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We exploit the nondissipative dynamics of a pair of electrons in a large square quantum dot to perform

singlet-triplet spin measurement through a single charge detection and show how this may be used for

entanglement swapping and teleportation. The method is also used to generate the Affleck-Kennedy-Lieb-

Tasaki ground state, a further resource for quantum computation. We justify, and derive analytic results

for, an effective charge-spin Hamiltonian which is valid over a wide range of parameters and agrees well

with exact numerical results of a realistic effective-mass model. Our analysis also indicates that the

method is robust to the choice of dot-size and initialization errors, as well as decoherence.
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Introduction.—Realizing quantum information and
computation tasks in solid state systems, particularly quan-
tum dots (QDs), has attracted a lot of interest in recent
years. Electron spins in QDs are promising candidates for
the physical implementation of a qubit [1] due to their long
coherence times [2]. Initialization, manipulation, and read-
out of electron spins have already been demonstrated [3,4]
and ideas exist for quantum gates based on single qubits
encoded in two QDs [5]. As it is timely for ‘‘proof of
principle’’ demonstrations of multiqubit processes, it
would be highly desirable to establish a coherent two qubit
process in a single quantum dot.

Bell measurement is a key ingredient that makes pos-
sible some important tasks such as teleportation [6] and
entanglement swapping [7]. In this Letter, we propose a
mechanism for singlet-triplet measurement based on the
coherent dynamics of two electrons in a large square QD,
followed by a single charge detection. Such spin filtering
will give a perfect Bell measurement in the Sz ¼ 0 sub-
space of two spins. This projection is made possible due to
the existence of a ground manifold of two singlets and two
triplets, separated from higher-lying states by a large en-
ergy gap. To a very good approximation this enables the
low-energy coherent dynamics to be confined to the ground
manifold in which the singlets rotate around the quantum
dot whereas the triplets are frozen at their initial locations.
By initializing the system in an unentangled superposition
state, we are then able to project onto a singlet or triplet
state simply by a charge measurement to detect whether or
not the charge has moved during the evolution. We use this
property to propose some quantum information applica-
tions such as entanglement swapping and generating the
Affleck-Kennedy-Lieb-Tasaki (AKLT) state, which is a re-
source for measurement-based quantum computation [8].

From a practical perspective a large square QD is easier
to fabricate than a small one and will also be modeled more
accurately by our effective Hamiltonian, since the energy
gap between the ground manifold and the lowest excited

states increases rapidly with dot size. On the other hand, as
the absolute sizes of the singlet-triplet splitting in the
ground manifold fall exponentially with dot size, large
QDs have slower operation times and are more susceptible
to errors. There is thus a trade-off between these factors,
favoring QDs of intermediate size. Our simulations show
that for square QDs of L ¼ 200–800 nm our effective
Hamiltonian is sufficiently accurate and operates at fre-
quencies within the range achieved in Ref. [9].
Effective Hamiltonian.—We consider a system of two

electrons held in a square semiconductor QD with a hard-
wall boundary, which can be realized in experiment by
gating a two-dimensional electron gas at a heterojunction
interface. The spectrum of this system is determined by the
competition between the kinetic energy (�1=L2) of the
electrons and the Coulomb repulsion (�1=L) between
them. In small QDs the kinetic term dominates, and the
charge density peaks at the center of the dot (like non-
interacting particles). Conversely in large dots, when the
Coulomb interaction dominates, the energy of the system is
minimized by the electrons localizing in space to minimize
the electrostatic interaction energy.
The square QD is modeled by

H ¼ �@
2

2m� ½r2
1 þr2

2� þ Vðr1Þ þ Vðr2Þ þ e2

4�"jr1 � r2j ;
(1)

where VðrÞ is the confining potential andm� is the electron
effective mass. We choose this to be hard wall with exact
square symmetry, though our results will not qualitatively
change under small deviations from perfect symmetry. The
last term in Eq. (1) represents the Coulomb repulsion
between the two electrons. In the strongly correlated re-
gime, in which the size of the square is large compared
with the effective Bohr radius aB (�10 nm in GaAs),
eigenstates of this simple Hamiltonian are extremely de-
manding to obtain exactly. We show in Fig. 1(a) the low-
lying energy spectrum of a GaAs QD with L ¼ 800 nm,
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obtained by diagonalizing the Hamiltonian of Eq. (1). We
see that two degenerate triplets (jni, n ¼ 3; 4; . . . ; 8) sit
approximately midway between two singlets (jS1ð2Þi),
while all these 8 states are separated from the next multi-
plet of eigenstates by a relatively large gap. The charge
distribution for the ground state jS1i is shown in Fig. 1(b),
and clearly shows how the charge density strongly peaks
near the corners of the QD. One can better appreciate the
form of the states by defining linear combinations of the
two singlets

