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We study the effect of a Chern-Simons term on the electrically charged and spinning solitons of several
Uð1Þ gauged models in 2þ 1 dimensions. These are vortices of complex scalar field theories, both with
and without symmetry breaking dynamics, and the Oð3Þ Skyrme model. In all cases the gauge decoupling
limits are also considered. It is well known that the effect of the Chern-Simons dynamics is to endow
vortices with electric charge Qe and spin J, but our main aim here is to reveal a new feature: that the mass-
energy E of the electrically charged vortex can be lower than that of the electrically neutral one, in contrast
to the usual monotonic increase of E with Qe and J. These effects of Chern-Simons dynamics were
observed previously in 3þ 1 dimensional systems, and the present results can be viewed as corroborating
the latter. We carry out a detailed quantitative analysis of azimuthally symmetric vortices and describe their
qualitative features by constructing the solutions numerically.
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I. INTRODUCTION

The study of electrically charged and spinning solutions
of Uð1Þ gauged models in 2þ 1 dimensions can be traced
back at least to the work of Julia and Zee [1]. As shown
there, the Nielsen-Olesen vortices [2] (which are solutions
of the Abelian gauged Higgs model) do not possess
spinning (and electrically charged) generalizations with
finite energy. This feature can be attributed to the long-
range behavior of the electric field, the effect of which is
present also for Uð1Þ gauged models without a symmetry
breaking scalar field.
A standard way to circumvent this obstacle is to add a

Chern-Simons (CS) term to the gauge-field Lagrangian.
Chern-Simons field theory in 2þ 1 dimensions has featured
prominently in the literature since the seminal work of
Refs. [3,4]. The salient effect introduced by the CS dynamics
is the endowment of electric charge and angular momentum
to the solitons, while preserving a finite mass. The novel
effect of the CS dynamics revealed in the present work is that
themass or the static energyE of the soliton does not increase
monotonically with the electrical charge Qe and the spin J.
The nature of this mechanism peculiar to CS dynamics is

quite subtle. Clearly the values of Qe and J depend on the
strength of the CS coupling κ. If the dependence of the
mass-energy E on Qe and J is tracked by varying κ then
the usual monotonic increase of the energy is observed.
Varying the value of κ in this case amounts to changing the
theory or model. The more subtle effect of CS dynamics,

however, is observed in theories in which b∞, the asymp-
totic value of the function bðrÞ parametrizing the static
electric potential A0, turns out to be a free parameter. It is
the dependence on b∞ of the static energy E on the one
hand, and of Qe and J on the other, that reveals the new
effect, namely, that E may decrease with increasing Qe and
J in certain regions of the parameter space. In such theories
the dependence of E onQe and J can be tracked by varying
b∞. (Note that it is the presence of κ in the Lagrangian
which renders A0 nontrivial.1)
In some models where b∞ is not a free parameter of the

solutions, this mechanism is absent and the dependence of
the energy on the electric charge can only be tracked by
varying κ, which amounts to charging the theory. In those
cases, the energy increases monotonically with the electric
charge (and the angular momentum). This monotonic
behavior is present also in a theory allowing for a free
value of b∞, when the latter is held fixed and κ in increased.
In this work, we have studied theories of both types.
We have studied four Uð1Þ gauged scalar field models,

all with both Maxwell and CS dynamics, supporting finite
energy vortices in 2þ 1 dimensions.

(i) The complex scalar field model with the magnitude
of the scalar field vanishing in the far field. These are
nontopological vortices. The parameter b∞ for these

1A subtlety here is that for some value of b∞ for which A0 ≠ 0,
the electric charge may vanish (with higher electric multipoles
being present).
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solutions is free but E increases monotonically with
increasing Qe and J. (See Fig. 1.)

(ii) The complex scalar field model with symmetry
breaking dynamics supporting topological vortices.
This is the usual Abelian-Higgs (AH) model aug-
mented with the CS term. Here, the parameter b∞ is
fixed and E increases monotonically with increasing
value of the magnitude of Qe. (See Fig. 2.)

(iii) A generalized version of the Abelian-Higgs model
with CS term, whose solutions are parametrized with
arbitrary values of b∞, allowing for the new depend-
ence of E on Qe and J. (Note the negative slopes in
certain regions of Fig. 5.)

(iv) The Oð3Þ planar Skyrme model supporting topo-
logical vortices. Here too b∞ is arbitrary, leading to
the new dependence of E on Qe and J. (Note the
negative slopes in certain regions of Fig. 7.)

The first of the complex scalar models features no
symmetry breaking; however, it supports nontopological
vortices with finite mass, angular momentum and electric
charge.2 The second class of complex scalar models, which
exhibits symmetry breaking dynamics, supports Abelian-
Higgs vortices that are topologically stable prior to the
introduction of the CS term. In both classes of models, CS
terms—which are not positive definite by construction—
are prominently present in the Lagrangians and provide the
new features of the vortices under investigation here. Thus,
the question of topological stability is not considered as the
important feature. In the case of the Abelian-Higgs sys-
tems, both the p ¼ 1 and the p ¼ 2 models are studied.3 It
turns out that in the (usual) p ¼ 1 model and the pure p ¼
2 model, the presence of the CS term does not result in
lowering the mass of the soliton with increasing electrical
charge, while in the case of a hybridized p ¼ 2 model the
mass-energy of an electrically charged vortex can be lower
than that of the neutral one.
In addition to the gauged complex scalar models, we

have considered Uð1Þ-gauged Oð3Þ Skyrme models, aug-
mented by the usual CS term. These vortices are topologi-
cally stable prior to the introduction of the CS term. In this
case the mass of an electrically charged vortex can be lower
than that of the neutral one.
Some of the models in this work have already been under

scrutiny in the literature, though from a different direction.

