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A B S T R A C T

Numerical simulations for a number of water models have supported the possibility of a metastable liquid-liq-
uid critical point (LLCP) in the deep supercooled region. Here we consider a theoretical model for a super-
cooled liquid water monolayer and its mathematical mapping onto a percolation problem. The mapping allows
us to identify the finite-size clusters at any state-point, and the infinite cluster at the critical point, with the
regions of correlated hydrogen bonds (HBs). We show that the percolation line coincides with the first-order
liquid-liquid phase transition ending at the LLCP. At pressures below the LLCP, the percolation line corre-
sponds to the strong maxima of the thermodynamic response functions and to the locus of maximum correla-
tion length (Widom line). At higher pressures, we find a percolation transition with a positive slope and we
discuss its possible relation with the thermodynamics.

© 2019.

1. Introduction

A fundamental feature of water molecules is their capability to
form hydrogen bonds (HBs) [1]. In the liquid phase the HBs organize
in a quasi-tetrahedral network that is continuously built up and broken
on timescales of picoseconds [2]. Although there is scientific consen-
sus about the relevance of the HBs for the anomalous properties of wa-
ter, the consequences of the HB peculiar properties on the supercooled
water phase diagram are under debate since decades [3-30]. In bulk
water near freezing each molecule minimize the free energy by favor-
ing a hydration shell made of four tetrahedral H-bonded molecules.
For decreasing temperature T, this mechanism leads to increasing fluc-
tuations in volume ⟨V2⟩ and in energy ⟨E2⟩– associated to the isother-
mal compressibility KT and the isobaric specific heat CP, respectively
– and to increasing cross-fluctuations in volume and energy, related to
the isobaric thermal expansion coefficient αP. The thermodynamics re-
sponse functions KT and CP increase below 46 and 35°C, respectively,
while αP becomes negative below 4°C and increases in absolute value
[31-34]. However, their largest increase occur in the supercooled re-
gion, below the melting line, where water can be liquid down to tem-
peratures between −46 and −42°C, approximately [35-37]. Similar re-
sults have been observed at negative pressure and moderate supercool-
ing [38].

* Corresponding author.
Email addresses: vabianco@ucm.es (V. Bianco); gfranzese@ub.edu (G. Franzese)

The rapid increase of the fluctuations has suggested the possible
existence of a divergency at approximately −45°C [33], below or near
the experimental limit at which the present technology allows us to
probe the metastable liquid [35-37]. This possibility has been sup-
ported by the seminal work of Poole et al. in 1992, in which the exis-
tence of a liquid-liquid critical point (LLCP) in the deep supercooled
regime was suggested based on numerical simulations of the ST2
model [6], one of the many atomistic models for water. The LLCP hy-
pothesis since then has been corroborated by a series of theoretical and
experimental results [13,18, 19,26,39–48], although different scenar-
ios are still under debate [10,13,49–51]. One of them [16,51] recently
was invalidated due to conceptual errors at its origin [29,30], while an-
other [49] was found in a colloidal model [24], but does not seem to
be compatible with recent experimental data for water [36,38].

The LLCP scenario hypothesizes the existence of a first order
phase transition line separating two metastable liquid phases, the
high-density liquid (HDL) at higher pressures and temperatures, and
the low-density liquid (LDL) at lower pressures and temperatures.
The presence of a critical point (CP) would imply the existence of
the Widom line [8,9,52,53], that emanates from the CP and is the lo-
cus in the T–P plane where the statistical correlation length ξ has a
maximum. The Widom line is calculated along the constant thermal
field [52,53] and not necessarily coincides with the maxima of KT, CP
or αP [54], neither represents a unique thermodynamic separatrix of
the supercritical region [55]. A detailed definition of the Widom line
is presented in Appendix A. The ξ maximum along the Widom line in-
creases approaching the CP and diverges at the CP.

https://doi.org/10.1016/j.molliq.2019.04.090
0167-7322/ © 2019.
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Nonetheless, no experiment so far have found a direct evidence of
the LLCP in supercooled water. The reason is that the LLCP, if pre-
sent in bulk water, should occur where the lifetime of the metastable
liquid is too short for being probed with the present experimental tech-
niques. Therefore, different strategies have been developed to perform
experiments that could help us in establishing if the LLCP occurs in
bulk water. Among them water solutions [56] or mixtures [57] have
been used, as well as water under confinement [58].

However, confinement-dependent effects on the LLCP are difficult
to predict without detailed studies. In the following we study the case
of a supercooled single layer of water confined in two-dimensional
geometry. To this goal, we investigate a coarse-grain water model by
means of a percolation mapping that allow us to identify the critical
region of the system.

Such a description is based on a mathematical mapping devel-
oped by Kasteleyn and Fortuin [59], and Coniglio et al. [60]–namely
the site-bond correlated percolation–between physical and geometric
properties [59-69] which guarantees that the correlation length ξ sta-
tistically coincides with the connectivity length ξc, i.e. the average size
of the cluster.

A few works studying the percolation region in the super-critical
liquid water have been published so far [70-73]. They are based on
a definition of a cluster as a contiguous region of H-bonded mole-
cules. As we will describe in the next sections, this definition provides
an overestimation of the region of statistically correlated molecules
and cannot be strictly related to the thermodynamic behavior of wa-
ter. Indeed, the T–P locus of the percolation transition and its nature
change according to the definition of cluster of molecules, which is
in principle arbitrary. For example, it is possible to define a cluster as
the contiguous region of molecules whose distance is below a given
threshold, or as the contiguous region of molecules bonded via HB,
etc. Each definition is rational and identifies a specific feature of the
system, but none of them is in principle related to the size ξ over which
the statistical fluctuations of the degrees of freedom spread. On the
other hand, the Kasteleyn-Fortuin/Coniglio-Klein approach (described
in Section 3.2), allows to define a probability p that two degrees of
freedom belong to the same cluster, in such a way that the critical ther-
modynamic behavior is preserved in the percolation description or, in
other words, that the clusters have a characteristic length-scale (con-
nectivity length) that coincides with ξ.