j1i ¼ ðjS1i þ jS2iÞ=
ffiffiffi

2
p ¼ j�S

1ijc�i; (2)

j2i ¼ ðjS1i � jS2iÞ=
ffiffiffi

2
p ¼ j�S

2ijc�i; (3)

where jc�i ¼ ðj"#i � j#"iÞ= ffiffiffi

2
p

is the singlet spinor and
j�S

1ð2Þi is the symmetric spatial component of the two-

electron wave function. In Figs. 1(c) and 1(d) we plot the
charge distribution of these states, clearly showing how
they are localized at diagonally opposite corners of the QD.
For the triplets we adopt a similar labeling scheme

j3i¼ j�A
1 ijcþi; j4i¼ j�A

2 ijcþi; j5i¼ j�A
1 ij""i; (4)

j6i ¼ j�A
2 ij""i; j7i ¼ j�A

1 ij##i; j8i ¼ j�A
2 ij##i; (5)

where jcþi ¼ ðj"#i þ j#"iÞ= ffiffiffi

2
p

and j�A
1 i (j�A

2 i) is the
antisymmetric charge distribution, which resembles that
of the states j1i (j2i), being peaked at the same sites bd
(ac). Note that while the triplets jni (n ¼ 3; 4; . . . ; 8) are
eigenvectors of H, the singlets j1i and j2i are not.

We can immediately write down an effective
Hamiltonian for the low-lying energy eigenstates

Heff ¼ ��1jS1ihS1j þ�2jS2ihS2j þ E0

X

8

n¼1

jnihnj; (6)

where E0 is the energy of the two degenerate triplets and
�1 (�2) is the energy separation between the triplets and
jS1i (jS2i). By restricting ourselves to the ground manifold,
and using the sum rule

P8
n¼1 jnihnj ¼ I, the effective

Hamiltonian may be written in the charge-spin form

Heff ¼ E0I ��ðj1ih2j þ j2ih1jÞ þ Jðs1 � s2 � 1=4Þ; (7)

where J ¼ ð�2 � �1Þ=2 and � ¼ ð�1 þ �2Þ=2. This has
the simple physical interpretation that the Coulomb repul-
sion pushes the electrons to diagonally opposite corners,
giving two charge states for each combination of spin.
Dynamics.—We now consider the time evolution of two

electrons injected into the square dot so that one is located
near a and the other near c [as labeled in Fig. 1(b)]. This
could be achieved in principle using surface gates as shown
schematically in Fig. 2. Initially an electron is localized in
each of the small dots adjacent to the large dots. These
electrons are then transferred to the large dot by lowering
barriers using gates G1; G8 and G4; G5, which are subse-
quently restored to their previous potentials after electron
transfer has completed. If both electrons have the same
spin, i.e., total Sz ¼ �1, then this spin will not subse-
quently change with time under the coherent evolution of
the Hamiltonian (7) and the two electrons will therefore
remain close to their parent corners. However, if the two
injected electrons are of opposite spin, then the state after
injection will be an equal superposition of a singlet state
and an Sz ¼ 0 triplet state, which will subsequently change
with time. Let us consider the state in which a spin-up
electron is injected at corner a and a spin-down electron at
corner c. We may approximate this state by

jc ð0Þi ¼ j1iþ j3i
ffiffiffi

2
p ¼ j�S

1iþ j�A
1 i

ffiffiffi

2
p j"#i� j�S

1i� j�A
1 i

ffiffiffi

2
p j#"i:

(8)

