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Additional symmetries and solutions of the dispersionless
KP hierarchy

Luis Martı́nez Alonsoa) and Manuel Mañasb)

Departamento de Fı´sica Teo´rica II, Universidad Complutense, E28040 Madrid, Spain

~Received 15 January 2003; accepted 9 April 2003!

The dispersionless KP hierarchy is considered from the point of view of the twistor
formalism. A set of explicit additional symmetries is characterized and its action on
the solutions of the twistor equations is studied. A method for dealing with the
twistor equations by taking advantage of hodograph type equations is proposed.
This method is applied for determining the orbits of solutions satisfying reduction
constraints of Gelfand–Dikii type under the action of additional
symmetries. ©2003 American Institute of Physics.@DOI: 10.1063/1.1587873#

I. INTRODUCTION

The so-called dispersionless hierarchies1–9 provide an interesting type of nonlinear integrable
model which cannot be studied by the standard schemes of the KP theory and require an entirely
new approach. From the point of view of the Lax formalism, dispersionless hierarchies arise as the
quasiclassical limits of Lax pair equations performed by replacing operators by phase space
functions and commutators by Poisson brackets. In this way, when dealing with dispersionless
hierarchies, instead of the associated auxiliary linear system of the standard formalism of inte-
grable systems the underlying equations to be solved are of Hamilton–Jacobi type.

Several methods of solution of dispersionless hierarchies have been formulated. In Refs. 3 and
4 ~see also Refs. 11 and 12! Kodama and Gibbons gave a direct method based on the use of
reductions in which the dependent variables depend on a finite number of unknown functions. The
corresponding reduced hierarchy becomes an infinite set of compatible hydrodynamic systems
solvable by hodographic techniques. A]̄ scheme has been proposed by Konopelchenkoet al. in
Refs. 13–15, which introduces an associated]̄ equation of Hamilton–Jacobi type. In this article
we deal with the twistorial method of Takasaki and Takebe,9,10 Two important advantages of this
method are the following.

~1! It provides a convenient scheme for describing the symmetries.
~2! All local solutions can be determined by means of the twistor method.

The main aim of this article is to present a technique for deriving explicit examples of both
additional symmetries and solutions of dispersionless hierarchies within the framework of the
twistor formalism. It requires a new formulation of the twistor equations which involves a certain
type of generating function for canonical transformations of twistor data as well as the use of
hodograph equations. To show our strategy, we concentrate on the dispersionless KP~dKP! hier-
archy, which is the prototype of this kind of integrable hierarchy. Its Lax pair formulation involves
a phase space with a canonical pair of coordinates (p,x) and an associated Poisson bracket

$F,G%5
]F

]p

]G

]x
2

]F

]x

]G

]p
.
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It is useful to introduce an enlarged Lax formalism with a pair of canonically conjugate variables
L5L(p,t) andM5M(p,t) ~i.e. $L,M%51) depending onp and an infinite set of time param-
eters

tª~ t15x,t2 ,...,tn ,...!,

which are assumed to admit expansions of the form

L5p1 (
n>1

un~ t!

pn , M5 (
n>2

ntnL n211x1 (
n>1

vn~ t!

L n11 , ~1!

asp→` andL→`, respectively. The Lax equations of the dKP hierarchy are

]L
]tn

5$Bn ,L%,
]M
]tn

5$Bn ,M%, n>2, ~2!

where

Bnª~L n!>0 .

Here (F)>0 denotes the projection of a Laurent seriesF in the variablep on the subspace
generated by the non-negative powers ofp @we will also use the notation (F)<21ªF2(F)>0].
The system of compatibility equations

]Bm

]tn
2

]Bn

]tm
1$Bm ,Bn%50, mÞn, ~3!

yields an infinite set of nonlinear equations for the coefficientsun of the expansion~1! of L. In
particular for (n,m)5(2,3) one gets the dKP equation~Zabolotskaya–Khokhlov equation!

~ut23uux!x5 3
4 uyy , uªu1 ,tªt3 ,yªt2 . ~4!

