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Additional symmetries and solutions of the dispersionless
KP hierarchy

Luis Martinez Alonso® and Manuel Manas®
Departamento de Bica Teaica Il, Universidad Complutense, E28040 Madrid, Spain

(Received 15 January 2003; accepted 9 April 2003

The dispersionless KP hierarchy is considered from the point of view of the twistor
formalism. A set of explicit additional symmetries is characterized and its action on
the solutions of the twistor equations is studied. A method for dealing with the
twistor equations by taking advantage of hodograph type equations is proposed.
This method is applied for determining the orbits of solutions satisfying reduction
constraints of Gelfand-Dikii type under the action of additional
symmetries. ©2003 American Institute of Physic§DOI: 10.1063/1.1587873

I. INTRODUCTION

The so-called dispersionless hierarchidprovide an interesting type of nonlinear integrable
model which cannot be studied by the standard schemes of the KP theory and require an entirely
new approach. From the point of view of the Lax formalism, dispersionless hierarchies arise as the
quasiclassical limits of Lax pair equations performed by replacing operators by phase space
functions and commutators by Poisson brackets. In this way, when dealing with dispersionless
hierarchies, instead of the associated auxiliary linear system of the standard formalism of inte-
grable systems the underlying equations to be solved are of Hamilton—Jacobi type.

Several methods of solution of dispersionless hierarchies have been formulated. In Refs. 3 and
4 (see also Refs. 11 and 1Rodama and Gibbons gave a direct method based on the use of
reductions in which the dependent variables depend on a finite number of unknown functions. The
corresponding reduced hierarchy becomes an infinite set of compatible hydrodynamic systems
solvable by hodographic techniques.dfscheme has been proposed by Konopelchesilal. in
Refs. 13-15, which introduces an associategfjuation of Hamilton—Jacobi type. In this article
we deal with the twistorial method of Takasaki and Tak&H&Two important advantages of this
method are the following.

(1) It provides a convenient scheme for describing the symmetries.
(2) All local solutions can be determined by means of the twistor method.

The main aim of this article is to present a technique for deriving explicit examples of both
additional symmetries and solutions of dispersionless hierarchies within the framework of the
twistor formalism. It requires a new formulation of the twistor equations which involves a certain
type of generating function for canonical transformations of twistor data as well as the use of
hodograph equations. To show our strategy, we concentrate on the dispersionlgisPKRier-
archy, which is the prototype of this kind of integrable hierarchy. Its Lax pair formulation involves
a phase space with a canonical pair of coordinapeg)(and an associated Poisson bracket
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It is useful to introduce an enlarged Lax formalism with a pair of canonically conjugate variables
L=L(p,t) and M= M(p,t) (i.e.{L,M}=1) depending op and an infinite set of time param-
eters

t:=(t1=X,t2,...,tn,...),

which are assumed to admit expansions of the form

Up(t n(t
£=p+2 (v M=z ntnE”‘1+x+E Zn—gi (1)
n=1

n 1
p n=2 n=>1

asp—o and L—oo, respectively. The Lax equations of the dKP hierarchy are

—M B, L —aM B, 2 2
= = =
&tn { n: }1 ﬁtn { nlM}l n L] ( )
where

Bni=(L")=p.

Here (F)-, denotes the projection of a Laurent seri€sin the variablep on the subspace
generated by the non-negative powergpdiwe will also use the notation®) - _1:=F—(F)=o].
The system of compatibility equations

9B aB"+B B.}=0 # 3
atn Im { m: n}_ ) m na ()

yields an infinite set of nonlinear equations for the coefficient®f the expansior{l) of L. In
particular for fr,m)=(2,3) one gets the dKP equatidhabolotskaya—Khokhlov equatipn

(ut_3uux)x:%uyyv U:=Uy,t:==tg,y:=t,. 4

This is an interesting nonlinear model with applications, in the study of quasi-plane sound
beams'’ quasi-transonic flows past thin win§or Einstein-Weyl spaces.

In the next section we first describe in brief the twistor approach to the solutions and sym-
metries of the dKP hierarchy. Then we present a class of additional symmetries depending on
arbitrary functions of one variable, the action of which can be explicitly determined. As a particu-
lar case they include the symmetries of the dKP equation found by Dunajski, Mason and Tod in
Ref. 19. The first part of Sec. lll is devoted to a new formulation of twistor equations which is
appropriate for dealing with the transformation laws of solutions under the action of symmetries.
In the second part of Sec. Il we show how solutions of the dKP hierarchy satisfying reduction
constraints of Gelfand—Dikii type transform under the class of additional symmetries introduced
in Sec. Il. Finally, some explicit examples are worked out.