Note that both components correspond to spin-up at a and
spin-down at c since �S

1 þ�A
1 � 0 except when r1 � ra,

r2 � rc and �S
1 ��A

1 � 0 except when r1 � rc, r2 � ra.
Hence this state is unentangled. Under the Hamiltonian (7),
the time evolution of jc ð0Þi can be determined analytically
as

jc ðtÞi¼e�iE0t

ffiffiffi

2
p ½eiJtðcosð�tÞj1iþ isinð�tÞj2iÞþj3i�; (9)

choosing units with @ ¼ 1. We see directly that at time
t� ¼ �=2�, for which sinðt��Þ ¼ 1, we have an equal
superposition of the states j2i and j3i. At time t�, therefore,
a simple single charge detection at any corner (let us say b)
will project jc ðt�Þi into a singlet (with the electrons in
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FIG. 1 (color online). Eigensystem of a GaAs dot with L ¼
800 nm. (a) The lowest two multiplets of states; singlets are
shown with solid (blue) lines, triplets with dashed (red) lines.
(b) Charge distribution of the ground state with peaks labeled
abcd near the dot corners. (c) Charge distribution of the sym-
metrized singlet state j1i, localized about bd. (d) Charge dis-
tribution of the antisymmetrized singlet state j2i, localized
about ac.
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corners b and d) or a triplet (with electrons remaining in
corners a and c). Hence, if we project the state into a
singlet then it oscillates between corners bd and ac.
Conversely, if we project it to the triplet then it is frozen
in the corners ac.

The probability of detecting the singlet state at time t,
starting in the Sz ¼ 0 subspace, is P2 ¼ jh2jc ðtÞij2 ¼
1
2 sin

2�t. Thus P2 oscillates harmonically with maximum

probability 1=2 but independently of the exchange, J. This
independence of J implies that our method of ‘‘filtering’’
the singlet by measurement is robust to the size of the dot,
for which the ratio J=� falls exponentially with increasing
dot size [10]. This is not the case for other overlaps. For
example, the probability of finding the initial state is
jhc ð0Þjc ðtÞij2 ¼ ð1þ cos2�tþ 2 cosJt cos�tÞ=4, which
shows that only for special cases (e.g., J ¼ 0) does the
system return to its starting state.

Applications.—The ability to make singlet-triplet mea-
surements enables entanglement swapping, or equiva-
lently, teleportation. To achieve these we generate two
singlet pairs outside a square QD as shown in Fig. 3(a).
These pairs may be generated via surface gates in a similar
fashion to those shown in Fig. 2 in which electrons are
transferred from the surrounding 2D electron gas reservoir.
The singlets are formed simply by cooling the system [4].
We then push one electron from each singlet pair into the
big square QD as shown in Fig. 3(b). We now have two
electrons in the corners a and c in the square QD, and after
time t� we measure the charge at one corner. With proba-
bility of 1=4, the state of the electrons in the square QD
collapses to a singlet at sites bd. In this case the two
remaining electrons in the small QDs get entangled as
another singlet, as shown in Fig. 3(c). This process is called
entanglement swapping (or the teleportation of entangle-
ment) and generates entanglement between distant parti-
cles. This scheme can be scaled up through a geometry
shown in Fig. 3(d) where a series of empty square QDs are
arranged between small QDs containing electron singlet
pairs. By pushing one electron from each small QD to its
neighboring square QD, one makes all small QDs empty
except the two which terminate the array, that each hold
one electron. Dynamical singlet-triplet measurement on all
the square QDs generates a singlet between the electrons

held in the terminating small dots when the result of all
measurements is singlet. The probability of having this is
ð1=4ÞN , where N is the number of square QDs.
When the result of measurement in Fig. 3(b) is a triplet,

rather than a singlet, we can generate the so-called AKLT
state [11]. Originally this was introduced as the ground
state of the AKLT Hamiltonian [11], which models the
interaction of a series of spin-1 particles with two spin-1=2
particles at the boundaries of a chain. The AKLT ground
state can be generated by again starting with a series of
spin-1=2 singlets in small QDs, but this time projecting two
particles of neighboring singlets into a triplet to represent
their spin-1 nature. This occurs with probability 3=4 when
the result of the measurement in Fig. 3(b) is a triplet. This
can also be scaled up with the geometry shown in Fig. 3(d),
where the probability of success is ð3=4ÞN that all square
QD states will be in a triplet state. The AKLT state can be
used as a resource for quantum computation [8].
Gate errors.—In any realistic situation these conditions

will not be met, and in particular the starting state of Eq. (8)
will contain small admixtures of the other states in the
ground manifold and excited singlet states. These admix-
tures will increase with decreasing dot size but should still
give small errors for L > 10aB, for example. We can derive
expressions for the fidelity starting with a more realistic