Here, hence, we characterize the formation of the HB network in
relation with the clusters of correlated water molecules. According to
the T and P conditions, we compute the mean cluster-size and clus-
ter-size distribution, identifying the critical region where the clusters
span all over the system and mark the onset of a percolation transition.
We show how the percolation transition is associated to the building
up of the ordered HB network, although with different mechanisms at
higher and lower pressures. Finally, we discuss the low-P percolation
transition in relation to the Widom line in supercooled water.

2. The FS model for a water monolayer

We adopt the many-body model for a water monolayer introduced
in 2002 by Franzese and Stanley (FS) [74,75] that has been shown
to reproduce, at least qualitatively, many of the water properties
[13,14,44,76–89]. When the many-body interaction is zero the FS
model coincides with the model introduced in Ref. [50] by Sastry
et al. The monolayer is kept between parallel walls at sub-nanome-
ter distance, h= 0.5nm, with purely repulsive (excluded volume) hy-
drophobic interaction, allowing deep supercooling and high pressur

ization, avoiding crystallization, consistent with simulations and ex-
periments [90-93].

We consider the model in the Gibbs ensemble, keeping the number
N of molecules, the pressure P and the temperature T fixed. Therefore,
the volume V changes according to the equation of state and fluctu-
ates when we perform our Monte Carlo simulations. Assuming that
the density is homogenous, this implies that the (average) distance r
between the molecules changes with P and T. We partition the system
into cells whose volume coincides with the (average) volume occu-
pied by each molecules. Hence, by construction, each cell has the size
equal to the inter-molecule distance r and the cell's size changes with
P and T. Because we consider here a monolayer, we adopt a square
partition, whose coordination number coincides with the number of
HBs that each molecule forms at low temperature. In three dimensions
other partitions are more appropriate [94].

To reduce the number of degrees of freedom of the system, in ac-
cordance with FS, we coarse grain the molecules translational coor-
dinates as follows. By construction each cell includes always a wa-
ter molecule and its volume v is at least equal to the van der Waals
volume v0 of the molecule. Hence, v0/v is the cell density in van der
Waals units. We associate an index ni = 0 if v0/v ≤ 0.5. For our choice
of geometry and parameters ( with r0 ≃ 2.9 van der Waals di-
ameter), it is ni = 0 when maximum O O
elongation of a straight HB as calculated by ab initio molecular dy-
namics simulations from the proton-transfer coordinate [95], assum-
ing a covalent distance O H ≃1 Å. Therefore, a cell with ni = 0 can-
not form HBs, although it includes a molecule. On the other hand, we
associate to the cell an index ni = 1 if v0/v > 0.5, i.e. r ≤ rmax, and the
molecule in it can form HBs. Hence, the index ni is a discretized den-
sity field that marks if the molecule i can, or cannot, form HBs. If we
consider that all the HBs are formed in the liquid phase, then ni = 1 is
associated to a liquid-like density, and ni = 0 to a gas-like density, re-
calling a lattice-gas model for argon-like systems. Hence, in the liquid
phase, all the indices ni are equal to 1, while they are all 0 in the gas
phase. Therefore, the average ⟨ni⟩= ni does not play the role of an or-
der parameter as in the lattice-gas model. Instead, here the order pa-
rameter for the liquid-gas transition is associated to the total density,
that, as the total volume, is a continuous function of P and T.

Furthermore, water unlike argon and other usual liquids, has HBs.
Following FS, we assume that all the possible heterogeneities of water
are due to the HBs. When water forms HBs within its hydration shell,
its coordination number reduces to 4, in an almost perfectly tetrahedral
configuration. In this fully-bonded configuration the volume per mol-
ecule is larger than in configurations with larger coordination number,
because the volume occupied by the hydration shell as a whole is not
changing in a sensible way, while the number of molecules in it does
change [96]. This can be represented, approximately, by associating a
proper volume vHB to each new HB – the larger the number of HBs
in the system, the better the approximation. We choose vHB/v0 = 0.5,
equal to the average volume increase between high-ρ ices VI and VIII
and low-ρ (tetrahedral) ice Ih.

As a consequence, since the number N of molecules is fixed, the
total volume Vtot occupied by the system increases linearly with the
number of HBs, NHB, i.e.,

where V ≡ Nv is the volume without HBs. Despite V is homoge-
neously distributed among the N water molecules, the number of HBs

(1)
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changes among molecules, giving rise to local heterogeneities in the
density field.

