves in a Ramsey interferometer providing a
practical realization of Zitterbewegung. Beyond this example
that requires the preparation of the atom in a superposition
state, we can obtain a further example of Zitterbewegung
dynamically induced by a first-order relativistic correction.

The remarkable advantage of the interferometric interpre-
tation developed in this section is the possibility to go be-
yond this nonrelativistic regime, and consider higher-order
relativistic corrections to the aforementioned dynamics. In
order to do so, we retain the relativistic corrections up to the
following order:

1 Voo Ty
- — 1—
1 A 8 2
\/1+7]iz1+—7]i, €' x ~ 5 s
: 2 T, T,
i— 1-—
2 8
(35)
which leads to the following evolution operator:
)
. 17, .
o 1%, _ 2"’ sin ¢, = T, Sin bn,
U, ~ . . (36)
T, sin ¢”1 etibn 4 nlsin ¢”1

Note that the rotation angle is no longer negligible, and the
action of the beam splitters becomes noticeable up to the
perturbative order considered so far. The interference be-
tween the positive- and negative-energy solutions appears as
a pure relativistic effect, leading to the spin-orbit Zitter-
bewegung if we consider an initial state |¥(0)):=[n;— 1)|x).

(L=~ 4énh sin® Q,, 1~ fi(n, = 1) + O((én))?),

(5= 4bnh sin® 0,1~ +0(En)?),

<Jz>t=ﬁ(% _nl)’ (37)

which clearly coincide with the expansion on the small pa-
rameter &n;<< 1 of the dynamical evolution described in Egs.
(7). The oscillations in the angular momentum observables
are therefore a direct consequence of the interference be-
tween positive- and negative-energy solutions introduced by
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AWAWAWAY=
VEVARVI

FIG. 5. (Color online) Effective frequency displacement of a
nonrelativistic harmonic oscillator due to first-order relativistic
corrections.

—h(n; — 1)

the Mach-Zehnder beam splitters. The visibility of the inter-
ference phenomenon in the spin degrees of freedom is

<Sz>max - <Sz>min
<Sz>max + <Sz>min

which clearly fulfills V<1 at this level of perturbation
theory. As we discuss in Appendix B, the visibility of these
Zitterbewegung oscillations increases considerably as relativ-
istic effects become more pronounced, and subsequent per-
turbative orders are taken into account.

Additionally, one must also consider the difference in the
order of magnitude of the superposed frequencies in Eq.
(34), where 2wn, < mc?/#, which makes it difficult to ob-
serve the aforementioned instantaneous oscillations. In such
case, we can also perform a time average of Egs. (37),

(L), == 2&n i —h(n,— 1) + O((én)?),

V= =~ 4én;+ 0((én)?), (38)

S %
(S),=2énh - ot 0((&n)?),

U= ﬁ(% - nl>, (39)

which can be readily interpreted as a frequency shift in a
nonrelativistic left-handed harmonic oscillator w— w+2¢&
(see Fig. 5).

VI. CONCLUSIONS

In this paper we have considered the intriguing relativistic
Zitterbewegung in the two-dimensional Dirac oscillator from
an interferometric point of view. The exact mapping between
the relativistic model and the Anti-Jaynes-Cummings inter-
action suggests the use of quantum optical tools in the study
of relativistic quantum phenomena. In this sense, the nonrel-
ativistic limit of the Dirac oscillator can be understood
as a Ramsey-interferometric effect, and interesting
Zitterbewegung-dynamics arise when the initial state is
carefully prepared. Actually, we have described how
Zitterbewegung-free circular orbits become elliptic trajecto-
ries due to the interference of positive- and negative-energy
modes. This insightful interferometric interpretation can be
carried further on to subsequent relativistic corrections, in
terms of a Mach-Zehnder interferometric process as shown
in Appendix B. The effect of the Mach-Zehnder beam split-
ters is responsible for the spin-orbit Zitterbewegung, and be-
comes more relevant as the relativistic parameter is in-
creased.
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It is interesting to point out that all these exotic relativistic
effects may be observed in an ion-trap tabletop experiment
following the proposal described in [14]. In this experimental
setting, the relativistic parameter can attain all possible val-
ues regarding current technology possibilities. This fact
should allow the experimentalist to study this nonrelativistic
regime and the interferometric effects discussed in this work.