For example, in the case of the complex scalar field model
(s) not featuring symmetry breaking dynamics, such
vortices were described in Refs. [6,7]. In the case of a
complex scalar field featuring symmetry breaking dynam-
ics, i.e., the AH model, the CS term was added to the
Maxwell-Higgs Lagrangian in [8], while in [9,10] the CS
term was the sole source of the gauge field dynamics.4 Here
we have considered the first two in the family of p-Abelian-
Higgs models [11,12], the p ¼ 1 case being the usual AH
model. We will see that the p ¼ 2 AHmodel displays some
very interesting properties.
Still with Abelian gauge dynamics but with the complex

scalar replaced by the Oð3Þ sigma model scalar, magnetic
Abelian vortices were constructed in [13]. This model is the
Skyrme analogue of the Abelian-Higgs model,5 and like the
latter does not support electric charge and spin. Adding a
Chern-Simons term to this Lagrangian results in systems
that support electrically charged, spinning magnetic vorti-
ces. This was carried out in Refs. [14–17], in analogy with
the Higgs models cited above in Refs. [8–10].6
Our primary objective in this work is to investigate in a

systematic way the relationship between the mass, electric
charge, and angular momentum in these models, looking
for generic features; this is a subject which was not
addressed in the existing literature. Then we recover a
number of known results, namely, that the effect of the
Chern-Simons dynamics is to endow electric charge and
angular momentum to the solitons. What is completely new
here is that the relation of the electric charge and the mass is
quite different from that of Julia-Zee dyon solutions [1] of
the Georgi-Glashow model, in the absence of CS dynamics.
While in the latter case the mass increases with electric
charge, here the mass decreases with the charge in some
regions of the parameter space. This tendency, namely that
of the energy of the dyon not increasing uniformly with
increasing electric charge, was observed also in 3þ 1
dimensional non-Abelian-Higgs models featuring (new)
Higgs-dependent CS terms [18].
Finally, we mention that in each of the Uð1Þ gauged

models studied, we also considered their gauge decoupling
limits.
The paper is organized as follows. In the next section we

introduce the general framework for the models studied. In
Sec. III we present two models with a gauged complex
scalar field. The first theory presents no symmetry breaking
dynamics, whose vortices, while of finite energy, are not
topologically stable. Then the Abelian-Higgs model(s) are
analyzed, which do feature symmetry breaking dynamics,

2The gauge decoupled version of these supporting Q vortices
is also considered in passing.

3In each space dimension D, a hierarchy of SOðDÞ gauged
Higgs models can be defined that support finite energy topo-
logically stable solutions (monopoles in D ≥ 3 and vortices in
D ¼ 2). This hierarchy, labeled by p, consists of models of
increasing nonlinearity with increasing p up to the maximum
allowed p for each D. The p ¼ 1 models in D ¼ 2 and D ¼ 3,
respectively, are the usual Abelian-Higgs and the Georgi-
Glashow (in the Bogomol'nyi-Prasad-Sommerfield (BPS) limit)
models. For a description of these models, see Ref. [5] and
references therein.

4In the latter case, the electrically charged solutions are self-
dual solutions attaining the absolute minimum.

5By Skyrme systems we mean all possible OðDþ 1Þ sigma
models in D dimensions.

6Again, in the absence of the Maxwell term, the energy of
the resulting electrically charged vortex attains its absolute
minimum [16].
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so that their vortices are topologically stable. In Sec. IV we
consider the Uð1Þ gauged Skyrme model, whose vortices
are also topologically stable. Finally, in Sec. V the main
results are summarized. The paper contains also two
appendixes. In Appendix A the general conventions and
the conserved charges are defined, and in Appendix B the
gauge decoupling limits for the three models are discussed.

II. THE GENERAL FRAMEWORK

The Lagrangians of the models studied in this work can
be expressed formally as

L ¼ γLAC þ βLAS þ LCS: ð1Þ

In Eq. (1) the term LAC summarizes two types of Uð1Þ
gauged complex scalar models and their gauge decoupled
limits: (a) models supporting nontopological vortices, and
(b) models supporting topological vortices. The two types
of models are distinguished by their respective self-inter-
action potentials of the complex scalar fields, in case
(b) featuring symmetry breaking, which are the AH models

LðpÞ
AH.

7

The term LAS in Eq. (1) defines theUð1Þ gauged Skyrme
scalar [13]. Finally, the term LCS is the CS density

LCS ¼ κελμνAλFμν; ð2Þ

defined in terms of the Uð1Þ gauge potential Aμ and
curvature Fμν. In Secs. III and IV, we shall set β ¼ 0

and γ ¼ 0 in turns.
It should be emphasized that the use of the term

topological is qualified. It is meant only to distinguish
those vortices from the nontopological ones, but since the
added CS term (2) is not positive definite, the description
topological is valid only to the vortices of the model prior to
the introduction of the CS term. The exceptions to this are
the vortices of the models in which the Maxwell term in the
Lagrangian is suppressed, leaving only the CS term to
sustain the dynamics of the Uð1Þ field. Such vortices are
studied in Refs. [9,10] for the Abelian-Higgs case and in
Refs. [14,16] for the Abelian Skyrme. (In these models, the
energy is minimised absolutely by a Bogomol’nyi bound.)

A. Numerical approach

In the absence of closed-form solutions, we relied on
numerical methods to solve the field equations for various
models in this work. For most of the solutions reported
here, the system of coupled differential equations, with
appropriate boundary conditions, was solved by using the
software package COLSYS developed by Ascher et al. [19].

This solver employs a collocation method for boundary-
value ordinary differential equations and a damped Newton
method of quasilinearization. At each iteration step a
linearized problem is solved by using a spline collocation
at Gaussian points. Since the Newton method works very
well when the initial approximate solution is close to the true
solution, the full spectra of solutions for varying various
parameters of the model(s) are obtained by continuation. In
this approach, the linearized problem is solved on a sequence
of meshes until the required accuracy is reached. Also, a
redistribution of the mesh points is automatically performed
to roughly equidistribute the error. With this adaptive mesh
selection procedure, the equations are solved on a sequence
of meshes until the successful stopping criterion is reached,
where the deviation of the collocation solution from the true
solution is below a prescribed error tolerance.