The Hamiltonian of the FS model is given by

The first term, summed over all the water molecules i and j at O
O distance rij, is given by a truncated Lennard-Jones (LJ) model

where ϵ ≡ 5.8kJ/mol, close to the estimate based on isoelectronic
molecules at optimal separation ≃5.5kJ/mol [97]. The potential U(r)
takes into account the van der Walls (dispersive) attraction and hard
core (electron) repulsion between water molecules. As already noted,
the formation of HBs, does not affect the volume occupied by the
full-bonded hydration shell, but only the number of molecules in-
cluded in it. Therefore, the distance r between the molecules is not
modified by the HBs [96]. Hence, the van der Waals interaction is not
affected by the HBs1. Because in the FS model r is a continuous vari-
able, it is appropriate to represent the van der Waals interaction with
a LJ model. We truncate the LJ potential at large distances, as usu-
ally done in continuous models for numerical efficiency, and also at
short distance. In particular, we replace the repulsive power 122 with a
hard-core at the van der Waals diameter. Our previous analysis show
that both truncations do not affect the results and simplify the imple-
mentation of the model [98]. The truncated LJ potential drives the liq-
uid-gas phase transition. It plays a fundamental role in the vicinity of
the liquid-gas spinodal and is the only relevant interaction for temper-
atures above the spinodal temperature. Without this term the model
would not reproduce correctly the fluid phases of water.

The second term in Eq. (2) represents the short-range, directional,
covalent [99] component of the HB, with J/4ϵ= 0.5, i.e. J ≃ 11kJ/mol,
close to the estimate of this energy constant that can be derived from
the optimal HB energy and a HB cluster analysis [13]. Here

the number of HBs, is the sum over nearest neighbors (n.n.) pairs of
water molecules i and j at a distance r ≤ rmax [100,101] (i.e., with
ninj = 1) and in the same bonding state (δσij,σji = 1), where σij = 1,…,q
is the bonding variable of molecule i facing the n.n. molecule j, with
δab = 1 if a= b, 0 otherwise.

The bonding variables are introduced to account correctly for the
variation of entropy and energy associated to the formation or break-
ing of a HB, as explained in the following. If two n.n. molecules i and

1 We acknowledge discussion with the late Prof. David Chandler for noticing that
this point is crucial to state that the FS model is not mean field.
2 While the power 6 of the LJ model can be derived from first principle
calculations, the power 12 is arbitrary.

j form a HB, the system energy decreases by − J and the system en-
tropy decreases by − kBlnq (kB is the Boltzmann constant) because
both molecules have bonding variables in the same state, σij =σji. Each
molecule has 4 bonding variables, one for each possible HB, and q4

possible bonding configurations. The HB between two oxygens is bro-
ken if , or , as estimated from Debye-Waller
factors [101,102]. Therefore, only 1/6 of the entire range of possible
orientations [0,360°] in the OH O plane is associated to a bonded
state, and each HB formation leads to an entropy decrease equal to
− kBln6. Therefore, by choosing q= 6 we guarantee the correct HB de-
finition and entropy loss.

The third term in Eq. (2) accounts for the HB cooperativity due to
O–O–O correlation, that in bulk leads the molecules toward an ordered
tetrahedral configuration [96]. Such an effect originates from quantum
many-body interactions of the HB [103,104]. The number of coopera-
tive pairs of bonding variables in the system is

where, for each molecule i, (l,k)i indicates each of the six different
pairs of the four indexes σij of the molecule.

Therefore, the enthalpy of the system can be written as

where Jeff ≡ J − PvHB is the effective interaction between σ-variables
of n.n. molecules that depends on P and , where rij is
a function of : rij = r if i and j are n.n., if i and
j are next n.n., etc. In the NPT ensemble the partition function of the
system is

where the sum is over all the possible configurations of bonding vari-
ables {σ} and cell volumes {v}. Eq. (7) can be rewritten as

where

where ∏⟨i,j⟩ runs over all the n.n. molecules j of the molecule i,
runs over all molecules and extends over all the six pairs of
bonding variables of a specific molecule i.

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)



UN
CO

RR
EC

TE
D

PR
OO

F

4 Journal of Molecular Liquids xxx (xxxx) xxx-xxx

In the following we set Jσ/4ϵ= 0.05, i.e. Jσ ≃ 1kJ/mol, in such
a way that, for each molecule whose bonding configuration changes
from three bonding variables in the same state to four (adding a co-
operative HB), the energy decreases by − 3Jσ ≃−3kJ/mol. This value
is consistent with the energy decrease of −3kJ/mol [105] of each HB
observed in ice Ih with respect to liquid water, in the reasonable hy-
pothesis that this energy change is entirely attributed to the HB coop-
erativity [13,106]. Our choice of the model parameters, with Jσ ≪ J,
guarantees an asymmetry between the two components of the HB in-
teraction, such that bonding variables can organize cooperatively only
if each single HB is formed. From here on we express T and P in in-
ternal units, 4ϵ/kB and 4ϵ/v0 respectively.

3. Site-bond correlated percolation

3.1. Percolation mapping

The percolation theory studies the connectivity properties of clus-
ters defined on a d-dimensional lattice. We talk of site or bond per-
colation depending on whether the clusters are made of n.n. vertices
or links of the lattice, respectively, that have been randomly occupied
with a probability p. For each lattice size L, the smallest value of p at
which there is 50% probability of finding at least a cluster spanning
the entire lattice is indicated as p*. The thermodynamic limit p*(L →∞)
≡ pc is called the percolation threshold.

The theory shows that the percolation on large lattices displays a
second-order phase transition where p is the control field and the or-
der parameter is the probability for an arbitrary lattice site to be-
long to the percolating cluster [107,108]. The percolation transition is
characterized by critical exponents for p → pc, in analogy with ther-
modynamic second-order phase transitions where p is replaced by the
thermal field [107-109].

