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Universality Classes and
Information-Theoretic Measures of
Complexity via Group Entropies

Piergiulio Tempesta®? & Henrik Jeldtoft Jensen®?3**

We introduce a class of information measures based on group entropies, allowing us to describe the
information-theoretical properties of complex systems. These entropic measures are nonadditive, and
are mathematically deduced from a series of natural axioms. In addition, we require extensivity in order
to ensure that our information measures are meaningful. The entropic measures proposed are suitably
defined for describing universality classes of complex systems, each characterized by a specific state
space growth rate function.

A New Perspective on Complexity

The aim of this paper is to propose a general theoretical construction that allows us to associate a given class of
complex systems with a suitable information measure adapted to this class, and expressed by an entropic func-
tional mathematically deduced from a set of axioms, belonging to the family of group entropies'~>.

The main idea behind our approach is simple. In a broad range of applications, including physical and social
sciences, economics and neurosciences, it is customary to use information measures based on the additive
Shannon entropy (and its quantum version, the von Neumann entropy). Standard and useful indicators of com-
plexity commonly adopted in the literature are indeed the mutual information or the relative entropy.

However, instead of using an information entropic measure defined a priori, and based on a (sometimes not
fully justified) assumption about additivity, one may proceed differently. We propose to look for new information
measures, written in terms of entropic functionals that are designed according to the specific properties of the
system, or family of systems, under consideration.

To this aim, we shall prove a theorem that allows us to associate with a given universality class of systems a spe-
cific entropic measure, constructed in a completely algorithmic way. This measure is extensive and non-additive,
and it depends explicitly on the state space growth rate function which characterizes the universality class con-
sidered. From a mathematical point of view, the derivation of each of these entropic measures is a direct conse-
quence of an axiomatic approach, based on formal group theory. Using the group-theoretical entropic measures
so defined, we shall construct a new family of information-theoretical measures of complexity.

The deep insights represented by the Tononi-Edelman-Spons Integrated Information concept is traditionally
formulated mathematically in terms of sums of conditioned entropies of partitions of the considered system, in
particular the human brain. However this mathematical representation does suffer from limitations*. The group
theoretic entropies introduced in the present paper offer an alternative mathematical implementation of the orig-
inal TES idea, without the need of introducing conditioning. We explain below how a new complexity measure
based on group entropies can be useful to characterize the degree of entanglement of brain dynamics and, more-
over gives a way to compute the capacity of a neuronal network of a certain size. In Sec. 5.2 we formulate this as a
precise mathematical conjecture.

A Group-Theoretical Approach to Information Theory: Group Entropies

Since the work of Boltzmann, perhaps the most relevant problem of statistical mechanics has been the study of the
connections between the statistical properties of a complex system at a microscopic level, and the corresponding
macroscopic thermodynamic properties.
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The probabilistic point of view of Boltzmann, further developed by Gibbs, Planck and many others, was ques-
tioned from the very beginning by Einstein. As is well known, Einstein argued that probabilities must follow
dynamics, and not vice versa. In other words, the frequency of occupation of the different regions of state space
should not be given a priori, but determined from the equations of motion. A conciliation between these two
points of view is still an unsolved problem: as surmised by Cohen®, a combination of statistics and dynamics is
perhaps a necessary way out to describe the statistical mechanics of a complex system.

In this perspective, it is quite natural to hypothesize that the geometry of the state space associated with a
given complex system plays a crucial role in the characterization of its main information-theoretical, dynamical
and statistical features.

In this paper we shall try to shed new light on this aspect. We shall adopt in some sense an “intermediate”
point of view: Indeed, instead of focusing on the dynamics of a specific system, we can consider universality
classes of systems, defined in the following way.

Let us denote by W = W(N) the state space growth rate (also called “phase space growth rate”) of a given
system, i.e. the function describing asymptotically the number of allowed microstates as a function of the number
of particles N. Since we are interested essentially in the large N limit, we can always think of W(N') as an integer
number (i.e. we shall identify it with its integer part) for any choice of W. A universality class of systems is defined
to be the set of all possible systems sharing the same growth rate function W = W(N). For instance, many physi-
cal systems will be associated with an occupation law of the form W(N) = kN, k > 1. Other natural choices are,
for instance, W(N) = N®and W(N) = N!. Generally speaking, we can partition all possible universality classes
into three families: the subexponential, the exponential or the super-exponential family depending on whether the
ratio W(N)/e™ ~ ¢ € R,0o0ro0in the large N limit, respectively. A priori, in each of these three families there are
infinitely many classes, although, not necessarily realized in terms of known complex systems. In particular, for
the super-exponential class, we shall present the explicit example of the pairing model®, which is a generalization
of the Ising model where the creation of “pairs” is allowed. This entails that the system possesses many more
degrees of freedom with respect to the standard case.