II. SYMMETRIES IN THE TWISTOR FORMALISM

A. Twistorial structure of the dKP hierarchy

The twistor formalism of the dKP hierarchy is based on the degenerate symplectit form
w:=dp/\dx+ >, dB,/\dt,, (5)
n=2

which plays the role of the Gindikin bundfeof curved twistor theory. The form encodes both
the Lax equations and their compatibility conditions into the simple system
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w=dL/\dM,
(6)
o N\w=0.

From the first equation we have that
d MdL+pdx+ >, Bydt, | =0,
n=2

so that there exists a generating functi®@=S(L,t) for the canonical transformation
(p,x)— (L, M) satisfying

dS=MdC+pdx+ >, Bydt,,
n=2

or equivalently

M S S S ) .
= — = — B =— =2.
oz PTax "oty : @

Notice that from(1) and the first equation df7) it follows thatS can be defined as

sen=> tene s v oo

n=1 n=1 N
The twistor scheme for solving the dKP hierarchy is based on the following result.
Theorem 1: Let (P(p,x),X(p,X)) be a pair of canonically conjugate variables (X} =1).
Then we have the following:
(1) Given two functiong£L(p,t), M(p,t)) of the form (1) such that the composite functions
(P(L,B),X(L,B)) have Laurent series expansions in p satisfyingtthistor equations
(P(LM))<-1=0, (X(L,M))<-1=0, (8
then(L£, M) gives a solution of the dKP hierarchy (2). The pair
(P(p,x),X(p,X))
is calledthe twistor dateof the solution(£,M).
(2) Each solution of the dKP hierarchy admits a §Bt(p,x),X(p,x)) of twistor data

In general, we cannot assume the existence of appropriate solufioh$) of (8). For ex-
ample, the canonical variables

P:=p?x, = 9)
determine the twistor equations
1
(L2M)=1=0, (—) =0,
=-1

which obviously have no solutions satisfyig).
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B. Symmetry transformations

One of the main features of the twistor equations is that the symmetry properties of the dKP
hierarchy can be formulated in a convenient Wagdeed, the natural group acting on the set of
twistor data P(p,x),X(p,x)) is the group of canonical transformations generated by one-
parameter groups of the form

exp(s{F, - }):(P,X)—(P(s),X(s)), F=F(p.x),
P(s)=P(exp(s{F, - })p.exp(s{F, - })x), (10
X(s)=X(exp(s{F, - })p,exp(s{F, - })x),

where

2
exp(s{F, -})G:=G+s{F,G}+ %{F,{F,G}}‘F"‘ .

The following theorem can be provéd.
Theorem 2: A one-parameter group of canonical transformations (10) induces an action
(L,M)—(L(s),M(s)) on the set of solutions of the dKP hierarchy determined by the flow

o oM
E_{EvF(ﬁyM)sfl}! E_{MvF(ﬁyM)sfl}- (12)

Let us consider symmetries of the dKP hierarchy generated by double series of the form
F(LM)= > X LML (12)
|=—® |J=—»

We will concentrate on ther(t+1)th truncated dKP hierarchieslefined as the sets of the first
r+1 flows of the dKP hierarchyr&2). Thus in order to analyze their symmetries we may set
t,=0¥n=r+1, and so we may write

M=(r+Dt,  LT+rt, LT+ x4+ 0O

1
Zz) . (13

By substituting this expansion if12), a series expansion &f in powers ofL is obtained. Let us
now investigate those symmetries of thre-(1)th truncated dKP hierarchy which do not involve
the action of higher dKP flows. To this end, we have to avoid terms of the f6M) -, £} with
n>(r+1) on the right-hand side of the first equation(itl). Hence we impose;;=0 for (i
+jr)>(r+1), so thatr can be expressed in the form

F(L,M)= D a

nsr+1

( M

e "

with a,(t) being arbitrary smooth functions. Furthermore, Eif) for £ can be written as

(9[,_ JF
g—m"'{':(ﬁ./\/l)zoiﬁ}. (15

and it is easy to see that only those termglid) with n=1 contribute todu/ds.
Therefore, we conclude that the symmetries of theé {)th truncated dKP hierarchy which
do not involve higher dKP flows and define a nontrivial action on the coefficiemt of the form
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r+1 M
F(E’M):rgl an(m)ﬁn. (16)

This means that, under these conditions, there are essemtiallytypes of symmetry generators
of the (r +1)th truncated dKP hierarchy given by

Fi(L,M):=a Ll i=1,..r+1, (17

(r+1)£r)

with = «(t) being an arbitrary function.