In order to recover the behavior of a fluid near the liquid-gas (LG)
critical point, Fisher listed [110] the properties that the “right” clus-
ters (droplet) must have in order to represent thermodynamically cor-
related regions [107,111]: i) an infinite droplets is formed only at the
critical point; ii) the order parameter of the phase transition is related
to the size of the infinite droplet; iii) the compressibility (or suscep-
tibility for magnetic systems) of the order parameter is proportional
to the mean cluster-size; iv) the thermodynamic correlation length ξ,
quantifying the spatial extent of thermal fluctuations, is proportional
to the average radius of the clusters, i.e. the connectivity length ξc.

The “right” cluster definition for Ising-like systems was proposed
in the 1970s by Kasteleyn and Fortuin (KF). They shown that it is pos-
sible to map a ferromagnetic Potts model onto a corresponding per-
colating model [59,61]. Later, Coniglio and Klein (CK) [60,62] intro-
duced the “random site-correlated bond” percolation (site-bond corre-
lated percolation, for short) to prove the equivalence between the ther-
modynamic and percolation critical behavior. The CK approach is at
the base of the “Cluster Monte Carlo” dynamics introduced by Swend-
sen and Wang (SW) [112], representing a major improvement in our
ability to generate equilibrium configurations near a critical point and
at lower temperatures [113].

3.2. Site-bond correlated percolation for the FS model

Following the KF and CK approaches, we map the physical sys-
tem onto a site-bond correlated percolation model where bonds are
set between n.n. variables σ with a probability that depends on their
state, their interaction, P and T, defining clusters of thermodynam-
ically correlated degrees of freedom. Because in the FS model the
σ-variables can interact with two coupling constants—J, between n.n.

molecules, and Jσ, within the same molecule—we define two proba-
bilities functions—pJ and pJσ, respectively—to set bonds between, and
within, molecules. In order to find the functional forms for such prob-
abilities in the condensed phase, we observe that the σ-part of the par-
tition function, Eq. (9) in the liquid phase, where is ni = 1∀i, reduces to

We now introduce the cluster definition and show how the partition
function can be equally expressed as a sum over all possible clusters
associated to a given configuration σ [114]. Following CK, we define
a cluster C as a region of variables connected through fictitious bonds.
The bonds do not affect the interaction energy but are introduced to
define the connectivity between the variables [115].

In our coarse-grain model the degrees of freedom that are relevant
for the HB formation are the variables σ. We therefore, perform the
percolation mapping on the part of the partition function that depends
on the bonding variables σ,Z{σ}.

For sake of simplicity, let's assume that we have only Jσ interac-
tions. Then we will generalize to the case including also J interactions.
We put fictitious bonds on Jσ interactions with probability

between two σ-variables in the same state and define a cluster as max-
imal set of σ-variables connected by bonds. We call these bonds bJσ.
We will show now that the definition in Eq. (11) allows us to map the
thermodynamic model into the percolation model.

First we observe that for a given configuration {σ} we have sev-
eral bond configurations that are “compatible” with {σ}, i.e. such that
the fictitious bonds are set only between σ-variables in the same state.
Let's call C one of these bond configurations, |C| the number of bonds
in the configuration C, |B| the number of “missing” bonds, i.e. the
number of couples of σ-variables in the same state without a bond, |D|
the number of couples of n.n. σ-variables in different states (Fig. 1).

If we fix the configuration {σ}, then |D| is fixed and

where is the total number of n.n. pairs of σ-variables in the system.
Therefore, for a given configuration {σ} is

because

(10)

(11)

(12)

(13)
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Fig. 1. (a) Schematic drawing of the water model. The green lines identify the cell partition, containing a single water molecule. The molecule degrees of freedom are represented
by four bonding variables σ, shown as white circles. Each variable σ can assume up to q= 6 different states (the numbers shown in each circle). The directional and cooperative
interactions, with coupling constants J and Jσ, between variables in the same state are shown as red and black links, respectively, while interactions between variables in different
states are not shown for sake of clarity. (b) Schematic drawing of the percolation mapping. All the σ belonging to the same cluster are depicted with the same color, and connected
with “fictitious” bonds. The fictitious bonds, shown with dotted lines, are set between two n.n. σ in the same state with probability pJ or pJσ (given by Eqs. (20) and (11), respectively),
according to the J or Jσ interaction. At finite T n.n. σ-variables in the same state have a finite probability to be disconnected and to belong to different clusters. In the example, n.n.
σ-variables in the same state (e.g., 4 in the lower left) belongs to different clusters (colored in different colors), and the configuration has |A| = 19, |B| = 5, |C| = 5, |D| = 14, ,
|AJ| = 5, |BJ| = 0, |CJ| = 7, |DJ| = 5, , N(C) = 12. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

for the Newton binomial. Therefore, we can write

where

is the weight associated to the σ-variables configurations {σ} together
with the compatible bond configuration C.

If we set

when {σ} and C are not compatible, then we can write

where now the ∑ C is done over all the bond configurations, indepen-
dent of their compatibility with {σ}.

For n.n. σ-variables

therefore,

where |A|≡|B| + |D| and

takes into account the constraint on the compatibility of {σ} and C.
If N(C) is the number of clusters in the bond configuration C, the

number of configurations {σ} compatible with C is qN(C), since every
cluster can have only q states with all the σ-variables equals. There-
fore, summing over {σ} in Eq. (16) and taking into account Eqs. (17)
and (12), we have

In the case in which we consider also J interactions, we set ficti-
tious bonds, called bJ, between n.n. σ-variables interacting with J cou-
pling with probability

(14)

(15)

(16)

(17)

(18)

(19)
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and, generalizing the previous discussion and the notation in a
straightforward way (Fig. 1), we can rewrite Eq. (10) as

where the cluster configuration C includes bonds of both type J and
Jσ. This expression of the partition function depends only on percola-
tion quantities, completing the mapping between the thermodynamic
system and the percolation problem.