We will show that by means of a group-theoretical approach, given any universality class of systems one can
construct in a purely deductive and axiomatic way an entropic functional representing a suitable information
measure for that class.

This approach is clearly inspired by the research on generalized entropies that in the last few decades captured
a considerable interest. In particular, we will use the notion of group entropies, introduced in', and settled in
general terms in*? (see also” for a recent review). Essentially, a group entropy is a generalized entropy that has
associated a group law, which describes how to compose the entropy when we merge two independent systems
into a new one.

Said more formally, the physical origin of the group theoretical structure relies on the axiomatic formulation
of the notion of entropy due to Shannon and Khinchin. The first three Shannon-Khinchin axioms®!° represent
fundamental, non-negotiable requirements that an entropy S[p] should satisfy to be physically meaningful.
Essentially, they amount to the following properties:

(SK1) S[p] is continuous with respect to all variables P s Py (SK2) S[p] takes its maximum value over the
uniform distribution. (SK3) S[p] is expansible: adding an event of zero probability does not affect the value of S[p].

However, although necessary, these properties are still not sufficient for thermodynamical purposes. Indeed,
we need another crucial ingredient: composability’!. In*?, this property has been reformulated and related to
group theory as follows.

The Composability Axiom

An entropy is said to be composable if there exists a function ®(x, y) such that, given two statistically independent
subsystems A and B of a complex system, S(A x B) = ®(S(A), S(B)), when the two subsystems are defined over
any arbitrary probability distribution of %,,. In addition, we shall require that:

(Cl) Symmetry: ®(x,y) = ®(y, x). (C2) Associativity: ®(x, D(y, z)) = D(P(x, y), z). (C3)
Null-Composability: ®(x, 0) = x.

Observe that the requirements (C1)-(C3) are fundamental ones: they impose the independence of the compo-
sition process with respect to the order of A and B, the possibility of composing three independent subsystems in
an arbitrary way, and the requirement that, when composing a system with another one having zero entropy, the
total entropy remains unchanged. In our opinion, these properties are also “non-negotiable”: indeed, no thermo-
dynamics would be easily conceivable without these properties. From a mathematical point of view, the properties
above define a group law. In this respect, the theory of formal groups'>~!* offers a natural language in order to
formulate the theory of generalized entropies. Notice that the above construction define a full group, since the
existence of a power series ¢(x) such that ®(x, ¢(x)) = 0 (i.e. the “inverse”) is a consequence of the previous axi-
oms™*. Let {p},_, . y» W > 1, with 3"}V p = 1, be a discrete probability distribution; the set of all discrete
probability dlStrlbuthIlS with W entries w111 be denoted by %,

Definition 1. A group entropy is a function S: P, € R* U {0} which satisfies the axioms (SK1)-(SK3) and the
composability axiom.
For recent applications of the notion of group entropy in Information Geometry and the theory of diver-

gences'®, seel”.
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Results
The extensivity requirement. Our approach is crucially based on the following extensivity assumption.
Requirement [ER]. Given an isolated system in its most disordered state (the uniform distribution), the amount
of its disorder increases proportionally to the number N of its constituents.
In other words, we shall require that, if S is an information measure of order/disorder for that system, we must
have S(N)/N = const. A weaker condition, suitable for macroscopic systems, is the asymptotic condition

S(N)

Lo = const.
N=< N (1)

lim
We stress that in this paper we are not considering thermodynamics, but a purely information-theoretical context.
We shall assume the extensivity requirement and construct entropic information measuresbased on group entro-
pies, namely a class of generalised entropies constructed axiomatically from group theory.

For entropic functionals, the requirement ER is intimately related with thermodynamic extensivity. Indeed, a
fundamental requirement, pointed out already by Clausius, is that thermodynamic entropy, as a function of N,
must grow linearly in N in the thermodynamic limit when N — oo. It is immediately seen from the classical
relation § = k,ln W, valid in the case of equal probabilities, that Boltzmann’s entropy is extensive for the univer-
sality class W(N) ~ k™, which typically contains ergodic systems. However, the Shannon entropy
S=-xV \p; In p, may not be extensive over other universality classes. Therefore, in order to satisfy the ER, it
appears clear that new entropic functionals should be found.