The action of the one-parameter groups generatel; lpn the coefficienti can be explicitly
found. Indeed, by identifying the coefficients oplih both members of15) one gets a first-order
linear partial differential equation for

u(s,t)=exp(s{F;, -Hu(t),
the integration of which provides the symmetry transformation
u=u(t)—TU=u(s,t).

Let us illustrate these facts by considering the cas®. We observe thatl3) implies that
near points in the region of analyticity ok

1 1
P+0 F . (18

1 ! +2 2 _n
X (t) gY@ (t)

M 2 1
a W)—a(t)—k 3y (t)Z—i-

One finds the following results for the corresponding three generétd)s
(1) Fq
From (15) we have

oL (M1 oL
95~ %\3zz)zr Ty
so that
0u_ Ju l, 19
g—a(t)ﬁﬁLga(t)- (19

The solution of this equation is
u=U(x+sa(t),y,t)+ $sa’(t),
whereU is an arbitrary function. It leads to the symmetry
T=u(x+sa(t),y,t)+ isa’(t). (20)

(2) F,
In this caseg(15) becomes

L 1 M
3L7

9s

, 2 , oL oL
—§a +§ya (t)&*f'a’(t)w,

and the equation fou is
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au_2 /t&u+ t&u+2 "t 21
g—gya()&—x a()@ §ya(), (22)

which has the solution
u=U(x+ 3sya’(t)+ 3s?a(t)a’(t),y+sa(t),t)+ Zsya’(t)+ is?a(t)a’ (1),

whereU is an arbitrary function. The corresponding symmetry transformation of the dKP equation
is

TU=u(x+ 2sya’(t)+ :s?a(t)a’(t),y+sa(t),t)+ Zsya”(t)+ is2a(t)a’(1). (22

() Fs3
Now Eq. (15) takes the form

(i 2oran | L2 L oL
5—S—§(1 iz +| =Xa (t)+§ya(t) (?_X+§ya (t)w'f'a(t)—

oL 1 (M
3 i

which implies

ou (1 2., ., gu 2 du ou 1 1 2, .
P §Xa (H)+ §y a"(t) &4’ §ya (t)W‘Fa(t)E‘F §a (Hu+ §Xa (t)+ 2—7y a"(t).
(23)

The solution of this equation is

, , 2 c’(t) )
u=(c (t))Z/aU(X(C (t)Y3+ §YZW/§,Y(C (t))%3s+c(t)

]
where U is an arbitrary function ana(t) is such thatc’(t)=1/a(t). Hence, by definingl
:=T(s,t) through the implicit relation

1 c'(t)y 2 2(0”’(t) 4(c”(t)
v T2 v 3le

c(T)=s+c(t),
and by taking into account that

daT  c'(1)

T=a~em

one finds that the symmetry transformation determined23y is

2 ” 1 " 2 Tm 4 n\ 2
~_ 1\2 13y =2 1\2/3 V] IS N
u (T) 3U X(T) +9y WI?,.Y(T) ,T +9XT/+27Y(T/ 3(T/) ) (24)
The three symmetrie0), (22), and(24) coincide with the symmetries of the dKP equation
found by Dunajski, Mason, and Tddby analyzing equivalence transformations of Einstein—Weyl
spaces.