Therefore, the mapping into the site-bond correlated percolation
does not change the partition function of the model and its free en-
ergy. Furthermore, following FK/CK [59-62], it can be shown that this
definition satisfies the Fisher's conditions for the “right” clusters, giv-
ing a geometric representation of the thermodynamic droplets. As al-
ready mentioned, this observation allows us to adopt the well know
SW Cluster Monte Carlo dynamics [112,116] that is able to generate
equilibrium configurations in a very efficient way near phase transi-
tions, where other Monte Carlo dynamics slow down and freeze [113].

4. Results

4.1. The thermodynamic behavior

Based on the percolation description of the system it is possible to
implement a cluster Monte Carlo algorithms [113,116] allowing faster
equilibration in the deep supercooled region. In each Monte Carlo
(MC) step we generate a cluster of fictitious bonds following the pre-
scription of KF-CK-SW, with all the variables σij of the cluster in the
same state by construction. Next, we change at random the σ state of
the entire cluster, whose average linear dimension ξc is related to the
correlation length ξ. Hence, approaching to a critical point, where ξ
becomes as large as the system size, the update involves a number of
HBs of the order of the entire system, allowing a fast decorrelation of
the new configurations and a more efficient MC sampling of indepen-
dent configurations at equilibrium. This efficiency strongly contrasts
with the critical slowing down that the local dynamics, such as Me-
tropolis or Heat-Bath [113], suffer near a critical point due to the in-
crease of the correlation length ξ.

In the following we consider systems with increasing sizes, from
N = 2.5× 103 up to N = 160× 103 water molecules, with periodic bound-
ary conditions. We perform annealing simulations at constant P adopt-
ing the Cluster MC algorithm described above, following
Refs. [44,80].

In particular, our previous finite-size analysis of the model [44]
shown that the system is consistent with a thermodynamic LLCP
for PCv0/(4ϵ) ≃ 0.555 ± 0.002 and TCkB/(4ϵ) ≃ 0.0597 ± 0.0001
with respect to a mixed-field order parameter M=ρ* + b′u* [117-119],
given by a linear combination of number density ρ*≡ ρv0 and en-
ergy density u*≡ E/(4ϵN), where b′ is the mixing-coefficient defined
in Appendix A, with b′= 0.25 ± 0.03 for the explored range of system

sizes3. Such a critical point represents the ending point of a first or-
der phase transition line with a negative slope in the P-T plane, sepa-
rating two metastable liquid phases, the HDL at higher P and T, and
the LDL at lower P and T. Starting from the LLCP we found a line
of maxima of ξ that extends toward negative pressures until reach-
ing the stability limit of the stretched liquid. Following the defini-
tion given in Appendix A we identified this line of ξ-maxima as the
Widom line [44].

4.2. Percolation probability

The size s of a cluster is defined as the number of σ variables be-
longing to it. In Fig. 2 we show an example of clusters configuration
for a specific σ-variables configuration. The occurrence of a percola-
tion transition is marked by the appearance of an infinite cluster span-
ning the entire system, i.e. a cluster with a linear size ξc compara-
ble or equal to the system's size (Fig. 3). The probability that an arbi-
trary σ-variable is part of a finite cluster of size s is , where
4Nns is the average number of finite clusters of size s , i.e. the frac-
tion of σ-variables that belong to clusters of size s. Therefore, the
probability that an arbitrary σ-variable belongs to any finite cluster is

, and its probability to belong to the infinite cluster, i.e.
the percolation probability for any σ-variable, is [107]

The quantity represents the order parameter for the percolation
transition, with when there is no percolation and
otherwise (Fig. 4a). For finite systems increases rapidly near the
percolation transition, with a larger slope for larger systems (finite size
effect, Fig. 4b–d). By convention, for any finite size the percolation
threshold is at the thermodynamic point where .

Our numerical findings reveal the occurrence of a percolation tran-
sition in all the range of simulated pressures. According to we
can distinguish at least three regions4. The first region corresponds
to , where the percolation transition is sharp, becom-
ing sharper for larger N, with an evident finite-size effect for N <
25.6× 103 (Fig. 4b). The second region is for 0.6 < Pv0/(4ϵ) < 1, where

increases sharply at the percolation threshold and the finite-size
effect is weaker than at lower P, being more evident only for N <
10× 103 (Fig. 4c). The third region corresponds to Pv0/(4ϵ) > 1, where
the percolation transition is smoother for any system size N (Fig. 4d).

Our analysis reveals two percolation lines in the thermodynamic
plane (T,P) emanating from the state point (0,1), expressed in units
4ϵ/kB and 4ϵ/v0, respectively (Fig. 5). The first line, for Pv0/(4ϵ) < 1,
has a negative slope that decreases for decreasing P and increasing T,
becoming almost T-independent for sufficiently low P. This percola-
tion line coincides, according to the previous analysis [44], with the
first-order LLPT for , while for it
coincides with the locus of strong maxima of CP, KT and thermal ex-
pansivity αP [120]. Furthermore, in Ref. [44] we shown that the locus
of strong maxima of the response functions is also where the thermo

3 This definition of the order parameter, as shown in Refs. [117-119], allows to
recover the Isigin-like symmetry of the order parameter distribution, at the critical
point, between the ordered and the disordered phases.
4 This separation in three regions is reinforced by the analysis of the cluster-size
distribution presented elsewhere.