A crucial problem emerges naturally: given a complex system, how can one associate with it a meaningful
information measure? This is the main question we address in this paper. We will prove that, surprisingly, there is
a possible answer, simple and deductive.

Our main result is indeed the following: For any universality class of systems there exists a related information
measure satisfying the axioms (SK1)-(SK3), the composability axiom and requirement ER.

Consequently, we shall propose a deductive construction of a group entropy associated with a given universal-
ity class. At the heart of this construction, there is a very simple idea: an admissible entropic information measure
possesses an intrinsic group-theoretical structure, responsible of essentially all the properties of the considered
entropy. This structure, provided by a specific group law, comes from the idea of allowing the composition of
statistically independent systems in a logically consistent way in the case of independent systems (see also'® for a
related discussion).

A dual construction of entropies. LetG(t) = Z;:ilaktki be a real analytic function, where {a;}, . a real
sequence, with @, = 1, such that the function S;: 2, — R* | {0}, defined by

w
Sy s Py)i= D> p, G
i=1 (2)

is a concave one. This function is the universal-group entropy. The two most known examples of entropies of this

>

In 1
p;

q—1
Essentially all the entropic functionals known in the literature are irectly related with the class (2). The compos-
ability axiom widely generalizes the fourth Shannon-Khinchin axiom. Needless to say, when ®(x, y) = x + y, we
get back the original version of the axiom (SK4), which states the additivity of the Boltzmann entropy with respect
to the composition of two statistically independent subsystems. For ®(x, y) = x + y + (1 — q)xy, we have the
composition law of §, entropy, and so on.

The composability property, if required for any choice of the probability distributions allowed to A and B, is a
nontrivial one. A theorem proved in? states indeed that in the class of trace-form entropies only the entropies Sg;
and S, are composable (uniqueness theorem).

However, the remaining cases can be at most weakly composable: the group law ®(x, y) is defined at least over
the uniform distribution. This case is especially important for thermodynamics, but it is not sufficient to cover
many other physical situations.

The above discussion motivates the study of a family of entropies which are not in the trace-form class. In?, the
family of Z-entropies has been introduced. They generalize both the Boltzmann and the Rényi entropies and are
strongly composable.

An important result of formal group theory, states that there exists a power series of the form
G(t)=t+ (12/2t2 + ... such that, given a power series ®(x, y) that satisfies the properties (C1)-(C3), it can be
represented in the form (See SM)

W
class are the Boltzmann-Gibbs entropy Sy;[p] = ¥1¥ pln ;) and the Tsallis entropy §, = Lot Sty

D(x, y) = GG (%) + G (). 3
The general form of the non-trace-form entropies we wish to consider is given by
In 62 ")

ZG,a(pl’ tee pw) = 71 "o > (4)

where Ing(x):= G(In (x)) is a generalised logarithm and c is a real parameter. When 0 < a < 1, the Z;, , entropy
is concave; when « > 0, is Schur-concave. Precisely, a generalised group logarithm is a continuous, concave, mono-
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tonically increasing function In;: R — R, possibly depending on a set of real parameters, satisfying a functional
equation (a group law). It can be considered to be a deformation of the standard Neperian logarithm (See SM).
Throughout this paper, we shall put the Boltzmann constantk,, = 1.

The main reconstruction theorem: From state space to group entropies. The following theorem
formalizes in a rigorous way, completes and unifies several prior ideas already presented in a heuristic way in
previous papers of ours*”. However the main result is new: a direct formula simply expressing a group entropy as
a function of the state space growth rate. Here we shall replace N with a continuous variable x, which interpolates
the discrete values of N. Also, we shall introduce a sufficiently regular interpolating function %"~ = # (x), such
that W(x)|,_y = WN). In other words, #(x) is a “continuous version” of the state space growth rate. For the
purposes of this article, from now on we shall also require that # is a monotonic, strictly increasing function of
class C'(R™), taking positive values over R*. Hereafter, W will denote the integer part of %~ (Usually, in the litera-
ture W(N) and #" (V) are identified for simplicity of notation. For large values of N, the discrepancy between the
two values is numerically very small).

Theorem 1. Let # be a state space growth function, corresponding to a given universality class of statis-
tical systems. Then there exists a unique entropy in the Z-class which satisfies the extensivity requirement.