This is an interesting nonlinear model with applications, in the study of quasi-plane sound
beams,17 quasi-transonic flows past thin wings18 or Einstein-Weyl spaces.19

In the next section we first describe in brief the twistor approach to the solutions and sym-
metries of the dKP hierarchy. Then we present a class of additional symmetries depending on
arbitrary functions of one variable, the action of which can be explicitly determined. As a particu-
lar case they include the symmetries of the dKP equation found by Dunajski, Mason and Tod in
Ref. 19. The first part of Sec. III is devoted to a new formulation of twistor equations which is
appropriate for dealing with the transformation laws of solutions under the action of symmetries.
In the second part of Sec. III we show how solutions of the dKP hierarchy satisfying reduction
constraints of Gelfand–Dikii type transform under the class of additional symmetries introduced
in Sec. II. Finally, some explicit examples are worked out.

II. SYMMETRIES IN THE TWISTOR FORMALISM

A. Twistorial structure of the dKP hierarchy

The twistor formalism of the dKP hierarchy is based on the degenerate symplectic form9

vªdp`dx1 (
n>2

dBn`dtn , ~5!

which plays the role of the Gindikin bundle16 of curved twistor theory. The formv encodes both
the Lax equations and their compatibility conditions into the simple system
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v5dL`dM,
~6!

v`v50.

From the first equation we have that

dS MdL1pdx1 (
n>2

BndtnD 50,

so that there exists a generating functionS5S(L,t) for the canonical transformation
(p,x)°(L,M) satisfying

dS5MdL1pdx1 (
n>2

Bndtn ,

or equivalently

M5
]S

]L , p5
]S

]x
, Bn5

]S

]tn
, n>2. ~7!

Notice that from~1! and the first equation of~7! it follows that S can be defined as

S~L,t!5 (
n>1

tnL n2 (
n>1

vn~ t!

n
L 2n.

The twistor scheme for solving the dKP hierarchy is based on the following result.9

Theorem 1: Let (P(p,x),X(p,x)) be a pair of canonically conjugate variables (i.e.$P,X%51).
Then we have the following:

(1) Given two functions(L(p,t),M(p,t)) of the form (1) such that the composite functions
(P(L,B),X(L,B)) have Laurent series expansions in p satisfying thetwistor equations

~P~L,M!!<2150, ~X~L,M!!<2150, ~8!

then (L,M) gives a solution of the dKP hierarchy (2). The pair

~P~p,x!,X~p,x!!

is called the twistor dataof the solution~L,M!.
(2) Each solution of the dKP hierarchy admits a set(P(p,x),X(p,x)) of twistor data.
In general, we cannot assume the existence of appropriate solutions~L,M! of ~8!. For ex-

ample, the canonical variables

Pªp2x, Xª
1

p
, ~9!

determine the twistor equations

~L 2M!<2150, S 1

LD
<21

50,

which obviously have no solutions satisfying~1!.
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B. Symmetry transformations

One of the main features of the twistor equations is that the symmetry properties of the dKP
hierarchy can be formulated in a convenient way.9 Indeed, the natural group acting on the set of
twistor data (P(p,x),X(p,x)) is the group of canonical transformations generated by one-
parameter groups of the form

exp~s$F, •%!:~P,X!°~P~s!,X~s!!, F5F~p,x!,

P~s!ªP~exp~s$F, •%!p,exp~s$F, •%!x!, ~10!

X~s!ªX~exp~s$F, •%!p,exp~s$F, •%!x!,

where

exp~s$F, •%!GªG1s$F,G%1
s2

2
$F,$F,G%%1¯ .

The following theorem can be proved.9

Theorem 2: A one-parameter group of canonical transformations (10) induces an action
(L,M)°(L(s),M(s)) on the set of solutions of the dKP hierarchy determined by the flow

]L
]s

5$L,F~L,M!<21%,
]M
]s

5$M,F~L,M!<21%. ~11!

Let us consider symmetries of the dKP hierarchy generated by double series of the form

F~L,M!5 (
i 52`

`

(
j 52`

`

ci j L iM j . ~12!

We will concentrate on the (r 11)th truncated dKP hierarchiesdefined as the sets of the first
r 11 flows of the dKP hierarchy (r>2). Thus in order to analyze their symmetries we may set
tn50,;n>r 11, and so we may write

M5~r 11!t r 11L r1rt rL r 211¯1x1OS 1

L 2D . ~13!