(20)

(21)

(22)
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Fig. 2. (a) A typical configuration of σ variables for N = 104 water molecules for Pv0/(4ϵ) = 0.6 and TkB/(4ϵ)= 0.058. The state point is close to the LLCP at PCv0/(4ϵ) ≃ 0.555 ± 0.002
and TCkB/(4ϵ) ≃ 0.0597 ± 0.0001 [44]. In the high resolution image, σ variables are represented by points and HBs by lines. There are six colors, one for each of the six possible σ
states. (b) A possible cluster configuration of correlated σ variables. From the configuration in panel (a), we select only those variables in the yellow states (all the others are rep-
resented here in black) and among them, according to the probabilities in Eqs. (11) and (20), we build the clusters of correlated variables, representing each separate cluster with a
different color. The resulting clusters have different sizes s, each representing a thermodynamically correlated region of H-bonded water molecules. All the clusters in panel (b) are
finite. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

dynamic correlation length ξ of the HBs has a maximum. Hence, the
percolation line at low P corresponds to the Widom line.

The second percolation line is observed for Pv0/(4ϵ) > 1 and has
a positive slope that increases for increasing P and T (Fig. 5). It co-
incides approximately with the thermodynamic locus of weak max-
ima of CP along isotherms that we found at high P [44]. As we have
shown [44], this locus coincides also with that of weak maxima of KT
along isobars and with that of weak minima of αP along isotherms,
consistent with similar lines found in other models with the LLCP
[52,121–123].

5. Discussion

5.1. Hydrogen bond network and the percolation line

For our choice of parameters and , i.e. for P such that
Jσ≲Jeff, the percolation line marks the threshold for the formation of
a network of correlated HBs. In this range of pressures, the number
of HBs, NHB, increases monotonically and saturates to its maximum
value upon cooling [84]. The increase is smooth at low P and becomes
sharper approaching Pv0/(4ϵ) = 1 (Fig. 6).

Mazza et al. shown that in this range of P the number of coopera-
tive HBs, i.e. those HBs that become correlated, sharply increases at
TkB/(4ϵ) ≃ 0.05, with a locus of maximum-derivative that coincides
with (i) the LLPT at P > PC, (ii) the LLCP at the critical pressure, and
(iii) the locus of strong maxima of KT (indicated as in Ref. [84])
at P < PC. Here, these loci coincide with the percolation threshold for
Pv0/(4ϵ) ≤ 1 (Fig. 5), as we discuss next.

For P < PC, the HB network is gradually formed and the per-
colation threshold occurs when the system is highly H-bonded, i.e.

(Fig. 6). Nevertheless, at T above the percolation
line the clusters of H-bonded molecules are made of isolated HBs, i.e.
the clusters are made, mainly, of bJ bonds on J interactions. On the
other hand, at T below the percolation line these clusters coalesce into
clusters that span the entire system as a consequence of the setting of

a macroscopic number of bJσ bonds on Jσ interactions. This setting
implies local rearrangements of the σ-variables toward more ordered
configurations under the action of the Jσ interactions, i.e. a local re-
ordering of the HB network due to the many-body interaction among
the water molecules. The local reordering of the molecules does not
affect the density of the system, but involves large fluctuations in en-
ergy and entropy. As a consequence, the percolation line coincides
with the loci of strong maxima in isobaric specific heat, isothermal
compressibility and isobaric heat expansion coefficient previously re-
ported in Refs. [44,84].

The comparison of the percolation line for Pv0/(4ϵ) < 1 (Fig. 5)
with the locus of maxima of ξ, reported in Fig. 6a, b of Ref. [44], re-
veals that both loci coincides within the numerical error. Hence, this
confirms that our percolation mapping is capable to capture the statis-
tical fluctuations of the water molecules

The mapping between the percolation problem and the thermody-
namic system strictly holds only at a critical transition, because the
cluster definition assumes a diverging correlation length at the per-
colation threshold. Therefore, from the percolation mapping we can
draw useful conclusions for the thermodynamic system only along the
critical isobar. Nevertheless, the coincidence of the percolation line
with the LLPT, above PC, and the loci of strong fluctuations, below
PC, shows that the clusters of correlated HBs play a role in a large
range of pressures, even if their spanning is not associated to critical
fluctuations of thermodynamic quantities.

This observation reconciles two classes of thermodynamic scenar-
ios that have been debated as possible explanations of the anomalous
water behavior. The first class assumes the occurrence of a LLPT
and includes two scenarios: the LLCP-scenario [6] and the LLCP-free
scenario [10]. The second class includes the singularity-free sce-
nario [50] that can be interpreted assuming a percolation behav-
ior [124,125]. Here, as in Refs. [124,125], the correlation length ξ in-
creases as T decreases as a consequence of the increasing size of clus-
ters made of correlated water molecules. However, the correlated per-
colation approach presented here is different from the one proposed
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Fig. 3. Cluster configurations of correlated σ-variables for N = 104 water molecules at the critical isobar PCv0/(4ϵ) ≃ 0.555. As in Fig. 2, clusters can have six different states (colors).
Data are for: (a) TkB/(4ϵ) = 0.058360 (slightly above the percolation threshold); (b) 0.058354 (percolation threshold for the finite system, close to the LLCP temperature extrapolated
for an infinite system TCkB/(4ϵ) ≃ 0.0597 [44]); (c) 0.058340 (slightly below the percolation threshold); (d) 0.057000. At the percolation threshold (b) we observe a cluster (turquoise)
spanning the system from one side to the opposite, while above (a) and below the threshold (c, d) finite clusters are much smaller than the linear size of the system. Below the
percolation threshold (c, d) there is always an infinite cluster (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

in the “polychromatic correlated-site percolation” [124,125], in which
tiny “patches”, made of water molecules with all HBs formed, are of
lower density than the rest of the HB network and give rise to anom-
alous density fluctuations. Furthermore, here we give the bond proba-
bility as an explicit function of T and P, while in Refs. [124,125] the
authors give only qualitative relation between the percolation quanti-
ties and the thermodynamic observables, leaving the determination of
the functional form to the experiments.