This entropy is given by
1 IR 4
Z6aPrs s Pyy) = W[W [(Zp o | = (1)], 5
witha > 0and it is assumed (%) (1) = 0.
Proof. Let us assume that the asymptotic behaviour of Z; ,(p), for large values of N, is given by
Zg ol (N)] = AN + (6)

for suitable constants A and p (which a priori could depend on thermodynamic variables, but not on N). This
condition obviously implies extensivity, namely Eq. (1). The more general form (6), which also includes the con-
stant 4 is introduced for further convenience.

Any generalised logarithm is represented in the form (see SM)

Ing(x) = G(In x), (7)
for an invertible function G, whose behaviour around zero is given by
G(t) = t + O(t?) (®)
which also implies the property
G(0) = 0. (9)

This function is the “group exponential” that defines the composition law of the entropy by means of relation (3).
Therefore from Egs. (4), (6), we obtain

Gn #'(N)' ™) = (1 — @)AN + T, (10)

whereI" = (1 — «)u is another constant. Hence the relation between the state space growth rate and the group
exponential is explicitly given by

1

o ¢Ma—a)AN+T] ) T-o
“IV(N)f(e ) . an

Let
Fim In W(N) ™ o N = % Yeiza).
We obtain from Eq. (10)
G(t) = M1 — o)W NeToa) + T,
which implies, using relation (9)
GO) = " 1)+T=0<T=—-k1-a7 Q).

Consequently we get
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Gt) = A1 — a)[w-l(eﬁ) _ w/—lm]_ .

In order to fix the constant A, it is sufficient to observe that the condition (8) implies that
- 1
(rHa)

where by assumption (%71 (1) = 0. In other words, the group exponential can be uniquely determined by the
specific choice of a universality class of systems.
From the explicit expression of this function we can reconstruct the entropy we are looking for:

(37" ") 1 AW »
Z, = =1 = W N—a | — W .
GulP] l1-a ("/V*l)/(l)[ ((Zi:lpl 2 ) (1)]

(13)

The constant appearing in the r.h.s. of the previous formula guarantees that the entropy vanishes over
a “certainty state”, namely for a distribution where 3isuch that p. = 1,p. = 0, = i.
i j

Observe that fora > 1, then Z; [p]is still a non-negative function.
The case v — 1is admissible and interesting by itself, and leads us to

1

= W(W‘_l(eXP(SBG[P]) — ),

Zg ilp]

where Sp;[p] is the Boltzmann-Gibbs entropy. To conclude the proof, one can ascertain that since Z [p] is the
composition of a strictly increasing function with a function which is strictly Schur-concave for & > 0, then it is
still strictly Schur concave in the same interval (see e.g.,?! page 89 and®?). This property is sufficient for satisfying
the maximum entropy axiom. []

Remark 1. The entropy Z; , can also be expressed up to a multiplicative constant, in the form

1 ,
Z Py - Py) = K wl (ZKJP,-")FG — W1) |, which does not require the condition (# ") (1) = 0. This

formulation is consistent with the possibility of changing the units of thermodynamic quantities.

Remark 2. In many applications, the growth function W is convex in its domain. Then the resulting Z, ,[p] in
particular is concave in a suitable finite interval of values of « > 0, as in the general construction of>. When dealing
with different regularity properties, for instance in the case of complex systems whose number of degrees of freedom

is monotonically decreasing as a function of the number N of particles, the previous construction should be properly
modified.

The group-theoretical structure associated with W(N). ~ By construction, the following important property holds.
Proposition 1. Let #~ = # (x) be a state space growth function. The corresponding entropy Zg , (5) is strictly com-
posable, namely

ZG,{I(A X B) = (b(ZG,l)’(A)’ ZG,()(B))

for all complex systems A itand B, where the group law ®(x, y) associated can be written in terms of #~ as

_ =1 x -1 1Y 1 oyl
6(x, y) = A{w W[A o (1)]%[A bW (1)]] w (1)}, ”
1

RN
Proof. Let us introduce the function

where )\ =

1
x(x): = :G((l — a)x), (15)

where G(¢) is given in Eq. (12). We observe that
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G

o (=)
1 -«
G[h‘ (Zmp,»")”)] i (5())
1 -«
GG (1 = ) Zgup))) + 671 = ) Zg ()

1 -«

Zs oA U B)

®(Zg,(A)s Zg o(B))

where ®(x, y) = xOx '(x) + x_l(y)). Substituting the expression (15) of x(x) we arrive at formula (14).