III. GAUGED ABELIAN COMPLEX SCALAR
FIELD MODELS

In this section, all the models employed conform to the
class of models (1) with β ¼ 0. We have studied both
nontopological and topological vortices of models featur-
ing the usual quadratic kinetic term, and since that with
symmetry-breaking potential is the p ¼ 1 AH model (see
footnote 3), we have also described the corresponding
model with no symmetry breaking as a p ¼ 1 AH model.

A. p= 1 models: General results

Here, we have characterized the Uð1Þ gauged complex
scalar model with the label p ¼ 1 because the Lagrangian of
the model is formally that of the p ¼ 1 Abelian-Higgs
model, where the self-interaction potential of the scalar field
is not a priori specified. Employing a symmetry-breaking
Higgs potential, this is indeed the p ¼ 1 Abelian-Higgs
model; in contrast, using a potential that does not break the
symmetry, the resulting model supports nontopological
vortices. (Though in the Higgs case we have also considered
the p ¼ 2model, we have not considered the corresponding
morenonlinearp ¼ 2 analoguewith no symmetry breaking.)

1. The reduced Lagrangian and boundary conditions

The simplest gauged spinning vortices are found in a
model containing a single complex scalar field φ [or,
equivalently, a real field doublet ϕα (α ¼ 1, 2)] gauged
with respect to a Uð1Þ field Aμ. Its Lagrangian reads

Lð1Þ
AC ¼ λ1ðDμϕ

αDμϕαÞ−Vðjϕαj2Þ− 1

4
λ2F2

μνþ κελμνAλFμν;

ð3Þ

where Vðjϕαj2Þ is the scalar field potential, not yet specified
as symmetry breaking or otherwise, and λ1, λ2, and κ are
coupling constants, which we keep unspecified for the sake
of generality.

7LðpÞ
AH define members of the family of AH models, the p ¼ 1

member being the usual AH model and the more nonlinear p ¼ 2
member given below by Eq. (31).
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The field equations are found by taking the variation of
Eq. (3) with respect to the gauge potential Aμ and the scalar
field ϕα. Of particular interest here are the equations for the
U(1) field,

λ2∂μFμν þ 2κεντλFτλ ¼ −2λ1ðεϕÞαDνϕα; ð4Þ

the right-hand side of which defines the electromagnetic
current jν.
Subject to azimuthal symmetry, the components of the

Uð1Þ connection Aμ ¼ ðAi; A0Þ are

Ai ¼
�
aðrÞ − n

r

�
εijx̂j; A0 ¼ bðrÞ; ð5Þ

where the integer n is the vortex number and aðrÞ, bðrÞ are
the electric and magnetic potentials, respectively.
The field strength tensor resulting from Eq. (5) is

Fij ¼ −
a0

r
εij; Fi0 ¼ b0x̂i: ð6Þ

The one-dimensional density LCS ¼ rLCS resulting from
the Chern-Simons density (2) is

LCS ¼ 2κ½ðab0 − ba0Þ − nb0�: ð7Þ

As for the complex scalar field φ, we will employ the
equivalent parametrization in terms of the real doublet ϕα,

φ ¼ ϕ1 − iϕ2; ϕα ¼ ðϕ1;ϕ2Þ; α ¼ 1; 2; ð8Þ

such that the covariant derivative Dμφ ¼ ∂μφþ iAμφ is
expressed as

Dμϕ
α ¼ ∂μϕ

α þ AμðεϕÞα; ðεϕÞα ¼ εαβϕβ: ð9Þ

Subjecting the scalar field to azimuthal symmetry, we have
the Ansatz

ϕα ¼ ηhðrÞnα; nα ¼
�
cos nθ

sin nθ

�
; ð10Þ

where θ is the azimuthal angle, n is the (integer) vortex
number, and η > 0.
The Ansatz (10) results in the components of the

covariant derivative (9),

Diϕ
α ¼ ηh0x̂inα þ η

ah
r
ðεx̂ÞiðεnÞα; D0ϕ

α ¼ ηbhðεnÞα:
ð11Þ

The resulting reduced one-dimensional Lagrange density is

r−1Lð1Þ ¼ 1

2
λ2

�
a02

r2
− b02

�
þ λ1η

2

��
h02 þ a2h2

r2

�
− b2h2

�

þ Vðh2Þ þ 2κ

r
½ða − nÞb0 − ba0�: ð12Þ

This equation features a single (real) scalar amplitude hðrÞ
and two Uð1Þ gauge potentials, an electric bðrÞ and a
magnetic one aðrÞ.
The field equations result in three complicated ordinary

differential equations for the functions a, b, and h, which
are solved subject to a set of boundary conditions com-
patible with finiteness of the energy and regularity of the
solutions. At the origin, one imposes

að0Þ ¼ n; b0ð0Þ ¼ 0; hð0Þ ¼ 0: ð13Þ

The boundary conditions at infinity follow from the
behavior of the scalar field there. For the version of the
model exhibiting symmetry breaking,

hðrÞ→ 1; aðrÞ→ 0; and bðrÞ→ 0 as r→∞: ð14Þ

Otherwise, for nontopological vortices,

hðrÞ→0; aðrÞ→a∞; and bðrÞ→b∞ as r→∞: ð15Þ

This difference in the boundary conditions for the gauge
potentials originates in the presence of the terms a2h2 and
b2h2 in the corresponding energy functional [see Eq. (27)
below], which should vanish as r → ∞. Also, a∞ and b∞
are nonzero constants (with b∞ identified with the fre-
quency ω of the scalar field in the gauge decoupling limit).
It should be noted that for a nonzero electric potential,

the presence of a Chern-Simons term in the action is a
prerequisite, independent of the asymptotics of the scalar
field. This can easily be seen by investigating the κ → 0
limit of the equation of motion of the function bðrÞ, which
will be shown in Sec. III A 3 below.