state, j ~c ð0Þi. This could be produced, for example, by
applying a positive potential to gates located near the sites
a and c. In the numerical calculations, this was modeled by
dividing the square dot into four quadrants and applying a
constant positive potential to the two diagonally opposite
quadrants that contain the corners a and c. In this scheme
setting the gating potential to 0.1 V yields values for the

overlap h ~c ð0Þjc ð0Þi of 0.80, 0.940, and 0.97 for QDs of
L ¼ 200, 800, and 1200 nm, respectively, which are rea-
sonably close to unity, and could be enhanced further by
using more elaborate gating potentials. We may derive an
expression for the fidelity with this more realistic initial

state by expanding j ~c ð0Þi in terms of jc ð0Þi, ðj1i � j3iÞ ffiffiffi

2
p

FIG. 2 (color online). Gate structure for a large QD (central
shaded square), connected to two smaller QDs (pink circles).

FIG. 3 (color online). (a) Two small QDs, with a singlet pair in
each, beside a large square QD (dashed lines denote entangle-
ment); (b) one electron from each singlet is pushed into the
square QD; (c) entanglement swapping; (d) scaling up the
system.
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and the remaining eigenstates of the full effective-
mass Hamiltonian. After time evolution and projection

onto j2i we obtain Pe
2 ¼ jh2j ~c ðtÞij2 ¼ ð� sin�tÞ2 �

2�� sinJt sin�tþ �2, where � ¼ h1j ~c ð0Þi and � ¼
h2j ~c ð0Þi. Note that Pe

2 is independent of excited states,
and since j�j2 � 1=2, j�j2 � 0, it is robust to gate errors.
This is illustrated in Table I where we see only small
deviations from the ideal P2, even for the smallest dot of
L ¼ 100 nm.

Charge measurement.—Typical values of t� being of the
order of nanoseconds for our parameters (see Table I), are
challenging to measure directly in experiment. For practi-
cal implementation, we propose a similar scheme to
Ref. [9], which is able to achieve an acceptable time
resolution. At the moment of measurement we restore the
quadrant gate potentials (used previously to initialize the
system) to freeze the dynamics of the electrons. A strong
charge measurement at one of the corners of the QD can
then be made to project the state into a singlet or triplet.

Charge dephasing.—Charge dephasing reduces the co-
herence between j1i and j2i in Eq. (9), but since our
measurement projects onto these states anyway, it does
not fundamentally affect our scheme. By damping the
sinusoidal oscillations between j1i and j2i, charge dephas-
ing also reduces P2ðt�Þ ¼ jh2jc ðt�Þij2 such that in the
extreme case of very strong decoherence it goes to 1=4.
In this case if j2i is detected successfully the scheme is
completed as before, giving entanglement swapping.
Otherwise, we end up with a superposition of j1i and j3i,
as in the initial state (except for the amplitude of j1i being
reduced), which again undergoes damped oscillations. By
repeating this process one can reliably (with exponential
improvement according to number of trials) discriminate
between singlets and triplets in the initial state. However,
due to our fast dynamics this extreme case is very unlikely.
As an example, for L ¼ 400 nm we have t� ¼ 0:3 ns,
which is safely below the dephasing time T2 � 1–2 ns in
a system with comparable size [9].

Hyperfine interaction.—This can be estimated by replac-
ing the effect of the nuclei with an effective magnetic field
~B coupled to the electron spin asHh ¼ g�B

~B � ~�, where ~�

are the Pauli matrices. ~B has a Gaussian random distribu-

tion with a variance Bn [2]. Because of the fast evolution,
the first maximum of P2ðtÞ is relatively unaffected for
typical energy values of Ehf ¼ g�BBn, given in Table I.

As an example, for L ¼ 400 nm (t� ¼ 0:3 ns), the deco-
herence time scale of hyperfine interaction is 10.7 ns.
Conclusions.—We have shown that the dynamics of a

pair of electrons in a large square QD can be used to
perform singlet-triplet spin measurement using just a
single charge detection. This is accessible to current tech-
nology and, unlike previous schemes, it is fast, determinis-
tic, and coherent. Repeating the singlet-triplet measure-
ment to a chain enables entanglement swap over a distance
and the generation of the AKLT state in a way that would
enable proof of principle quantum information experi-
ments. Furthermore, coherent evolution of the system is
considerably faster than the dephasing time T2 imposed by
the hyperfine interaction. Our low-energy analytic descrip-
tion is valid for a wide range of parameters, particularly for
typical experimental values of the QD parameters.
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