By substituting this expansion in~12!, a series expansion ofF in powers ofL is obtained. Let us
now investigate those symmetries of the (r 11)th truncated dKP hierarchy which do not involve
the action of higher dKP flows. To this end, we have to avoid terms of the form$(L n)>0 ,L% with
n.(r 11) on the right-hand side of the first equation in~11!. Hence we imposeci j 50 for (i
1 j r ).(r 11), so thatF can be expressed in the form

F~L,M!5 (
n<r 11

anS M
~r 11!L r DL n, ~14!

with an(t) being arbitrary smooth functions. Furthermore, Eq.~11! for L can be written as

]L
]s

5
]F

]M 1$F~L,M!>0 ,L%, ~15!

and it is easy to see that only those terms in~14! with n>1 contribute to]u/]s.
Therefore, we conclude that the symmetries of the (r 11)th truncated dKP hierarchy which

do not involve higher dKP flows and define a nontrivial action on the coefficientu are of the form

3297J. Math. Phys., Vol. 44, No. 8, August 2003 Additional symmetries and the dKP hierarchy
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F~L,M!5 (
n51

r 11

anS M
~r 11!L r DL n. ~16!

This means that, under these conditions, there are essentiallyr 11 types of symmetry generators
of the (r 11)th truncated dKP hierarchy given by

Fi~L,M!ªaS M
~r 11!L r DL i , i 51,...,r 11, ~17!

with a5a(t) being an arbitrary function.
The action of the one-parameter groups generated byFi on the coefficientu can be explicitly

found. Indeed, by identifying the coefficients of 1/p in both members of~15! one gets a first-order
linear partial differential equation for

u~s,t!ªexp~s$Fi , •%!u~ t!,

the integration of which provides the symmetry transformation

u5u~ t!°ũ5u~s,t!.

Let us illustrate these facts by considering the caser 52. We observe that~13! implies that
near pointst in the region of analyticity ofa

aS M
3L 2D5a~ t !1

2

3
ya8~ t !

1

L 1S 1

3
xa8~ t !1

2

9
y2a9~ t ! D 1

L 2 1OS 1

L 3D . ~18!

One finds the following results for the corresponding three generators~17!:
~1! F1

From ~15! we have

]L
]s

5a8S M
3L 2D 1

3L 1a~ t !
]L
]x

,

so that

]u

]s
5a~ t !

]u

]x
1

1

3
a8~ t !. ~19!

The solution of this equation is

u5U~x1sa~ t !,y,t !1 1
3 sa8~ t !,

whereU is an arbitrary function. It leads to the symmetry

ũ5u~x1sa~ t !,y,t !1 1
3 sa8~ t !. ~20!

~2! F2

In this case~15! becomes

]L
]s

5
1

3
a8S M

3L 2D1
2

3
ya8~ t !

]L
]x

1a~ t !
]L
]y

,

and the equation foru is
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]u

]s
5

2

3
ya8~ t !

]u

]x
1a~ t !

]u

]y
1

2

9
ya9~ t !, ~21!

which has the solution

u5U~x1 2
3 sya8~ t !1 1

3 s2a~ t !a8~ t !,y1sa~ t !,t !1 2
9 sya9~ t !1 1

9 s2a~ t !a9~ t !,

whereU is an arbitrary function. The corresponding symmetry transformation of the dKP equation
is

ũ5u~x1 2
3 sya8~ t !1 1

3 s2a~ t !a8~ t !,y1sa~ t !,t !1 2
9 sya9~ t !1 1

9 s2a~ t !a9~ t !. ~22!

~3! F3

Now Eq. ~15! takes the form

]L
]s

5
1

3
a8S M

3L 2DL1S 1

3
xa8~ t !1

2

9
y2a9~ t ! D ]L

]x
1

2

3
ya8~ t !

]L
]y

1a~ t !
]L
]t

,

which implies

]u

]s
5S 1

3
xa8~ t !1

2

9
y2a9~ t ! D ]u

]x
1

2

3
ya8~ t !

]u

]y
1a~ t !

]u

]t
1

1

3
a8~ t !u1

1

9
xa9~ t !1

2

27
y2a-~ t !.

~23!

The solution of this equation is

u5~c8~ t !!2/3US x~c8~ t !!1/31
2

9
y2

c9~ t !