2. Electric charge and angular momentum

The electric charge is computed from Eq. (A7), where

jν ¼ −2λ1ðεϕÞaDνϕa: ð16Þ

Then one finds

Qe ¼
Z

ðλ2∂iFi0 þ 2κεijFijÞd2x; ð17Þ

which, when subjected to azimuthal symmetry, is

Qe ¼ 2π

Z
∞

0

�
λ2r−1ðrb0Þ0 − 4κ

a0

r

�
rdr ð18Þ

¼ 2πλ2½rb0�∞0 − 8πκ½a�∞0 ¼ 8πκðn − a∞Þ: ð19Þ
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In deriving this result, we use the asymptotic behavior
discussed above.
To calculate the angular momentum, we consider the Ti0

components of the stress-energy tensor of the model as
resulting from Eq. (A3),

Ti0 ¼ λ2FijF0j þ 2λ1Diϕ
aD0ϕ

a: ð20Þ
After imposition of azimuthal symmetry, one finds

Tt
θ ¼ J ¼ −λ2a0b0 − 2λ1η

2abh2: ð21Þ

To simplify this relation, one uses the Maxwell equation for
the electric potential

2λ1η
2bh2 ¼ λ2

ðrb0Þ0
r

− 4κr−1a0: ð22Þ

Equation (21) can thus be written as

−J ¼ λ2½a0b0 þ r−1aðrb0Þ0� − 4κr−1ða2Þ0; ð23Þ

leading to the following expression of the total angular
momentum:

J ¼ 2π

Z
∞

0

J rdr

¼ −2πλ2
Z

∞

0

ðrab0Þ0drþ 4πκ

Z
∞

0

ða2Þ0dr

¼ −2πλ2½rab0�∞0 þ 4πκ½a2�∞0 ¼ 4πκða2∞ − n2Þ: ð24Þ

This relation is evaluated subject to the asymptotic behavior
of the fields defined above by Eqs. (13) and (14).
For a model exhibiting symmetry breaking one finds the

quadratic relation

J ¼ −4πκn2 ¼ −
1

16πκ
Q2

e; ð25Þ

while the relation for nontopological vortices is more
complicated, with

J ¼ −nQe þ
1

16πκ
Q2

e: ð26Þ

Also, we notice that both the electric charge and angular
momentum are determined by the contribution of the
Maxwell-CS term only. Moreover, the presence of a
standard Maxwell term in the Lagrangian is not a pre-
requisite for the existence of solutions.
For completeness, we give here the energy density

functional of the p ¼ 1 Uð1Þ gauged complex scalar
model,8

r−1H ¼ 1

2
λ2

�
a02

r2
þ b02

�
þ λ1η

2

��
h02 þ a2h2

r2

�
þ b2h2

�

þ VðhÞ; ð27Þ

in which of course the Chern-Simons term is absent.
Multiplying the equation of motion of the function b
resulting from Eq. (27) with the function b we have

λ2ðrbb0Þ0 ¼ λ2rb02 þ 2λ1η
2rb2h2; ð28Þ

and integrating Eq. (28) from zero to infinity, it follows that
a nonzero b is not compatible with the requirements of
finite energy; i.e., in the limit of κ → 0 the electric field is
not supported. Nontrivial bðrÞ is supported by the equa-
tions of motion of the Lagrangian (12), with κ ≠ 0.

3. Nontopological vortices

In contrast to the case of a Higgs (or a Goldstone) field in
the next subsection, the scalar field vanishes asymptoti-
cally, hðrÞ → 0 (with V → 0 in that limit), such that this
model does not possess any topological features. One
remarks that this model possesses, however, a gauge-
decoupling limit which is found by suppressing the gauge
field. This limit is discussed in Appendix B.
In some sense, these are the (2þ 1)-dimensional

counterparts of the gauged Q-balls in four dimensions
(see [20] for a review of their properties). As in that case,
one possible expression of the potential Vðjϕαj2Þ that
allows for spinning vortices with finite mass and angular
momentum is

Vðjϕaj2Þ ¼ c3jϕαj2 þ c2jϕαj4 þ c1jϕαj6
¼ c3η2h2 þ c2η4h4 þ c1η6h6; ð29Þ

with ci input parameters.
Some properties of these (2þ 1)-dimensional nontopo-

logical gauged vortices were discussed in Ref. [7]. The
parameter space being very large, some properties of the
solutions appear to depend on the choice of parameters λi,
κ, and ci of the theory.
After fixing these parameters, the model still possesses

two input constants, a∞ and b∞. In our approach, the free
parameter is taken to beb∞—the electric potential at infinity.
It then follows that the corresponding value of a∞ is fixed by
numerics, being unique for all solutions constructed so far
(although we cannot exclude the existence of excited
configurations). Note, however, that b∞ cannot take arbi-
trary values and ranges over a finite interval, as the numerical
integration becomes difficult at the limits of that interval
with fast increasing values of ðE; a∞Þ.
Some results of the numerical integration are shown in

Fig. 1. Those solutions have c1 ¼ 2, c2 ¼ −1, c3 ¼ 1.1,
λ1 ¼ 1, λ2 ¼ 1=4, and κ ¼ 0.1. As an interesting feature,
one notices that the minimal values for Qe and J are

8Qualitatively the same features hold for the p ¼ 2 model,
which we eschew here.
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approached for a critical configuration, which also has the
minimal energy E. Also, although the energy increases
monotonically with Qe, one notices the existence of a
degeneracy for a range ofQe with the occurrence of a small
secondary branch of solutions (labeled II in Fig. 1).