1. Transformation law of twistor data

According to(10) the dKP symmetry generated 1%7) corresponds to a canonical transfor-
mation law of the twistor data determined by the Hamiltonian system
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dp i dx i
g5 _talp)phph g =talp)p'xt, (25)
where we are denoting
X
P+ )p
In terms of (,p) this system becomes
o a'(p) ;.. dp__alp) , .,
s r+x1? v oas 'rraPf ’ (26)

and by taking into account that the Hamiltonian function

hi=a(p)p'

is a constant of the motion it follows that the solution(2b) can be written as

B(S)= o, X(S)=(r+1)] p(s)". (27
)

Here j=j(s,p,h) is the evolution law of the variablp. That is to say, it is the solution of the
initial value problem

.
“=B(p, 1(0p=p, 29
where
i a(p) (r+1)/i
BW“*ﬁ?I'FJ

The expression&7) define the action of the additional symmetri@g) on the twistor data.
It is important to observe that the solution @8) satisfies

itsph)  dp
S=

p B(p.,h)’
and, as a consequence, one deduces that the first-order derivatjvegtlofespect tqp andh are
a(] ) (r+21)/i
1= m) ,

(29

. i CL’(]) (r+1)/i_
Jw*&:?‘ﬂ(??) -

As we will see below, these relations will be useful for determining the action of the additional
symmetries on the solutions of the twistor equations.

)
r+1 ~/p(s)’tT

lll. SOLUTIONS OF THE dKP HIERARCHY
A. Generating functions and hodograph equations

We are going to present a scheme for solving twistor equations which is particularly suitable
to investigate the action of the additional symmetries introduced in the above section. An ingre-
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dient of our analysis is the use of a type of generating functions for canonical transformations of
twistor data2® which allows us to introduce hodograph type equations to formulate part of the
constraints imposed by the twistor equations.

Let (P(p,x),X(p,Xx)) be a pair of canonically conjugate variables. Then for each positive
integerr we have

X
dPAdX=dpAdx=d(p"" H/\dp, =7y '

Hence there exists an associated generating fundtienl,(P,p) of the canonical transformation
(p,x)—(P,X) such that

dJ,=p" " ldp+XdP,

or equivalently

:8Jr(P,p) = 3Jd:(P,p)
ap P

r+1
p

: (30

In this way by denoting

M

we deduce

IP(L, M)
p
IP(L,M) oM

_ r+1 r
X(L,M) D +L "

Jd 3y
75 I (P(LM) M) = =5 (P(L,M), M)

+ B by iy P
ap %( ( ’ )1 I‘)W

and by taking into account that

L Me 1AMy S

p  r+1 ap  op’

whereS is the function introduced i7), we deduce that

(alap) (S+ I (P(L M), M,)—[1(r+1)]LM)
(d9lap) P(L,M) '

X(L,M)= (31

This formula enables us to state the following:
Theorem 3: In terms of the function

1
=8+ 3 (P(L,M), M) = 7 LM, (32

the second twistor equatiafX(L£, M))<_1=0 is equivalent to the following two conditions
(1) The expansion af, in powers of p satisfies

(S)<-1=0. (33

(2) At each zero pof dP(L, M)/ dp it is verified that
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oS,
7p (P1OU=0. (34)

Henceforth we will refer tq34) as thehodograph equations

A natural problem is to determine generating functidp&P,p) leading to solvable twistor
equations. In this sense, an important class arises WheR(p,x) is independent ok and has a
finite-order expansion gs—o:

N

P(p)= nz anpn-

The corresponding generating functidgis of the form
Jo(P.x)=f(P)+g(P)x,
whereg(P) is the inverse function oP=P(p). As a consequence
Jo(P(L,M), M)=F(P(L))+ LM,
Sp=S+1(P(L)).

It can be shown that, providefd P(p)) admits a Laurent expansion ps-o, the twistor equa-
tions determined by, have a solution. Moreover, it turns out that solving the hodograph equa-
tions for Sy is enough for computing. Let us illustrate these facts with the following important
example

Gelfand-Dikii reductions: If we set

Jo(P,x)=f(PY™M+PUMy,  f(PUM).= > ¢, PVM, (39

n=—o

for a given integem>1, the associated twistor data are

1
P=p™, X=W(f (p)+Xx). (36)

Then, the first twistor equation is
LT=(L)=o0,
so that
LM=p™+qm-2(U)P™ 2+ +ag(U)p+go(u), (37)

where the functiong|;(u) depend on theri—1) first coefficientsu:=(u4,...,u,_41) of the ex-
pansion(1) of £. This constraint defines thmth Gelfand—Dikii reduction of the dKP hierarchy.
For example the first few reductions are

m=2, L?=p’+2u,,
m=3, L3=p3+3u,;p+3u,,
m=4, L*=p*+4u,p?+4u,p+6ui+4us.