~c8~ t !!2/3,y~c8~ t !!2/3,s1c~ t ! D
1

1

9
x

c9~ t !

c8~ t !
1

2

27
y2S c-~ t !

c8~ t !
2

4

3 S c9~ t !

c8~ t ! D
2D ,

where U is an arbitrary function andc(t) is such thatc8(t)51/a(t). Hence, by definingT
ªT(s,t) through the implicit relation

c~T!5s1c~ t !,

and by taking into account that

T8ª
]T

]t
5

c8~ t !

c8~T!
,

one finds that the symmetry transformation determined by~23! is

ũ5~T8!2/3uS x~T8!1/31
2

9
y2

T9

~T8!2/3,y~T8!2/3,TD1
1

9
x

T9

T8
1

2

27
y2S T-

T8
2

4

3 S T9

T8D
2D . ~24!

The three symmetries~20!, ~22!, and~24! coincide with the symmetries of the dKP equation
found by Dunajski, Mason, and Tod.19 by analyzing equivalence transformations of Einstein–Weyl
spaces.

1. Transformation law of twistor data

According to~10! the dKP symmetry generated by~17! corresponds to a canonical transfor-
mation law of the twistor data determined by the Hamiltonian system
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dp

ds
5$a~r!pi ,p%,

dx

ds
5$a~r!pi ,x%, ~25!

where we are denoting

rª
x

~r 11!pr .

In terms of (p,r) this system becomes

dp

ds
52

a8~r!

r 11
pi 2r ,

dr

ds
5 i

a~r!

r 11
pi 2r 21, ~26!

and by taking into account that the Hamiltonian function

hªa~r!pi

is a constant of the motion it follows that the solution of~25! can be written as

p~s!5
p

~ j r!1/~r 11! , x~s!5~r 11! j p~s!r . ~27!

Here j 5 j (s,r,h) is the evolution law of the variabler. That is to say, it is the solution of the
initial value problem

] j

]s
5b~r,h!, j ~0,r,h!5r, ~28!

where

b~r,h!ª
i

r 11 S a~r!

h D ~r 11!/ i

h.

The expressions~27! define the action of the additional symmetries~17! on the twistor data.
It is important to observe that the solution of~28! satisfies

s5E
r

j (s,r,h) dr

b~r,h!
,

and, as a consequence, one deduces that the first-order derivatives ofj with respect tor andh are

j r5S a~ j !

a~r! D
~r 11!/ i

,

~29!

j h5sS i

r 11
21D S a~ j !

h D ~r 11!/ i

5S i

r 11
21D s

p~s!r 11 .

As we will see below, these relations will be useful for determining the action of the additional
symmetries on the solutions of the twistor equations.

III. SOLUTIONS OF THE dKP HIERARCHY

A. Generating functions and hodograph equations

We are going to present a scheme for solving twistor equations which is particularly suitable
to investigate the action of the additional symmetries introduced in the above section. An ingre-
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dient of our analysis is the use of a type of generating functions for canonical transformations of
twistor data,20 which allows us to introduce hodograph type equations to formulate part of the
constraints imposed by the twistor equations.

Let (P(p,x),X(p,x)) be a pair of canonically conjugate variables. Then for each positive
integerr we have

dP`dX5dp`dx5d~pr 11!`dr, rª
x

~r 11!pr .

Hence there exists an associated generating functionJrªJr(P,r) of the canonical transformation
(p,x)°(P,X) such that

dJr5pr 11dr1XdP,

or equivalently

pr 115
]Jr~P,r!

]r
, X5

]Jr~P,r!

]P
. ~30!

In this way by denoting

Mrª
M

~r 11!L r ,

we deduce

]

]p
Jr~P~L,M!,Mr !5

]Jr

]P
~P~L,M!,Mr !

]P~L,M!

]p
1

]Jr

]r
~P~L,M!,Mr !

]Mr

]p

5X~L,M!
]P~L,M!

]p
1L r 11

]Mr

]p
,

and by taking into account that

L r 11
]Mr

]p
5

1

r 11

]~LM!

]p
2

]S

]p
,

whereS is the function introduced in~7!, we deduce that

X~L,M!5
~]/]p! ~S1Jr~P~L,M!,Mr !2 @1/~r 11!#LM!