Universality classes and group entropies.  An interesting question should be addressed, namely the uniqueness
of the entropies defined by means of the previous construction. Certainly, we can derive other, more complicated
group entropies with similar properties. Precisely, some theorems proved in?* and!” show the existence of a new,
huge class of group entropies obtained by combining group entropies, of the general form

Z(p): = C(&(p)s > $i(P))s (16)

where S;(p) are group entropies and (: R’ — R is a suitable function. In particular, given a group-theoretical
structure, one can associate with it a family of group entropies sharing the same group structure.

However, the univariate representative (4) presents the advantage to be the “simplest” functional form within
the “orbit” of a given group structure. At the same time, the Z-family defined in Eq. (4) is, in a sense, complete:
indeed, as we have just proved under mild hypotheses, for a given universality class there exists a representative
in the Z-family playing the role of admissible entropy. Therefore, Theorem 1 solves completely the problem of
determining an entropy suitable for an arbitrary universality class. It represent a conceptually and practical pow-
erful tool for constructing infinitely many new entropic functionals (all of them group entropies) tailored for
complex systems, emerging from very different contexts: physics, social sciences, etc. Rather than an “universal
entropy’, valid for any possible complex system, we have, what may be considered more reasonable, a specific
entropy, unique in the Z-class, for each given universality class of systems. Different classes of entropies corre-
spond to sub-exponential, exponential and super-exponential state space growth rates W(N) were discussed in’.

In this respect, we point out that the super-exponential case W(N) ~ N was already studied in some detail
from the viewpoint of thermodynamics in® for the so called pairing model in which each component can occupy
one of two states, like in the usual Ising model; in addition to the 2" states produced by Cartesian combination of
the single particle states, the components may also form paired states resulting in a super exponential growth rate
W(N). Ref. ¢ lists other examples of systems with a faster-than-exponential state space growth rate, namely the
number of strategies in history dependent games, the space of directed adjacency matrices and the number of
adjacency matrices for networks where each of N nodes has exactly one edge towards any of the N nodes.

The case of exponentially growing state spaces corresponds of course to the systems usually considered in
statistical mechanics such as Ising models where W(N) = 2N or q—state Potts models with W(N) = qN .

Finally, we mention that three concrete examples of cases with sub-exponential state space growth rates are
given in?*: A super-diffusive process, a strongly restricted spin system on a network and restricted binary pro-
cesses. The entropies introduced by Tsallis'! were designed for describing a class of models (with W(N) = N¢)
belonging to the sub-exponential family.

The search for a mathematical basis of the phenomenology observed for networks as for instance in? is of
great interest and widely discussed in the literature, see e.g.*>%". The application of the approach described in this
paper to network theory would start from the classification of networks in terms of the number W(N) of possible
microstates, which will be equivalent to the growth rate W(IN) of the relevant space of allowed N x N adjacency
matrices. Next, to extract the network statistics of interest one could generalise to the group theoretic entropies
the discussion presented in?® by Park and Newman, based on the Shannon entropy. For example, this can be
achieved by means of the following arguments. First, one may determine the probability measure on the set of
adjacency matrices A by use of the maximum entropy principle (under suitable constraints)? applied to the
entropy corresponding to the given W(N'). This give the probability measure p(A) on the W(N) possible adjacency
matrices A, if appropriate constraints specific to the situation can be formulated®. Once p(A) is given, the degree
distribution Pieg (k) can now be extracted from the relation

N
N
Big® =Y P> 8> Ay — k|, k=0,1,..., N1
A =1 (17)
where 0 here denotes the Kronecker delta: §(0) = 1and §(n) = 0 for n = 0. At this stage, it is not clear how to
formulate constraints that represent the growth mechanisms such as the ones used in the Albert-Barabasi’s
model®! or in the recent study in*. The authors of*? parametrize the simulated degree distributions in terms of
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g-exponentials and interpret this as a consequence of the fact that the Tsallis g-entropy maximised under the
normalisation and average constraints leads to g-exponentials.