Finally, we would also like to stress that an exciting dia-
logue between quantum optics and relativistic quantum me-
chanics scientists can be performed in the light of our results.
These two communities can collaborate in order to offer a
different perspective to archetypical phenomena of both dis-
ciplines.
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APPENDIX A: STANDARD NONRELATIVISTIC LIMIT

In this appendix we derive the nonrelativistic limit of the
two-dimensional Dirac oscillator using the standard tech-
niques in relativistic quantum mechanics [16]. Let us then
consider Eq. (3), where the relativistic spinor can be rewrit-
ten as |W):=[|¢), ) ]e E". Then, Eq. (3) becomes a set

of coupled equations

(E=mc®)|gh) = cl(p, + imwx) = i(py +imwy)]|1s),

(E+mc®)|¢h) = c[(p, — imax) +i(p, - imwy)]|4h).
(A1)

In order to obtain the nonrelativistic limit, we must derive
the associated Klein-Gordon equations, which by virtue of
the canonical commutation relations [xj, pk]=iﬁ5jk, and us-
ing the definition of the orbital angular momentum operator
L :=xp,—yp,, become

(E” = m*c*)|¢) = 2mc’[Hyy, ~fiw = oL ]| ),

(E? = m*c)| ) = 2mc[HE2 + ho — oL |h),  (A2)

where we immediately identify the two-dimensional isotro-
pic harmonic oscillator Hﬁ?=p2/2m+mw2r2/2. This fact al-
ready shows the connection between the relativistic Dirac
oscillator in Eq. (3) and the usual nonrelativistic harmonic
oscillator. The nonrelativistic regime is attained when the
relevant energies in the system are negligible in comparison
with the rest mass energy. For the |;) component, we let
E=mc*+ € where e<mc?, so that

(E> = m*c*) = 2mc*e+ O(€). (A3)

Substituting Eq. (A3) in the Klein-Gordon equation (A2), we
obtain the corresponding nonrelativistic limit of the two-
dimensional Dirac oscillator
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elyn) = [Hpo = hoo = oL.]|4h). (A4)
Finally, recovering the total energy E=mc’+ €, we obtain the
following effective Hamiltonian for the nonrelativistic limit,

chg =mc? +[H2 - ho - oL,], (A5)
where the two-dimensional harmonic oscillator appears to-
gether with the orbital angular momentum. This procedure
must also be applied to the lower component |¢,), where the
nonrelativistic limit is attained setting E=-mc’+e where
e<mc?

(E* = m?c*) = = 2mc*e+ O(€). (A6)

Substituting once more Eq. (A6) in the corresponding Klein-
Gordon equation (A2), we obtain

ely) =~ [Hp, +ho - L]

1102> > (A7)

which directly leads to the effective Hamiltonian in the non-
relativistic limit by restoring the original energy E=-mc>
+e€,

HY = —m® - [H® + fiw — wL,], (A8)
where the usual two-dimensional harmonic oscillator arises
naturally in this nonrelativistic regime. Finally, using the chi-
ral operators in Eq. (4), the two-dimensional harmonic oscil-
lator can also be expressed in terms of these operators

Hﬁ?:ﬁw(uja,+a;a,+ 1), (A9)

which leads to the corresponding nonrelativistic effective
Hamiltonian

me? + Zﬁwa;al 0
e 0 —me? - Zﬁw(aza, +1) ]
(A10)

By virtue of the commutation relations [a;,a]]=1, we can
rewrite Eq. (A10) as

mc® + 2hwaa, 0
Hegr= . (AlD)

0 - mc? - 2hwaa;

which coincides with the previous derivation using quantum
optical tools (16). In this sense, the insightful quantum optics
perspective introduced in [14] offers a better understanding
of the nonrelativistic limit which is condensed in Fig. 1. In
this regime, the spinorial levels can be only coupled through
virtual transitions which are translated into a displacement of
the energies (17).
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We finally want to note that the inclusion of rest mass
energy terms *mc? in Eq. (A11) is necessary if one wants to
treat both spinorial components simultaneously. In this limit,
these components are associated to positive- and negative-
energy solutions, and their simultaneous treatment as consid-
ered above is a relativistic effect.