~]/]p! P~L,M!
. ~31!

This formula enables us to state the following:
Theorem 3: In terms of the function

SrªS1Jr~P~L,M!,Mr !2
1

r 11
LM, ~32!

the second twistor equation(X(L,M))<2150 is equivalent to the following two conditions
(1) The expansion ofSr in powers of p satisfies

~Sr !<2150. ~33!

(2) At each zero pi of ]P(L,M)/]p it is verified that

3301J. Math. Phys., Vol. 44, No. 8, August 2003 Additional symmetries and the dKP hierarchy

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

147.96.14.15 On: Tue, 21 Apr 2015 10:24:15



]Sr

]p
~pi ,t!50. ~34!

Henceforth we will refer to~34! as thehodograph equations.
A natural problem is to determine generating functionsJr(P,r) leading to solvable twistor

equations. In this sense, an important class arises whenP5P(p,x) is independent ofx and has a
finite-order expansion asp→`:

P~p!5 (
n52`

N

anpn.

The corresponding generating functionJ0 is of the form

J0~P,x!5 f ~P!1g~P!x,

whereg(P) is the inverse function ofP5P(p). As a consequence

J0~P~L,M!,M!5 f ~P~L!!1LM,

S05S1 f ~P~L!!.

It can be shown that, providedf (P(p)) admits a Laurent expansion asp→`, the twistor equa-
tions determined byJ0 have a solution. Moreover, it turns out that solving the hodograph equa-
tions forS0 is enough for computingL. Let us illustrate these facts with the following important
example

Gelfand–Dikii reductions: If we set

J0~P,x!5 f ~P1/m!1P1/mx, f ~P1/m!ª (
n52`

`

cnPn/m, ~35!

for a given integerm.1, the associated twistor data are

P5pm, X5
1

mpm21 ~ f 8~p!1x!. ~36!

Then, the first twistor equation is

L m5~L!>0 ,

so that

L m5pm1qm22~u!pm221¯1q1~u!p1q0~u!, ~37!

where the functionsqi(u) depend on the (m21) first coefficientsuª(u1 ,...,um21) of the ex-
pansion~1! of L. This constraint defines themth Gelfand–Dikii reduction of the dKP hierarchy.

For example the first few reductions are

m52, L 25p212u1 ,

m53, L 35p313u1p13u2 ,

m54, L 45p414u1p214u2p16u1
214u3 .

To determineL we must find the (m21) unknownsui as functions oft through the second
twistor equation. Thus, according to Theorem 2, we impose
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S05S1 f ~L!5~S1 f ~L!!>05 (
n>1

~ tn1cn!~L n!n>01c0 .

Hence, by using~37! we can expressS0 as a function of (p,t,u). If we now impose the hodograph
equations~34!, we get (m21) implicit equations

S (
n>1

~ tn1cn!
]

]p
~L n!n>0D U

p5pi (u)

50, i 51,...,m21, ~38!

which determine the functionsui(t) and, consequently,L. Furthermore, by eliminatingp in ~37!
we can expressp as a functionp5p(L,t), which under substitution into

S5 (
n>1

tnL n2S (
n>1

tnL n2 f ~L! D
<21

,

leads toM5]S/]L. Thus, it is easy to see that the functionsL andM are solutions of the twistor
equations which satisfy~1! and, therefore, they solve the dKP hierarchy Henceforth these solutions
will be calledGelfand–Dikii solutionsof the dKP hierarchy.

For instance, ifm52 ~dKdV reduction!,

L 25p212u, uªu1 ,

and we settn50, ;n.3, one gets the hodograph relation

3ut1x5F~u!, ~39!

which solves the dKdV equationut53uux . Here

F~u!:25
]

]p (
n>1

cn•~L n!n>0up50

can be assumed to be an arbitrary smooth function ofu. Some elementary solutions provided by
~39! are

F~u!5cu, u52
x

3t2c
,

F~u!5cu2, u5
1

2c
~3t1A9t214cx!, ~40!

F~u!5cu3, u5
f

2c
1

2t

f
, fªS 4x14c2Ax22

4t3

c D 1/3

.