4. p = 1 Abelian-Higgs vortices: Topological

The p ¼ 1 AH vortices are the vortices of the usual AH
model typified by the potential

Vðjϕaj2Þ ¼ λ0ðη2 − jϕaj2Þ2 ¼ λ0η
4ð1 − h2Þ2 ð30Þ

in the Lagrangian (3). In this case, the scalar field does not
vanish as r → ∞, with the usual symmetry-breaking scalar
potential and hðrÞ → 1 asymptotically.
The one-dimensional equations to be solved are those

arising from the reduced Lagrangian (12). In contrast to the
nontopological case typified by the potential (29) discussed
above, and the topological p ¼ 2 Abelian-Higgs model
(34) discussed below, this model does not possess a gauge
decoupling limit.

As expected, the presence of the CS term in Eq. (3)
results in electrically charged spinning vortices. These
vortex solutions are constructed numerically and their
properties are investigated.
The boundary values of the solutions, following from the

requirement of finite energy seen from Eq. (27), are stated
in Eqs. (13) and (14).
There is, therefore, no free parameter characterizing the

solutions. The static energy density (27) has no explicit
dependence on κ; nonetheless, its integral depends on κ
through the dependence of the functions aðrÞ, bðrÞ, and hðrÞ
on it. The electric chargeQeðnÞ also depends on κ, so one can
plot EðnÞ vsQeðnÞ for fixed n by varying κ, i.e., by varying
the theory. This is depicted in Fig. 2, showing a monotonic
increase of the energywith increasing value of themagnitude
of the electric charge. This feature, which is not our main
interest here, can also be gleaned from the results of [7].

B. p= 2 Abelian-Higgs system

Here, we shall consider a more general model consisting
of the p ¼ 2 generalization of the (usual) p ¼ 1 Abelian-
Higgs model discussed above. It is known that the
qualitative properties of D-dimensional magnetic monop-
oles or vortices [5] (see footnote 3) of p-Yang-Mills–Higgs
models [for allowed ðp;DÞ combinations] are similar.9

It was found above that introducing the CS term to the
p ¼ 1 AH model does not influence the dependence of the
energy on the electric charge, namely, that it is monoton-
ically increasing. This is because in that case a∞ ¼ b∞ ¼ 0
due to finite energy conditions. Hence, the only parameter
available for varyingQe (and J) is the CS coupling strength
κ. The situation ismarkedly different in the case of thep ¼ 2
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FIG. 1. Energy E is shown vs angular momentum J and electric
charge Qe for a family of p ¼ 1 gauged nontopological vortices
with c1 ¼ 2, c2 ¼ −1, c3 ¼ 1.1, λ1 ¼ 1, λ2 ¼ 1=4, and κ ¼ 0.1.
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FIG. 2. Energy E vs Qe for the p ¼ 1 AH system for n ¼ 1,
λ2 ¼ λ1 ¼ 4.0, λ0 ¼ 2.0, and η ¼ 1.0.

9This said, for p-AH models supporting purely magnetic
vortices on R2 (in the absence of a CS term), it was found
[12] that the “binding energies” of the vortices of the p-AH
models decrease with increasing p.
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AH model, where a∞ ≠ 0 and b∞ ≠ 0. This is the motiva-
tion for considering the p ¼ 2 AHmodel in the presence of
the CS term.
We find that in this case it is possible to vary Qe (and J)

by varying b∞ (or a∞), thence tracking the dependence of
the energy on the latter, which do not turn out to be
monotonically increasing as in Fig. 2 (see Fig. 5).
For technical reasons related to the numerical conver-

gence (the stiff problem), a Maxwell term will be added to
the pure p ¼ 2 Abelian-Higgs system. This term will
subsequently be suppressed to leave the pure p ¼ 2 model
under consideration, but some of the features revealed will
persist.
We start with reviewing the p ¼ 2 AH system. In the

notation of Eq. (8), the static Hamiltonian of the pth
Abelian-Higgs models onR2 is (see Ref. [5] and references
therein)

HðpÞ
0 ¼ ð1 − jϕcj2Þ2ðp−2Þðλ2½ð1 − jϕaj2ÞFij

þ 2εabðp − 1ÞDiϕ
aDjϕ

b�2
þ 4pð2p − 1Þλ1ð1 − jϕcj2Þ2jDiϕ

aj2
þ 2ð2p − 1Þ2λ0ð1 − jϕcj2Þ4Þ: ð31Þ

The p ¼ 1 model that results from Eq. (31) has been
discussed above.
Of interest here is its p ¼ 2 generalization. Using the

shorthand notation

F μν ¼ ½ð1 − jϕαj2ÞFμν þ 2εαβDμϕ
αDνϕ

β�;
F α

μ ¼ ð1 − jϕαj2ÞDμϕ
a;

F ¼ ð1 − jϕαj2Þ2; ð32Þ

the static Hamiltonian of the p ¼ 2 AH system can be
written concisely as

Hð2Þ
0 ¼ λ2F 2

ij þ 24λ1jF a
i j2 þ 18λ0F 2; ð33Þ

the corresponding Lagrangian being

Lð2Þ
0 ¼ −λ2F 2

μν þ 24λ1jF a
μj2 − 18λ0F 2: ð34Þ

The static limit of Eq. (34) will be used to derive the
equations of motion for the “putative” electrically charged
solutions with A0 ≠ 0.
Again, we augment Eq. (34) with the CS term which

defines the (pure) p ¼ 2 CS-Higgs Lagrangian

Lð2Þ ¼ Lð2Þ
0 þ κελμνAλFμν: ð35Þ

In practice, we will employ a hybridized version of
Eq. (37) that is augmented by a Maxwell term with some
coupling strength α,

Lð2Þ
ðαÞ ¼ −αF2

μν þ Lð2Þ: ð36Þ

This term is introduced mainly for purely technical reasons
to simplify the numerical integrations. After the solutions
of the system (36) are constructed, we take the limit α → 0
to yield the solutions to the p ¼ 2 system (35). That the
solutions persist in the limit α → 0, i.e., for the pure p ¼ 2
model, is seen from Fig. 3.
The ensuing Maxwell equations are

α∂μFμνþλ2ð1− jϕαj2Þ∂μF μνþ12λ1ð1− jϕαj2Þ2ðεϕÞβDνϕβ

¼−
1

2
κεντλFτλ; ð37Þ

which will be used later.