However, following standard statistical mechanics the entropy is a functional on the probability space of the
microstates of a given system?. As is well known, in Boltzmann-Gibbs statistics the maximisation®® produces the
Boltzmann weight p, of a microstate i with energy E; as being proportional to exp(—3E;) where 3 is the inverse
temperature. For instance, one usually derives the Maxwell distribution of velocities in a gas by integration over
the p. weights. The Maxwell distribution is not obtained directly by maximising the Boltzmann-Gibbs entropy. In
analogy to the canonical ensemble one could let the total number oflinks Ty = 3=, A, ;/2 of a given network A
play the role of energy and maximise the group entropy under the constraint that the stochastic variable T,
assumes a certain average value T by maximising the functional

T=8@)+ N> — 1+ XD aTh— T
A A (18)
As discussed in®, in the context of Hamiltonian systems, this leads to a g-exponential distribution g,(x)
B (T)) = e(Ty). (19)

From Eq. (17) we are now able to obtain the degree distribution for an ensemble of networks with a given average
total number of links by substituting the expression for p,.

Although, by means of Theorem 1, we are able now to construct entropies for very many universality classes, it
is usually difficult to determine the state space growth rate for a specific system. Thus, in Sec. 5.2 below we shall
introduce the information measure A which, from experimental estimates of probability measures allows us to
discriminate different functional forms of W(N); from them the group entropic form relevant for the given system
can be then deduced via Theorem 1. In this way one is also able to obtain information about the nature of the
correlations in the system.

Consequently, our next step will be to construct an information measure associated to each of these new
entropies.

All the previous discussion can be summarized as follows: Given an universality class of systems whose state
space growth rate is assigned, we are able to construct an entropic functional which is extensive for N — oo, accord-
ing to the classical principles of thermodynamics, and the requirements of large deviation theory*. Also, the entropy
in Eq. (5) satisfies the first three SK axioms and is composable, with group law given by the relation (3).

Though each entropy of the class Z; , is extensive in the specific class corresponding to a given state space
growth rate #/(N), in general it may not be so if applied to systems with a different functional dependence of %,
i.e. having other occupation laws at the equilibrium. This is certainly not surprising, since it is also the behaviour
of the standard Boltzmann-Gibbs entropy.

Explicit illustrative example. It is possibly useful to include, for completeness, a brief but detailed step by step
explanation of how the above general procedure for determining the entropy works for a specific model of a com-
plex system. To this aim, we will use the Pairing Model discussed in®. The model represents a generalised version
of the Ising model. As is well known, the Ising model has W(N) = 2N states, since it consist of N particles, each
of which can be in one of two states. In order to model that new emergent states can be created by the interactions
in complex systems, the Pairing Model assumes that any two particles may combine to form a paired state. These
additional states increase the available number of states strongly; W(N) is now characterised by the functional
equation

W(N + 1) = 2W(N) + NW(N — 1), N> 2, (20)

with the initial conditions W(1) = 2, W(2) = 5. The first term in the r.h.s. simply refers to the fact that when
adding a new particle, the number of states will be equal to all the existing states W(N'), each of which can exist
together with one of the two states of the added particle. The second term comes about because the added particle
can enter into a paired state with anyone of the existing N particles; thus this paired state can be combined with
any of the W(N — 1) available states of the remaining N — 1 particles. If pairing is not allowed, i.e. if one consid-
ers the usual Ising model, Eq. (20) reduces to W(N + 1) = 2W(N), which immediately gives the exponential
result W(N) = 2V. The second term leads to the super exponential result (see® Eq. (4))

e N
_ 1 ﬂ]wezm Lol L)) - [ﬂ]w? _g"
J2ele N e ’
So the general form of W(N) for the Pairing Model belongs to the super exponential class W(N) = NV,
which has the inverse %" ~(¢) = exp|L In ()

~

W(N)

) (see also”). By use of Eq. (13) above we conclude that the group
entropy for the Pairing Model is of the form
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W(N), «
In Zz 1 pl

Slp]l = L
AN bl
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Had we excluded pairing, so confined us to the Ising case, we would have W(N) = 2V, which is the exponen-

tial class W(N) = exp(N)and hence % ~'(t) = In(¢). For this functional form Eq. (13) gives us, as expected, the
Rényi entropy

W(N) u
Stp) = (Z’ L 1)
« (22)
and as mentioned above after Eq. (13), if we let @ — 1we arrive at the Boltzmann-Gibbs entropy
W(N)
Slpl = pln—.
; b (23)

Complexity measures from group entropies. Shannon-type integrated measures. The traditional
approach adopted to quantify degrees of interdependence between a number of components in a complex system
is based on Shannon’s entropy and investigates the difference between combinations of conditional entropies.
An influential example is offered by Tononi’s Integrated Information Theory*>*. It suggests that consciousness
can be detected from measures based on Shannon’s entropy which by decompositions analyse the relationship
of the information stored in the whole brain and in some specific parts. A related very recent approach seeks to
analyse self-organisation of synergetic interdependencies by a focus on joint Shannon entropies®”. And finally, let
us mention the recent Entropic Brain Hypothesis®®, which relates the increase of consciousness to the increase of
the Shannon entropy, with less emphasis on how the interdependence of the conscious state is to be characterised.