5.2. The percolation at extremely high P

We find a percolation line, for our choice of parameters, also for
Pv0/(4ϵ) > 1 (Fig. 5). At these pressures the percolation line is charac

terized by a smoother change in the order parameter (Fig. 4d). The
HB formation is enthalpically unfavoured, because Pv0 > J and Jeff <
0. Hence, a decrease of T induces HBs breaking with a decrease of
NHB (Fig. 6).

Nevertheless, Jσ > 0, hence the four σ-variable of the same water
molecule assume the same state at low T, maximizing the probability
to set bonds bJσ. At the same time, Jeff < 0 induces different σ-states
on n.n. water molecules. Under these conditions the bonds bJ have
the maximum probability when the σ-variables have different states.
Hence, at Pv0/(4ϵ) > 1 the clusters are made of anticorrelated water
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Fig. 4. (a) Percolating probability , for N = 104 water molecules, along isobars for − 0.5 ≤ Pv0/(4ϵ) ≤ 1.5 and 0 ≤ TkB/(4ϵ) ≤ 0.08, corresponding to the supercooled region of liquid
water, from stretched water (negative pressure) to very high pressures (Pv0/(4ϵ) > 1). The color code along lines represents the value of . Each line joins ∼ 150 simulated state
points for each value of P, with a statistic of ∼ 105 independent configurations. Finite size effect for for N between 2.5× 103 (black circles) and 108.9× 103 (orange left triangles)
as function of T for (b) Pv0/(4ϵ)= 0.3, (c) Pv0/(4ϵ) = 0.9, (d) Pv0/(4ϵ) = 1.5. In each panel, P and T are expressed in units of v0/(4ϵ) and kB/(4ϵ), respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

molecules. It can be shown5 that under these conditions the percola-
tion belongs to the class of the random-bond percolation [107] and
that its percolation temperature increases for Pv0/(4ϵ) > 1 as long as
|Jeff| < Jσ, i.e. up to Pv0/(4ϵ) ≃ 1.1, consistent with our finding (Fig. 5).

Interestingly, this random-bond percolation line could be identi-
fied with the “Kertész line” or “Coniglio-Klein line” [126,127] ex-
tending from a percolation critical point at T = 0 and Pv0/(4ϵ) = 1 up

5 Evidences will be provided elsewhere.

to P = ∞. It is still under debate if the Kertész line corresponds to
a specific thermodynamic locus or not. For example, it has been
proposed that this line exists in the supercritical phase of a simple
fluid [128,129] and is related to the locus where vanishes the surface
tension of droplets made of the denser fluid.

Finally, it is worth noting that the possibility of the presence of a
second critical point in liquid supercooled water, at higher P and lower
T with respect the LLCP, has been predicted by Strekalova et al. [81]
in the case of water confined in a disordered matrix of hydrophobic
nano-particles. Such a second CP could coincide with the critical per-
colation point at T = 0 and Pv0/(4ϵ)= 1.
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Fig. 5. Percolation lines in the T–P plane, for N = 104, compared with the LLPT and
the Widom line calculated with thermodynamic analysis in Ref. [44]. The yellow circle
identifies the thermodynamic LLCP and the continuous black line at negative P is the
liquid-gas spinodal. T and P are in units of 4ϵ/kB and 4ϵ/v0, respectively. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 6. Number of HB NHB, normalized to its maximum per molecule
, as function of T along isobars for N = 104 water molecules. Black lines join simu-
lated state points (≃ 150 for each isobar). The magenta circles mark the percolation
temperature along the isobars. The blue and red lines emphasize the NHB along the
isobars Pv0/(4ϵ) = 0.5 and 1.0, respectively. Pressures are, from top to bottom, from
Pv0/(4ϵ) = −0.60 to 1.55 in steps of 0.05, apart from one extra isobar at Pv0/(4ϵ) = 0.975.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

6. Conclusions

In this work we present a percolation study for a supercooled
water monolayer adopting a many-body water model that has the
LLCP [44,74,75]. The geometrical description of the system is based
on the KF-CK-SW mathematical mapping [130] of the correlated
site-bond percolation that allows us to compute clusters of correlated
degrees of freedom along the critical isobar of the LLCP. In such a
way, at PC (i) the average size of a cluster coincides with the thermo-
dynamically correlated regions, (ii) the cluster connectivity length ξC
coincides with the thermodynamical correlation length ξ, and (iii) the
percolation set of critical exponents belongs to the same universality
class of the thermodynamic critical exponents.

The percolation description can be extended to any P, although the
mapping with the thermodynamically correlated regions at P≠PC is
not exact. The discrepancy comes from the fact that the percolation
phenomena is critical, by construction, at any P, while the thermody-
namic system not necessarily is. Hence at any P we always reach a
percolation threshold with a diverging ξC, even where ξ is not critical.
Nevertheless, the percolation approach reveals interesting results not
only at PC.

