Supplemental Material for "Local disorder and structure relation induced by

magnetic exchange interactions in A₂(Mo_{1-y}Mn_y)₂O₇ pyrochlores"

C. Castellano^{1,*}, M. Scavini¹, G. Berti², F. Rubio-Marcos^{3,4}, G. Lamura⁵, S. Sanna⁶, E. Salas-Colera^{7,8,9}, Á. Muñoz-Noval¹⁰, M. R. Cimberle⁵, F. Demartin¹

¹ Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, 20133 Milano, Italy

² Institut National de la Recherche Scientifique, Centre Énergie Matériaux Télécommunication, 1650 Boulevard Lionel-Boulet, Varennes (Québec) J3X 1S2 Canada

³ Electroceramic Department, Instituto de Cerámica y Vidrio, CSIC, Kelsen 5, 28049 Madrid, Spain

⁴ Escuela Politécnica Superior. Universidad Antonio de Nebrija, Pirineos 55, 28040, Madrid, Spain

⁵ CNR-SPIN, c/o Dipartimento di Fisica, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy

⁶ Department of Physics and Astronomy, University of Bologna, 40127 Bologna, Italy

⁷ Instituto de Ciencia de Materiales de Madrid, ICMM, CSIC, Sor Juana Inés de la Cruz 3, 28049, Cantoblanco, Madrid, Spain

⁸ Spanish CRG BM25 SpLine, ESRF 71 Avenue des Martyrs CS 40220 FR - 38043 Grenoble, France

⁹ Departamento de Física, Universidad Carlos III de Madrid (UC3M), Av. de la Universidad 30, 28911, Leganés, Madrid, Spain

¹⁰ Departamento de Física de Materiales, Facultad de CC. Físicas, Universidad Complutense de Madrid, Pza. de Ciencias, 1 - 28040 Madrid, Spain

*Corresponding author. E-mail address: carlo.castellano@unimi.it

S1. An essential determination of the A₂(Mo_{1-y}Mn_y)₂O₇ pyrochlore compounds by XRD: effect on the

crystal structure induced by the manganese partial substitution

Fig.S1. XRPD pattern of sample $Gd_2(Mo_{0.90}Mn_{0.10})_2O_7$ collected at 30 K. Measured (black crosses) and calculated (red curves) intensities *I* are reported as well as the residuals (blue curves). The insert highlights the high angle (2 θ) region of the pattern.

Sample	$Gd_2Mo_2O_7$	$Gd_2(Mo_{0.90}Mn_{0.10})_2O_7$	$Ho_2Mo_2O_7$	$Ho_2(Mo_{0.90}Mn_{0.10})_2O_7$
Phase	$Gd_2Mo_2O_7$	$Gd_2(Mo_{0.90}Mn_{0.10})_2O_7$	$Ho_2Mo_2O_7$	$Ho_2(Mo_{0.90}Mn_{0.10})_2O_7$
Space Group	Fd-3m	Fd-3m	Fd-3m	Fd-3m
a/ Å	10.35702(5)	10.31757(8)	10.26902(7)	10.20400(9)
X _{O1}	0.3364(9)	0.3368(9)	0.339(1)	0.3363(9)
WF (%)	100	86.6(1)	100	82.8(1)
Phase		$Gd_5Mo_2O_{12}$		Ho ₅ Mo ₂ O ₁₂
Space Group		<i>C</i> 2/ <i>m</i>		<i>C</i> 2/ <i>m</i>
a		12.4272(9)		12.2426(7)
b		5.7649(5)		5.7033(6)
c		7.6044(5)		7.4861(4)
β		107.94(1)		107.95(1)
WF (%)		13.4(1)		17.2(1)
Uave/Å ²	0.0047(2)	0.0066(2)	0.0094(2)	0.0121(2)
R _p	0.140	0.135	0.170	0.121

Table S1: Refined structural parameters of patterns collected at 10K.

Figure S2a-b reports the X-ray powder diffraction patterns of the samples considered in the present manuscript, i.e., $A_2(Mo_{1-y}Mn_y)_2O_7$ with $A = Ho^{3+}$, and Gd^{3+} and y = 0.00, 0.05 and 0.10, respectively. In all cases, X-Ray diffraction data indicate that all samples take the pyrochlore face-centered cubic (*fcc*) structure, space group $Fd\overline{3}m$ [1].

Samples with A = Gd, y = 0.00, 0.03 and 0.05 are single phase, while in the y = 0.10 solid solution some additional peaks appear; the two most intense among them are in the 27.5-29° range. In the Ho series, the undoped and the y = 0.03 compounds are single phase and very tiny peaks (just above the experimental resolution) appear in the same region in the y = 0.05 sample and grow up in the y = 0.10 sample. In both Gd and Ho cases the additional phase is isostructural to monoclinic $Y_5Mo_2O_{12}$, space group C2/m [2]. The structure of this latter phase is briefly discussed in the main text. The weight fractions (WF) of the impurity phase for y = 0.10 samples are reported in Table S1. As to the A = Ho, y = 0.05 sample, the WF of Ho₅Mo₂O₁₂, as calculated by Rietveld refinement of the pattern reported in Fig.S2, is 3.6(2)%.

In order to provide evidence effect on the crystal structure induced by the manganese partial substitution, we retained as a quantitative parameter the structural distortion, using the lattice parameter "*a*". As shown in Figure S2c, the samples display an evolution of their lattice constants with both the concentration and ionic radii of the different rare earth *A*. Over the composition range examined, their lattice constants decrease with increasing manganese content, see Figure S2c. The introduction of the smaller Mn ions (r_{Mn}^{4+} : 0.53 Å, r_{Mo}^{4+} : 0.65 Å, for 6-fold coordination) [3] progressively reduces the lattice constants in the *A*₂(Mo_{1-y}Mn_y)₂O₇ system,

and even this small variation can induce a distortion in the material average. In the same way, the diffraction peaks progressively shift to a lower diffraction angle with the rare earth ionic radius (r_{Ho}^{3+} : 1.072 Å, r_{Gd}^{3+} : 1.107 Å, for 9-fold coordination) [3], as shown in the inserts of the Figs. S2a-b.

The continuous lattice parameters shrinking in both A = Gd and Ho compounds, shown in Figure S2c, testifies that the appearance of a spurious phase does not correspond to a saturation of Mn concentration in the pyrochlore phase. Moreover, in the y = 0.10 sample the T_C and T_f transitions have a consistent trend with that of the other samples and no anomalies attributable to impurities are identified.

Fig. S2. Structural Characterization of the $A_2(Mo_{1-y}Mn_y)_2O_7$ pyrochlore compounds by X-ray diffraction: XRD patterns corresponding to the $A_2(Mo_{1-y}Mn_y)_2O_7$ series where A is Ho³⁺ (**a**) and Gd³⁺ (**b**) as a function of y. On the right of each panel, the insert represents a detail of the XRD diffraction pattern in the 2 θ range 29.5° to 30.5°, corresponding to the (222) peaks of the cubic symmetry. (**c**) Evolution of the lattice parameter "*a*" as a function of the Mn⁴⁺ content for Ho³⁺ and Gd³⁺ ions.

Supplementary References

- [1] J. S. Gardner, M. J. P. Gingras, J. E. Greedan, Rev. Mod. Phys. 82 (2010) 53.
- [2] C. C. Torardi, C. Fecketter, W. H. McCarroll and F.J. Disalvi. J. Sol. State Chem. 60 (1985) 332.
- [3] R.D. Shannon, Acta Cryst 1976 A32:751–767.