APPENDIX B: PERTURBATIVE SERIES
OF THE NONRELATIVISTIC LIMIT

In this appendix we derive the complete perturbative se-
ries that arises naturally in the nonrelativistic limit. Remark-
ably, we can obtain the aforementioned perturbative expan-
sion to every order O((én)*) and give a physical
interpretation of the corresponding terms. It turns out that the
whole perturbative series can be interpreted in terms of dy-
namical Stark shift terms introduced in Sec. III, and inter-
ferometric Ramsey processes as those discussed in Sec. V. In
this sense, a complete description of the phenomenology in
the nonrelativistic regime of the Dirac oscillator can be ac-
complished by only considering the first two corrections in
Secs. III and V. In light of these results, we claim that
Zitterbewegung-like processes of the Dirac oscillator to any
order can be fully described with the results of this work.

Let us consider the unitary time evolution operator in Eq.
(28), which can be readily expressed as

o)),

(B1)

U, = U9 +2i sin éu(D)sin 6, (sin 6, o~ cos 6,

where U©:= 7%, represents the zeroth-order time evo-
lution corresponding to the nonrelativistic limit discussed in
Sec. III. This time evolution can be interpreted as the dephas-
ing process inside the two arms of the Mach-Zehnder inter-
ferometer (see Fig. 4). The remaining term contains the
whole perturbative series and therefore we must expand in
powers of the small parameter én;<< 1 to obtain the different
corrections to the nonrelativistic limit. Considering the fol-
lowing expansions

sin’ 9;1, =én - 3(5”1)2 + (5’11)3 - 35(5"1)4 + 0((5’11)5),

sin en, cos en, = (&n)"? = 2(én)) + 6(&n)>* = 20(én)) "
+0((én)™), (B2)
the time evolution operator (B1) can be expressed as follows:
U, = U +2isin ¢, (0] (én)' 0, + (én) o +2(n) 0,
- 3(5”1)201 - 6(5”1)5/2% + 10(5”1)30} + 20(5”1)7/20}
=35(&n) o ]+ O((én)™?). (B3)

We observe from this expression how the subsequent pertur-
bative corrections present either a o, term associated to a
dispersive Stark-Shift dynamics, or a o, term which can be
identified with a Ramsey interference effect where the spino-
rial components get dynamically mixed during unitary evo-
lution. Therefore, the perturbative series might be repre-
sented diagrammatically as in Fig. 6.
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FIG. 6. (Color online) Diagrammatic scheme of the nonrelativ-
istic perturbative series. The even terms represented by two parallel
lines correspond to the o, coupling associated to a dynamical Stark
shift term, whereas the odd terms depicted by crossing lines stand
for the o, interaction associated to a Ramsey-interferometric effect.
Note that the different scales stress the relevance of each term in the

nonrelativistic regime.

As we mentioned at the beginning of this appendix, the
complete perturbative series can be interpreted in terms of
the dynamical Stark shift term which accounts for the non-
relativistic limit in Sec. III, and the Ramsey interference term
which accounts for the first-order correction in Sec. V. There-
fore, the full phenomenology and the characterization of
Zitterbewegung can be accomplished regarding these two re-
gimes.

Finally, let us interpret the different terms of the so-called
perturbative expansion with the language of quantum optics.
The unitary operator in Eq. (B3) describes the time evolution
inside the invariant subspace H"z in Eq. (13). If we recover
the full Hilbert space description, we obtain that the even
terms of the perturbative expansion are

(a;az)k ]
0 —(aa)*]

where k=0,1... and we have introduced certain coupling
constants N, (7)== ¢, & which involve increasing powers of
the relativistic parameter, and c¢,; € C follow directly from
Egs. (B1) and (B3). These terms represent a kind of dynami-
cal Stark shift between the spinorial levels proportional to
the kth power of the orbital quanta number n;. They might be
considered as certain shifts produced by 2k-virtual transi-
tions between the spinorial levels.
In the same manner, we can rewrite the odd terms as

UK := Ny, sin %(’){ (B4)

(a;a,)ka;f

-ajfaja)* 0

U1 5= Ny sin ¢, (1)

where the coupling parameter N, =cyp &% becomes
more important as the relarivistic parameter increases, and
Cars1 € G also follow from Egs. (B1) and (B3). These pertur-
bative terms (B5) can be directly expressed as a generalized
Anti-Jaynes-Cummings evolution

U = Nopar (07 A — 0¥ADsin ¢, (1), (B6)
where we have introduced the bosonic operator
Ak = al((l;al)k. (B7)

This effective time evolution (B6) can be interpreted as a
generalized AJC model where intensity of the couplings de-
pends on the kth power of the number of left-handed quanta
n; [24,25].
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