To determinel we must find the fhi— 1) unknownsu; as functions ot through the second
twistor equation. Thus, according to Theorem 2, we impose
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50:S+f(ﬁ):(5+f(ﬁ))>o:n§1 (ta+Cn) (LM p=0+ Co-

Hence, by using37) we can expresS, as a function of p,t,u). If we now impose the hodograph
equations34), we get (n—1) implicit equations

=0, i=1,..m-1, (39
p=p;(u)

n=1

J
E (tn+cn) %(ﬁn)n20>

which determine the functiong(t) and, consequently;. Furthermore, by eliminating in (37)
we can expresp as a functionp=p(L,t), which under substitution into

S=> tn£”—< 21 tnz:“—f(c)) ,

n=1 <1
leads toM=dS/dL. Thus, it is easy to see that the functiahend. M are solutions of the twistor
equations which satisf{l) and, therefore, they solve the dKP hierarchy Henceforth these solutions
will be called Gelfand-Dikii solutionsof the dKP hierarchy.
For instance, ilm=2 (dKdV reduction),
L£L?=p?+2u, u=u,,
and we set,=0,V¥n>3, one gets the hodograph relation

3ut+x=F(u), (39

which solves the dKdV equatiom,= 3uu, . Here

d
F(u):—= %n; Cn (LM n=o0lp=0

can be assumed to be an arbitrary smooth function. dome elementary solutions provided by
(39) are

- X
(Wy=cu, u=—z—¢.,

1
F(u)=cu?, u=%(3t+\/9t2+4cx), (40)

f t
—eclP U= — 4+ g
F(uy=cu’, u Zc+ £ f

4t3 1/3
4X+4C2VX2—?) .

B. The action of additional symmetries on Gelfand—Dikii solutions

Our aim now is to characterize solutions of the dKP hierarchy by applying the symmetry
transformationg17) to Gelfand—Dikii solutions. Obviously we may start from solutions of the
hodograph equation&88) and then perform the corresponding symmetry transformation. How-
ever, in order to do it we need to know how the coefficiantsf the expansioril) of £ transform
under the symmetried 7), which requires us to solve a system of first-order linear partial differ-
ential equations. We are trying instead an alternative way consisting in determining the generating
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functions J,(P,p) for the transformed twistor data and then solving the corresponding twistor
equations according to the scheme of Theorem 3. In this alternative procedure the problem reduces
to solving a system of implicit algebraic equations.

The dKP symmetry generated 1§%7) acts on twistor data according to the canonical trans-
formation (27). In particular, the twistor daté836) for the Gelfand—Dikii reductions transform as

p m
oo B
(Jp)l/(r+l)
(41)
P(m—l)/m
X(s)= —————(F"(P¥M)+(r+1)j PM).
Hence, by taking into account thats a function of §,p,h), it follows that
J ~
i Im_ ; / ; /
pr+1_JPP(r+1) m_g(JP(H—l) m)_thhP(r+1) m'
J 1m_ ;ip(r+1)/m A i p(r+1)/m
X= 5 (F(P) UM+ JP U 0/m) — g P /M,
where
h=R(P,p)=h(p(P,p),p)=a(p)p(P,p)"
By using now(29) we deduce
IV (P,p) IV (P,p)
prei=T L X (42
where
IN(s,P,p):=f(PY™ +j(s,p,h)Pr VMg 1= h(P,p). (43)

Wide families of solutions of ther( 1)th truncated dKP can be found by solving the twistor
equations associated with the generating functid®s The calculations are simple but long and
require computer aid. To illustrate the strategy for computing these solutions let us consider the
family of generating functiong!" with

i=r+1=m. (44

The choicei=r +1 means that we are dealing with the orbits of Gelfand—Dikii solutions under
the action of the symmetry generator

Fr+l(£1M)::a

M
—)U*l. (45)

Thus, according t@29) the functionj in (43) is determined fromx through the solution of the
initial value problem

(9]_

ﬁs—a(p), j(0,p)=p. (46)
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Hencej is independent oh and by settings to be a constant, we may takeas a function ofp
only. Therefore, the generating functiod® that we are considering are

3,(P,p)=f(P¥™) +j(p) PUTDIM, (47)
Notice that

pm

P:W’

(48)

so that the first twistor equation reads
LT= (L™ =0, (49)
where

L L M - M
. Tr+1)Lt

M 60

From (1) one deduces at once that the integer power§ bave expansions of the form

1
£N=pN+---+an(u1,...,uN,n,l)p“+---+bn(ul,...,uN+n,1)F+--- ,
(51)
1 1 1
ﬁ:W+---+Cn(ul,...,un,,\,,1)F+---

Furthermore(1) implies that for any smooth functiagp=g(t) the composite functiog(,M,) can
be expanded in the form

B re, 1 va(t) 1
IMI) =0\ teat g Tt et

rt 1 1
=00t )t 579 (ten) S da(bUs U001 W) e (52)

Thus, from(51) and(52) and by taking into accour(@4), we deduce thal. is of the form
L= (qm(t,u)p™++ -+ dy(t,u)p+qo(t,u)) ™, (53
whereu:=(Uq,...,Upn_1).