The group entropy theory suggests an alternative approach, relevant when the number of degrees of freedom
W(N) of the entire complex system is different from the Cartesian product of the degrees of freedom of its parts.
Intuitively, one can surmise that a faster-than-exponential growth of W(N) may apply to the brain. Of course we
don’t know the details of the relationship between the neuronal substrate and the activities of the mind, but at an
anecdotal intuitive level it seems that the mind’s virtually limitless capacity of deriving and combining associa-
tions of associations in grand hierarchical structures is an example of new emergent states added to what can be
reached by Cartesian combinations. Surely, our mind is able to create by composition new emerging states from
old existing concepts. Take as an example the emotional mind state induced when one listens to Bach’s Chaconne
from Partita No. 2 in D minor for solo violin. It seems unlikely that this state isn’t an emergent one, far beyond the
Cartesian combinations.

Similarly, W(N) may very likely grow much slower that the exponential dependence of Cartesian combination,
for instance when one has a highly restricted system, as for arguments sake, a financial system under very strong
regulations.

In such cases the group entropies offer a way to directly quantify the extent of systemic interdependence with-
out going through part-wise conditioning. The composability axiom relates to how the whole of a system consist-
ing of distinct parts differs from the system one would obtain by a simple Cartesian combination of its parts. The
Shannon entropy can be thought of as directly focused on the diversity in a system and then, as a second step, one
can addresses interdependence e.g. by developing various related conditioned measures. In contrast the group
entropies are directly sensitive both to diversity and to interdependence when the later is sufficiently strong to
make W(N) = k".

A new indicator of complexity. To be precise, consider the difference
A(AB) = S(A x B) — S(AB) = ¢(S(A), S(B)) — S(AB). (24)

between the entropy S(A X B) of the system constructed by Cartesian combination of parts A and B and the
entropy S(AB) of the entire complex system containing the fully interacting and interdependent parts A and B.

This measure can be thought of as a possible generalisation of the usual mutual information and could be
useful as an alternative to Tononi’s Integrated Information®*3**-#! being a measure that might describe the
information-theoretical properties of very entangled complex systems such as for instance neural networks.

It is important to stress that the group theoretic foundation for generalised entropies offers a consistent pro-
cedure for dealing with a system consisting of two independent subsystems. Of course, real systems do not consist
of independent parts, but we can ensure that our entropy is mathematically sound by insisting that it is able to
handle the independent case. Consider a system A x B, composed of the set of states (4, b) € A x B obtained as
the Cartesian product of states a € A and states b € B. The group entropy formalism ensures that the entropy S, 5
computed directly for A x Bis equal to the one obtained by first computing S, and Sy for the two subsystems and
then combining these two entropies to get the entropy for the entire system. This simply amounts to respecting
that the probabilities for the states fulfil P, ,, = P, P, for the independent combination of the two subsystems, which
then in terms of the entropies leads to S(A x B) = $(S(A), S(B)).
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When long range forces or other kinds of long range interdependence are at play, the system A x B will be
different from the system AB in which all particles from A and from B are allowed to interact, combine and influ-
ence in whatever way the situation allows®.

The complexity measure defined in Eq. (24) is a way to quantify the extent of the difference between A x B
and AB. Since the composition law ¢(x, y) in Eq. (14) assumes the same functional dependence for trace and
non-trace-form entropies when expressed in terms of W(N) and its inverse, we conclude that the degree of com-
plexity and its dependence on the number of degrees of freedom is fully controlled by the functional form of
W(N). For simplicity consider the situation where A = B and each subsystem has N, particles. Furthermore, if we
restrict ourselves to the uniform ensemble p. = 1/W, where the extensivity property of the group entropies sim-
ply make sure that S[p] = AN, we have explicit expressions for the complexity measure A(AA), which we simply
denote by A(N,). We illustrate them in three typical examples.