In particular, we find a line of percolation transitions, with negative
slope in the P–T plane, that starts at Pv0/(4ϵ) = 1 and T = 0 and extends
up to the liquid-gas spinodal at negative pressures and T > 0. This
line coincides with the loci of strong extrema of the specific heat CP,
compressibility KT and thermal expansivity αP, as resulting from pre-
vious thermodynamic analysis [44,84]. For pressures above PCv0/(4ϵ)
≃ 0.6 and below Pv0/(4ϵ)= 1, the percolation transition coincides with
the thermodynamic LLPT separating two liquids with different energy
and density [13,44,84].

Near PC the critical behavior of the site-bond correlated clusters is
consistent with our thermodynamic analysis [44] and the appearance
of the spanning cluster corresponds to a cooperative reorganization of
the network of correlated HBs. At lower pressures, Pv0/(4ϵ) ≲ 0.5,
we observe the coincidence of the percolation line with the Widom
line estimated from the direct calculation of isobaric maxima of ξ [44].
Hence, at low pressures the cluster size increases more than the corre-
lated regions, because ξC diverges while ξ only has a maximum mark-
ing the Widom line.

Furthermore, a modified version of the model for the water mono-
layer, developed by Vilanova and Franzese and including crystal
phases and water polymorphism[131,132], reveals the occurrence of a
hexatic phase separated from the liquid by a critical line in the deep
supercooled region. This finding has been confirmed by molecular dy-
namic simulations of an atomistic model for a bilayer of water [133].
It is, therefore, interesting to analyze if the percolation transition could
be eventually related to the hexatic critical line at low P in the ex-
tended model. We are currently investigating this possibility.

Our percolation approach leads, instead, to a different description
at pressures above the LLPT. Emanating from the state point at T = 0
and Pv0/(4ϵ) = 1, we find a percolation line with positive slope, extend-
ing up to infinite pressure, in the P–T plane. This line is characterized
by a smooth percolation transition as in the random-bond percolation
and approximately corresponds to the loci of weak extrema found for
KT, CP and αP at these pressures in this model [44], consistent with
similar lines found in other models with the LLCP [52,121–123].

An intriguing hypothesis is that this percolation line at Pv0/(4ϵ)
> 1 could be identified with the Kertész line [126], emanating from
the percolation point at T = 0 and Pv0/(4ϵ)= 1. Similar lines have been
observed in the Ising model around the Curie point and in Lennard
Jones systems around the LG critical point [111]. Such line, that in our
model marks the decrease of the number of HBs, NHB, at very high
pressure, could be related to the locus where vanishes the surface ten-
sion of droplets made of the denser fluid [128,129]. Further investi-
gation, beyond the scope of this work, is necessary to understand this
possibility.
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Appendix A.

According to the scaling theory, and following Refs. [52,53], the
critical behavior of a fluid can be described in terms of two inde-
pendent scaling fields: the ordering (strong) field h1 and the thermal
(weak) field h2 and the Widom line is identified as the locus in the T-P
plane where ξ has a maximum, calculated/measured along the path
h2 = constant.

This can be seen by considering that a generalized expression for
the free energy is given by the scaling field h3, depending on h1 and
h2, that close to the critical point is

where α, β and γ, related to each other by the scaling relation
α+ 2β+ γ= 2, are the critical exponents characteristic of the universal-
ity class to which the fluid belongs. The superscript ± of the analytical
scaling function f± refer to h2 > 0 and h2 < 0, respectively.

The critical phase transition is described by two scaling densities,
associated to the fields h1 and h2: the ordering density (order parame-
ter) ϕ1 and the thermal density ϕ2

The variation of the scaling densities with respect to the scaling
fields define the “susceptibilities” of the fluid

respectively known as strong susceptibility, weak susceptibility and
cross susceptibility. For a liquid system, the thermodynamic response
functions experimentally accessible are i) the isothermal compressibil-
ity KT ≡−(1/⟨V ⟩)(∂⟨V ⟩/∂P)T, ii) the isobaric coefficient of thermal
expansion αP ≡ (1/⟨V ⟩)(∂⟨V ⟩/∂T)P and iii) the isobaric specific heat
CP ≡ (∂⟨H⟩/∂T)P. In the previous expressions the symbol ⟨…⟩ refers
to the thermodynamic average, V, P, T, and H refer to the volume,
pressure, temperature and enthalpy of the system respectively, with H
≡ E + PV, where is the E energy. The quantities KT, αP and CP can
be expressed as linear combination of the susceptibilities χ1, χ2 and
χ12. Note that the generalized susceptibilities χ1 and χ2, rather than the
response functions KT and CP, are expected to diverge approaching
to the critical point with the characteristic exponents γ and α respec-
tively.

At the critical point all the scaling fields vanishes

while the coexistence line is given by

Eq. (27) defines also a locus that emanates from the critical point into
the supercritical region as analytical continuation of the coexistence
line. Such locus is, by definition, the Widom line. The line h1 = 0 cor-
responds, by construction, also to the line of maxima of the statistical
correlation length of the system ξ. Indeed, it corresponds to the locus
where the ordering field vanishes, allowing the fluctuations to spread
over broader distances.

According to Holten et al. [53], in the vicinity of the liquid-liquid
critical point (Tc,Pc), the scaling fields h1 and h2 can be expressed as
linear combination of the physical fields P and T

where

with Vc the critical volume and R the gas universal constant. The co-
efficient of Eq. (28) is the slope in the T–P plane of the
coexistence line (or Widom line) at the critical point, while the coef-
ficient b′ is the mixing-coefficient of the mixed-field order parameter
that accounts for the lack of symmetry in the critical density distribu-
tion [44,117].
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