B. The action of additional symmetries on Gelfand–Dikii solutions

Our aim now is to characterize solutions of the dKP hierarchy by applying the symmetry
transformations~17! to Gelfand–Dikii solutions. Obviously we may start from solutions of the
hodograph equations~38! and then perform the corresponding symmetry transformation. How-
ever, in order to do it we need to know how the coefficientsui of the expansion~1! of L transform
under the symmetries~17!, which requires us to solve a system of first-order linear partial differ-
ential equations. We are trying instead an alternative way consisting in determining the generating
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functions Jr(P,r) for the transformed twistor data and then solving the corresponding twistor
equations according to the scheme of Theorem 3. In this alternative procedure the problem reduces
to solving a system of implicit algebraic equations.

The dKP symmetry generated by~17! acts on twistor data according to the canonical trans-
formation ~27!. In particular, the twistor data~36! for the Gelfand–Dikii reductions transform as

P~s!5S p

~ j r!1/~r 11!D m

,

~41!

X~s!5
P~m21!/m

m
~ f 8~P1/m!1~r 11! j Pr /m!.

Hence, by taking into account thatj is a function of (s,r,h), it follows that

pr 115 j rP~r 11!/m5
]

]r
~ jP ~r 11!/m!2ĥr j hP~r 11!/m,

X5
]

]P
~ f ~P!1/m1 jP ~r 11!/m!2ĥPj hP~r 11!/m,

where

ĥ5ĥ~P,r!ªh~p~P,r!,r!5a~r!p~P,r! i .

By using now~29! we deduce

pr 115
]Jr

( i )~P,r!

]r
, X5

]Jr
( i )~P,r!

]P
, ~42!

where

Jr
( i )~s,P,r!ª f ~P1/m!1 j ~s,r,ĥ!P~r 11!/m1s S 12

i

r 11D ĥ~P,r!. ~43!

Wide families of solutions of the (r 11)th truncated dKP can be found by solving the twistor
equations associated with the generating functions~43!. The calculations are simple but long and
require computer aid. To illustrate the strategy for computing these solutions let us consider the
family of generating functionsJr

( i ) with

i 5r 11>m. ~44!

The choicei 5r 11 means that we are dealing with the orbits of Gelfand–Dikii solutions under
the action of the symmetry generator

Fr 11~L,M!ªaS M
~r 11!L r DL r 11. ~45!

Thus, according to~29! the function j in ~43! is determined froma through the solution of the
initial value problem

] j

]s
5a~r!, j ~0,r!5r. ~46!
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Hencej is independent ofh and by settings to be a constant, we may takej as a function ofr
only. Therefore, the generating functionsJr

( i ) that we are considering are

Jr~P,r!5 f~P1/m!1 j ~r! P~r 11!/m. ~47!

Notice that

P5
pm

~ j r!m/~r 11! , ~48!

so that the first twistor equation reads

Lm5~Lm!>0 , ~49!

where

Lª
L

j r~Mr !
, Mrª

M
~r 11!L r . ~50!

From ~1! one deduces at once that the integer powers ofL have expansions of the form

L N5pN1¯1an~u1 ,...,uN2n21!pn1¯1bn~u1 ,...,uN1n21!
1

pn 1¯ ,

~51!
1

L N 5
1

pN 1¯1cn~u1 ,...,un2N21!
1

pn 1¯ .

Furthermore,~1! implies that for any smooth functiong5g(t) the composite functiong(Mr) can
be expanded in the form

g~Mr !5gS t r 111
rt r

r 11

1

L 1¯1
vn~ t!

r 11

1

L n 1¯ D
5g~ t r 11!1

rt r

r 11
g8~ t r 11!

1

p
1¯1dn~ t,u1 ,...,un22 ,v1 ,...,vn2r 21!

1

pn 1¯ . ~52!