Two different cases arise.
(1) r=m—1m. This is the simplest situation since frof1)—(53) it follows at once that

r
r—s+1
Sr: 521 r+1

ts£S+ ,yLm+n+j(Mr)Lr+l
=0

is a function depending ofp(t) andu=(u4,...,u,_4). Therefore, therfi—1) hodograph equa-
tions

s,

wherep;=p;(t,u) are the zeros of."/dp, are enough for determining
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(2) r=m+1. The functionS,=(S,)=( depends ong,t) andt=(u,,...,u,_41), so that in
addition to the (n—1) hodograph equation$4) a set of {—m) new equations involving and
T are required. These additional equations are supplied by vanishing the coefficients of the nega-
tive powers 1p" (n=1,...r—m) in

(LM<_,=0.

C. Examples

In the following examples we exhibit solutionsof the dKP equatiori4) depending on an
arbitrary functionj =j(p). They are orbits of Gelfand—Dikii solutiong, under the action of the
symmetry generated b{#5). Notice that according t¢45)—(46) we can obtairu, by settingj
=p in the expression ofl.

(1) For

r=m=2, f(P¥):=yP""
the generating functiofd7) becomes
) X
JZ(P:P):7P7/2+](P) P3/21 P‘:EZ' (55)
andl.? takes the form
L2= (L%~

_ PP 4y L2u 2 X'y 4 3" (t) +§)y2(j"(t))2
(1) 9(]’(t))5’3p G/ 9/ (1)> 27('(1)°° 81 (j'(1)%*"

(56)

Hencedl.?/dp has a unique zero given by

_2

Moreover, the expression of
Sp=(3yL2+ IXLA YL +[(M)L3)=0

as a function ofp can be computed by usin@7) and the expansion

X'/ 2 2:n 1
3] (H+ gy’ (t) o7

. . 2 1
J(Ma)=j(t)+ 3V (t)5+

2 i 4 3im 2 H
| m gyl Ourt g7y " (O + gxyj(t) peab

p

Lo
p°

In this way the hodograph equatioﬁé(z/ap)|p:pl=0 turns out to be an equation for=uy,
which yields the following solution of the dKP equation

F o 6j()] ’(t)4’3+ 9" (D" (Hx+6]' (1" (Dy*—8]"(1)%y?

105  F 81() (D)2 %7

where
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Fi=y?%(— 735G (1)*%"(1)y?— 33075 ' (1) "%+ 105,35 G) 3,

G:%(648](t)3j /(t)4+ 140)/] /(t)8/3 //(t) y + 1260)/] (t)11/3 r/( )Xy2+ 2835’}’] r(t)14/3x2)_
(2) By setting
r:ng, f(Pl/3) = ,yP7/3,

in (47) one finds that the first two coefficients of the expandgibnof £ are given by

~UT T 00412 7(90j5t%—72) 13>~ 128) 1,y + Z%), (58)
| _ T 2Lyi%i 2"+ F 724 83886085y + 2359296 )t (59
’ 114688yj;"Z *
where
. J] .
i: a I(t4) IZO!

F:=—16384j,j 1"+ 7168yj1% ,x— 13440y]Jj 2ty + 5670y 5j3t°
+20167j1% 43— 75607} ] j 5t3+ 10752yj1% 5ty,
andZ=2Z(x,y,t,t,) is a root of the equation

49j3%y271%+ (5637 144 576/ °Y*x+ 2 113 929 216/j 14"} , ty — 1 610 612 7363j 1>
+396 361 728/j 1474j ,t3— 297 271 296y | 1434] 2t3) 24+ 422 212 465 065 988 7?y?
+33397 665 693 695,224+ 237 494 511 599 6155°/2j ,t2y =0.
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