1. The reduced Lagrangian and boundary conditions

The reduced one-dimensional Lagrangian resulting from
imposition of symmetry is

r−1Lð2Þ
ðαÞ ¼−2α

�
a02

r2
−b02

�
−2λ2η

4½r−2ð½ð1−h2Þa�0Þ2

−ð½ð1−h2Þb�0Þ2�

−24λ1η
6ð1−h2Þ2

��
h02þa2h2

r2

�
−b2h2

�

−18λ0η
8ð1−h2Þ4þ2κ

r
½ðab0−ba0Þ−nb0�; ð38Þ

which we solve subject to the boundary values

lim
r→0

hðrÞ ¼ 0; lim
r→0

aðrÞ ¼ n; lim
r→0

b0ðrÞ ¼ 0; ð39Þ

lim
r→∞

hðrÞ¼ 1; lim
r→∞

aðrÞ¼ a∞; lim
r→∞

bðrÞ¼ b∞: ð40Þ

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

κ=0
κ=1

κ=2

a ∞

α

FIG. 3. a∞ vs α for the F2 þ p ¼ 2 AH system for n ¼ 1,
λ2 ¼ λ1 ¼ λ0 ¼ 1.0, b∞ ¼ 0, and η ¼ 1.0 for several values of κ:
κ ¼ 0, 1, 2.
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In contrast to the case of a p ¼ 1 AH model, here we see
from (40) that a∞ and b∞ are nonvanishing constants; in
particular, b∞ is a free parameter that allows us to vary the
electric charge of the solutions within a concrete model
(i.e., choice of the parameters in the Lagrangian). This can
be gleaned by inspecting the static Hamiltonian corre-
sponding to the Lagrangian (38)

r−1Hð2Þ
ðαÞ ¼ 2α

�
a02

r2
þ b02

�

þ 2λ2η
4½r−2ð½ð1 − h2Þa�0Þ2 þ ð½ð1 − h2Þb�0Þ2�

þ 24λ1η
6ð1 − h2Þ2

��
h02 þ a2h2

r2

�
þ b2h2

�

þ 18λ0η
8ð1 − h2Þ4; ð41Þ

from which it is clear that finite energy does not require the
constants a∞ and b∞ to vanish at infinity. For the finite
energy and topologically stable solutions of the system (41)
(stabilized by the appropriate magnetic charge [5]), we
have

lim
r→∞

aðrÞ ¼ a∞ > 0: ð42Þ

Since the F2 term does not introduce new fields, and
since it is positive definite, it suffices to consider the
topological lower bound on the energy of the pure p ¼ 2
system alone. The topological charges of p-AH vortices
are the magnetic vortex numbers of the p-AH models
introduced in Refs. [5,11,12]. The general expressions
for these topological charge densities are total divergen-
ces on R2 which, subject to azimuthal symmetry, take
the simple expression [12]

ϱðpÞ ¼ d
dr

½ð1 − h2Þ2p−1a�; ð43Þ

which is a total derivative with respect to r. Hence, the
integral of Eq. (43) with the boundary values (39), (40)
results in an integer (vortex number) as required for topo-
logical stability. Thus topological stability persists for the
asymptotic value að∞Þ > 0 [Eq. (42)] for all p-AH models
with p ≥ 2, but excluding p ¼ 1. Clearly, in the presence of
the Maxwell term F2 the absolute minimum of the energy
cannot be attained.
What is more important is that the solutions of the

equations arising from the Lagrangian (38) feature the
function bðrÞ in addition to its first- and second-order
derivatives b0 and b00, as a result of which b∞ is now a free
parameter that characterizes the solutions and cannot be
fixed a priori. In the numerical process, b∞ and a∞ are
related, as shown in Fig. 4. This enables the tracking of the
energy E with varying Qe and J. Note that when κ ¼ 0,
b∞ ¼ 0 is fixed.

2. Electric charge and angular momentum
of the p = 2 AH model

Adopting the definition of the electric charge for the
system (36)

1

2
Qe¼def

Z
ð2α∂iFi0 þ 2λ2ð1 − jϕαj2Þ∂iF i0 − κεijFijÞd2x;

ð44Þ
one has after symmetry imposition

1

8π
Qe¼−

Z �
αr−1ðrb0Þ0þλ2r−1ðr½ð1−h2Þb�0Þ0þκ

a0

r

�
rdr

¼−½α½rb0�∞0 þλ2½r½ð1−h2Þb�0�∞0 þκ½a�∞0 �¼κðn−a∞Þ:
ð45Þ

Likewise, we have the Ti0 component of the hybrid model

Ti0 ¼ 4αFijF0
j þ 4λ2F ijF 0

j þ 48λ1F a
iF

a
0; ð46Þ

which after imposition of symmetry yields

1

4
J ¼ αa0b0 þ λ2η

4½ð1 − h2Þa�0½ð1 − h2Þb�0

þ 12λ1η
6ð1 − h2Þ2abh2; ð47Þ

leading to the final expression of the angular momentum

1

8π
J ¼ α½rab0�∞0 þ λ2η

4½r½ð1 − h2Þa�0½ð1 − h2Þb�0�∞0

þ 1

2
κ½a2�∞0 ¼ 1

2
κða2∞ − n2Þ: ð48Þ

3. The solutions

In Fig. 5 we represent the energy E of the solutions as a
function of the electric charge Qe for a certain system with