Thus, from~51! and ~52! and by taking into account~44!, we deduce thatL is of the form

L5~qm~ t,u!pm1¯1q1~ t,u!p1q0~ t,u!!1/m, ~53!

whereuª(u1 ,...,um21).
Two different cases arise.
~1! r5m21,m. This is the simplest situation since from~51!–~53! it follows at once that

Sr5S (
s51

r
r 2s11

r 11
tsL s1gLm1n1 j ~Mr !L

r 11D
>0

is a function depending of (p,t) andu5(u1 ,...,um21). Therefore, the (m21) hodograph equa-
tions

]Sr

]p
~pi ,t!50, ~54!

wherepi5pi(t,u) are the zeros of]Lm/]p, are enough for determiningu.
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~2! r>m11. The functionSr5(Sr)>0 depends on (p,t) and ũ5(u1 ,...,ur 21), so that in
addition to the (m21) hodograph equations~54! a set of (r 2m) new equations involvingt and
ũ are required. These additional equations are supplied by vanishing the coefficients of the nega-
tive powers 1/pn (n51,...,r 2m) in

~Lm!<2150.

C. Examples

In the following examples we exhibit solutionsu of the dKP equation~4! depending on an
arbitrary functionj 5 j (r). They are orbits of Gelfand–Dikii solutionsu0 under the action of the
symmetry generated by~45!. Notice that according to~45!–~46! we can obtainu0 by setting j
5r in the expression ofu.

~1! For

r 5m52, f ~P1/2!ªgP7/2,

the generating function~47! becomes

J2~P,r!5gP7/21 j ~r!P3/2, rª
x

3p2 , ~55!

andL2 takes the form

L25~L2!>0

5
p2

~ j 8~ t !!2/32
4

9

y j9~ t !

~ j 8~ t !!5/3p1
2u1

~ j 8~ t !!2/32
2

9

x j9~ t !

~ j 8~ t !!5/32
4

27

y2 j -~ t !

~ j 8~ t !!5/31
20

81

y2~ j 9~ t !!2

~ j 8~ t !!8/3 .

~56!

Hence]L2/]p has a unique zero given by

p15
2

9
y

j 9~ t !

j 8~ t !
.

Moreover, the expression of

S25~ 1
3 yL 21 2

3 xL1gL71 j ~M2!L3!>0

as a function ofp can be computed by using~57! and the expansion

j ~M2!5 j ~ t !1
2

3
y j8~ t !

1

p
1S x

3
j 8~ t !1

2

9
y2 j 9~ t ! D 1

p2

1S 2
2

3
y j8~ t !u11

4

81
y3 j -~ t !1

2

9
xy j9~ t ! D 1

p3 1OS 1

p4D .

In this way the hodograph equation (]S2 /]p)up5p1
50 turns out to be an equation foru5u1 ,

which yields the following solution of the dKP equation

u5
F

105g
2

6 j ~ t ! j 8~ t !4/3

F
1

9 j 8~ t ! j 9~ t !x16 j 8~ t ! j -~ t !y228 j 9~ t !2y2

81~ j 8~ t !!2 , ~57!

where
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Fªg2/3~27350j 8~ t !4/3j 9~ t !y2233075j 8~ t !7/3x1105A35G!1/3,

Gª

1

g
~648j ~ t !3 j 8~ t !41140g j 8~ t !8/3j 9~ t !2y411260g j 8~ t !11/3j 9~ t !xy212835g j 8~ t !14/3x2!.

~2! By setting

r 5m53, f ~P1/3!ªgP7/3,

in ~47! one finds that the first two coefficients of the expansion~1! of L are given by

u5u152
1

1024j 1
2 ~90 j 2

2t2272 j 1 j 3t22128 j 1 j 2y1Z2!, ~58!

u25
221g j 1

8 j 2t Z41F Z218388608j 1
59/4y12359296j 1

55/4 j 2t2

114688g j 1
11Z

, ~59!

where

j iª
] i j

]r i ~ t4!, i>0,

Fª216384j 0 j 1
47/417168g j 1

10j 2x213440g j 1
9 j 2

2ty15670g j 1
8 j 2

3t3

12016g j 1
10j 4t327560g j 1

9 j 2 j 3t3110752g j 1
10j 3ty,

andZ5Z(x,y,t,t4) is a root of the equation

49 j 1
30g2Z101~5 637 144 576g j 1

151/4x12 113 929 216g j 1
147/4j 2 ty21 610 612 736j 0

2 j 1
75/2

1396 361 728g j 1
147/4 j 3t32297 271 296g j 1

143/4j 2
2t3!Z41422 212 465 065 984j 1

87/2y2

133 397 665 693 696j 1
83/2 j 2

2t41237 494 511 599 616j 1
85/2 j 2t2y50.
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