(I) Algebraic - W(N) = N*

NZ
ANy) = ANy + Ny + TO — AN, + Ny)) = Ny

(25)

We might call this the “Tsallis case™: the interdependence between particles strongly restricts the available
state space. The entropy of the Cartesian combination A x A overshoots the entropy of the fully “entan-
gled” system AA by Ny. One may think of this as indicating that the reduction of state space involves a
restrictive relation between each particle and the N, — 1 other particles.

(II) Exponential -W(N) = KN

ANy = AN, + Ny) — AN, + Np) = 0. (26)

The Boltzmann-Gibbs case where the entire system effectively is composed of a non-interdependent set of
subsystems.
(ITT) Super-exponential W(N) = NV

A(N,) = Mexp[LQ2(1 + Nyln (1 + N)] — 1} — AN, + N,)

Alexp[ln (2NyIn N,)] — 2N, = 2A(NyIn N; — N;) = 2Aln Ny!. (27)

1

Here we assumed N, > 1 and made use of the fact that L(x) ~ In x asymptotically. The effective depend-
ence of the complexity measure on the factorial suggests a relation to the super-exponential behaviour of
W(N) originating in the creation of new states by forming combinations of the particles®.

The complexity of human brain: a conjecture.  Returning to the question of the complexity of neural net-
works, we wish to point out that in principle, the indicator A(N,) can be used to ascertain the functional form of
W(N,) also in the case of the human brain, for example by use of histograms constructed from time series of fMRI or
EEG recordings. Of course we are not able to “separate” the brain into independent sub systems A and B. Instead we
can construct distributions for sub-parts of the brain as the marginal distributions of the entire brain. This will only
be an approximation compared to entirely independent sub-parts since the marginal distributions
p,(a) = p, p(a, b) willstill contain contributions from collective states spanning across A and B (which would not
be present in A if it could be isolated from B.) Neglecting this caveat we may proceed as follows. The histogram of the
simultaneously recorded signals will give us an estimate of the joint probability density P(x,, . . . , x5) where x; up to
x) are the N recorded times series covering a certain connected part of the brain. We break the set of time series into
two groups, each consisting of Ny < N/2 time series from a spatially connected part of the brain. Let P(x,, . . ., x, No)
characterise the “full” system AB discussed above. Since we are focusing on the interdependence of brain regions one
should let the N probes cover a connected part of the brain. Say as an illustration, F7, F3, Fz, T3, C3 and Cz in the
standard EEG map notation. The subset A could consist of F7, F3 and Fz and B of T3, C3 and Cz. We can then extract
distributions for subsystems as the marginalised probabilities. So let our sub-systems A and B be given by

Py(xp s xy) = fdeoH"' fdeP(xl, ce XN
Py(Xng1 oo Xony) = fdxlm fdeodszOH‘“deP(xp e XN)
and form the Cartesian non-interacting system A x B described by
Py glxp -os szU) = Py(xy..., xNU) X PB(xNOH, oo x2NU).

We can now compute A in Eq. (24) and by varying the number N of data streams included in the two sub-systems,
we can check the N, dependence of A. We conjecture that for the brain, A will depend like In Np!. This corre-
sponds to case (II1) above i.e. corresponding to W(N) = N V. Consequently, we can state the following

Conjecture: The number of brain states typically grows faster than exponentially in the number of brain
regions involved.
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Discussion
The axiomatic approach proposed in this work allows us to associate in a simple way an entropic function with an
universality class of systems. In particular, the extensivity axiom selects among the infinitely many group entro-
pies of the Z-class a unique functional, which possesses many relevant properties, all necessary for an
information-theoretical interpretation of the functional as an information measure. The standard additivity must
be replaced by a more general composability principle which ensures that, in the case of a system made by statis-
tically independent components, the properties of the compound system are consistent with the those of its
components.

Many research perspectives are worth being explored in the future. Generally speaking, our formalism allows
for a systematic generalisation of a statistical mechanics description to non-exponentially growing state spaces.

For instance, we believe that group-theoretical information measures in the study of self-organized criti-
cality could replace Shannon’s entropy in several contexts where the number of degrees of freedom grows in a
non-exponential way.

We also mention that classifying complex systems without worrying about composability was done in*2.

The analysis of time series of data, from this point of view, offers another interesting possibility of testing the
present theory.

A quantum version of the present approach, in reference with the study of quantum entanglement for
many-body systems represents an important future objective our our research.

Work is in progress along these lines.
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