0.4

0.6

0.8

1.0

1.2

-0.2 -0.1 0.0 0.1 0.2

α=1.0

α=0.4

α=0.1

α=10-6

a ∞

b∞

FIG. 4. a∞ vs b∞ for the F2 þ p ¼ 2 AH system for n ¼ 1,
λ2 ¼ λ1 ¼ λ0 ¼ 1.0, κ ¼ 0.5, and η ¼ 1.0 for several values of
α: α ¼ 1.0; 0.4; 0.1; 10−6.
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nonvanishing CS coupling constant (κ ¼ 0.5). The free
parameter here is the value of b at infinity, which is no
longer a gauge freedom. We clearly observe that minimal
energy occurs at a nonvanishing value of the electric
charge, so the uncharged solution is not energetically
favored in this model.
Related to this fact, the relation between the energy E

and the absolute value of the angular momentum jJj ceases
to be monotonically increasing, the minimal energy being
reached at a nonvanishing angular momentum, as seen in
Fig. 5. Moreover, given a concrete theory, both the electric
charge and the angular momentum are bounded quantities
supported on finite ranges of Qe and J.

IV. ABELIAN SKYRME MODEL IN 2+ 1
DIMENSIONS: TOPOLOGICAL

Unlike in the case of the Abelian gauged complex scalar
models considered in Sec. III, where both topological and
nontopological vortices were studied, here in the case of
the Abelian gauged Oð3Þ sigma (Skyrme) models we
are exclusively concerned with topological solitons. The

models employed in this section conform to the class of
models (1) with γ ¼ 0.

A. The model

The Lagrangian of the simplest Abelian Skyrme model
[13] in 2þ 1 dimensions is

L0 ¼ −
1

4
λ2FμνFμν þ 1

2
λ1jDμθ

aj2 − 1

2
λ0V½θ3�; ð49Þ

with the spacetime index μ ¼ ð0; iÞ, i ¼ 1, 2. In the static
limit, Eq. (49) supports topologically stable10 magnetic
vortices first constructed in Ref. [13].
The most general Abelian Skyrme model is

L1 ¼ −
1

4
λ2FμνFμν −

1

8
λ3jD½μθaDν�θbj2

þ 1

2
λ1jDμθ

aj2 − 1

2
λ0V½θ3�; ð50Þ

having added the quartic kinetic term jD½μθaDν�θbj2 in
which the index notation ½μν� implies antisymmetrization in
μ and ν. To Eq. (50) we add the Abelian CS term (2), and
we study the system

L ¼ L1 þ LCS; ð51Þ

which supports both electric charge and angular
momentum.
Wewill chooseV½θ3� to be the usual “pionmass” potential

V½θ3� ¼ ð1 − θ3Þ: ð52Þ

TheMaxwell equation resulting from the Lagrangian (51) is

λ2∂μFμν − λ3D½μθαDν�θβðεθÞαDμθ
β þ λ1ðεθÞαDνθα

¼ −2κενρσFρσ: ð53Þ

These are subject to the constraint

jθaj2 ¼ 1 a ¼ ðα; 3Þ; with α ¼ 1; 2; ð54Þ

with the covariant derivativeDμθ
a ¼ ðDμθ

α; Dμθ
3Þ defined

by the gauging prescription

Dμθ
α ¼ ∂μθ

α þ AμðεθÞα; Dμθ
3 ¼ ∂μθ

3: ð55Þ

Subjecting the Skyrme scalar θa to azimuthal symmetry,
we have

 12.32

 12.33

 12.34

 12.35

 12.36

-0.5 -0.4 -0.3 -0.2 -0.1  0  0.1  0.2
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 12.36

-0.6 -0.4 -0.2  0  0.2
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FIG. 5. Energy E vs angular momentum J and electric charge
Qe for the F2 þ p ¼ 2 AH system for n ¼ 1, α ¼ 1.0,
λ2 ¼ λ1 ¼ λ0 ¼ 1.0, κ ¼ 0.5, and η ¼ 1.0.

10It turns out that for λ0 ¼ 1 and V ¼ ðϕ3 − 1Þ2, these vortices
saturate the topological (magnetic) lower bound.
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θa ¼
�
θα

θ3

�
¼

�
PðrÞnα
QðrÞ

�
; ð56Þ

with P2 þQ2 ¼ 1, and nα given in Eq. (10). The trigono-
metric parametrization of P and Q in terms of the radial
function fðrÞ is

PðrÞ ¼ sin fðrÞ; QðrÞ ¼ cos fðrÞ: ð57Þ
The Ansatz (56), along with the Ansatz (5) for the Maxwell
field, result in the following components of the covariant
derivative (55):

Diθ
α ¼P0x̂inαþ

aP
r
ðεx̂ÞiðεnÞα; D0θ

α ¼ bPðεnÞα; ð58Þ

Diθ
3 ¼ Q0x̂i; D0θ

3 ¼ bQ: ð59Þ

Exploiting Eqs. (58) and (59) leads to the reduced one-
dimensional Lagrangian density

r−1L ¼ 1

2
λ2

�
a02

r2
− b02

�
þ λ3

�
a2

r2
− b2

�
sin2ff02

þ 1

2
λ1

��
a2

r2
− b2

�
sin2f þ f02

�

þ 1

2
λ0ð1 − cos fÞ þ 2κ

r
½ðab0 − ba0Þ − nb0�; ð60Þ

which we solve subject to the boundary values

lim
r→0

fðrÞ ¼ π; lim
r→0

aðrÞ ¼ n; lim
r→0

b0ðrÞ ¼ 0; ð61Þ

lim
r→∞

fðrÞ¼ 0; lim
r→∞

aðrÞ¼ a∞; lim
r→∞

bðrÞ¼ b∞; ð62Þ

where a∞ is not necessarily zero and b∞ is a free parameter
that allows us to vary the electric charge of the solutions
within a concrete model (i.e., choice of the parameters in the
Lagrangian). Notice that a∞ is numerically related to b∞.

B. Electric charge and angular momentum

The electric current, in terms of the scalar matter fields, is

jν ¼ λ3D½μθαDν�θβðεθÞαDμθ
β − λ1ðεθÞαDνθα: ð63Þ

In terms of the static azimuthally symmetric fields (5), the
electric charge is

Qe ¼
Z

j0d2x ¼ −2π
Z �

λ2r−1ðrb0Þ0 þ 4κ
a0

r

�
rdr

¼ −2π½λ2½ðrb0Þ�∞0 þ 4κ½a�∞0 � ¼ 8πκðn − a∞Þ: ð64Þ

To calculate the angular momentum of the model
described by the Lagrangian (50) we need the relevant
component of the stress tensor

Ti0 ¼ λ2FijF0
j þ 1

2
λ3ðD½iθaDj�θbÞðD½jθaD0�θbÞ

− λ1Diθ
aD0θ

a; ð65Þ

which when subjected to azimuthal symmetry reduces to

Ti0 ¼ r−1fλ2a0b0 þ abP2½λ1 þ 2λ3ðP02 þQ02Þ�g; ð66Þ

leading to the angular momentum density

J ¼ fλ2a0b0 þ abP2½λ1 þ 2λ3ðP02 þQ02Þ�g: ð67Þ

Now the Gauss law equation arising from the variation of
the Lagrangian (50), when subjected to this symmetry, is

bP2½λ1 þ 2λ3ðP02 þQ02Þ� ¼ r−1½λ2ðrb0Þ0 þ 4κa0�; ð68Þ

whence Eq. (67) simplifies to

J ¼ r−1½λ2ðrab0Þ0 þ 2κða2Þ0�; ð69Þ

yielding the final expression of the angular momentum

J ¼ 2π

Z
J rdr ¼ 2π½λ2½rab0�∞0 þ 2κ½a2�∞0 �

¼ 4πκ½a2∞ − n2�: ð70Þ

It is clear from Eq. (70) that the angular momentum
vanishes in the absence of the CS term, i.e., when κ ¼ 0.
This is known from thework of Ref. [21], namely, that static
Uð1Þ gauged Skyrmions do not have angular momentum,
despite the fact that in the gauge decoupling limit they do
support J (as known from the work of Ref. [22]). We will
return to the last example in Appendix B3. The question of
angular momentum of the (gauged and ungauged)
Skyrmions of the Oð3Þ Skyrme model in 2þ 1 dimensions
markedly contrasts with that of the Oð4Þ Skyrme model in
3þ 1 dimensions. There, the Uð1Þ gauged Skyrmion of the
Oð4Þ sigma model in 3þ 1 dimensions does spin, as shown
in [23], as does also the (ungauged) Skyrmion [24].

C. The solutions

For these solutions b∞, the asymptotic value of bðrÞ,
turns out to be a free parameter. Through the numerical
process a∞, the asymptotic value of aðrÞ, is related to b∞.
In Fig. 6 the numerical relation between a∞ and b∞ is
shown for several values of κ. Now the value of the energy
E depends both on a∞ and b∞, while Qe and J explicitly
depend on a∞. Thus the dependence of E on Qe and on J
can be tracked by varying b∞. These are depicted in Figs. 7
and 8, respectively.
The situation for this model is similar to that of the one in

Sec. III B. The fact that b at infinity constitutes a free
parameter of the theory allows charged configurations with
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less energy than the corresponding uncharged one. This
fact is shown in Fig. 7. There we can see that the effect
exists for any nonvanishing value of κ. When the energy is
represented as a function of the angular momentum, Fig. 8,
we observe that for a given value of the angular momentum
there are two different solutions with different mass (and
different electric charge). Again both the charge and the
angular momentum are bounded, as seen in Figs. 7 and 8.

V. SUMMARY AND DISCUSSION

The overriding aim of this work was to investigate the
effect CS dynamics has on various classes of solitons in
2þ 1 dimensions. The focus of our interest was on the effect
that CS dynamics has on the dependence of the energy E on
the electric charge Qe and the angular momentum J of the
vortices of Uð1Þ gauged scalar field theories.
In the present work we have studied models of Uð1Þ

gauged complex scalar fields andOð3Þ Skyrme fields in 2þ
1 dimensions, in the presence of the CS term. The vortices of
these models support Qe and J only when the CS term is
present. In the case of models featuring symmetry-breaking
dynamics, namely, the AH models and the Oð3Þ Skyrme
model, the vortices (solitons) are topologically stable (prior
to the introduction of the CS term), while the (nontopolog-
ical) vortices of models with no symmetry breaking are
gauged Qe-vortices whose stability has its source in its
dependence on the angular velocity or momentum.
While it has been long known that CS dynamics endows

the gauged topological vortices with electric charge Qe and
angular momentum J, the dependence of the mass-energy
of these two global quantities was not investigated. This has
been done here, and it is shown that the dependence of the
energy on Qe and J is not monotonic. This contrasts with
the electrically charged solitons of the familiar SOð3Þ
gauged Higgs solitons in 3þ 1 dimensions, namely, the
Julia-Zee dyons, where the energy increases monotonically
with Qe.
The main result of this work is that of the nonstandard

dependence of the energy E on the electric charge Qe and
the angular momentum J. Most remarkably, E can decrease
with increasing Qe in some regions of the parameter space,
in contrast to the usual monotonic increase of E with Qe.
Also, the dependence of E on J turns out to be nonstandard,
contrasting with the usual linear relationship J ∝ Qe.
These new features are observed in models where the

solutions allow for nonzero asymptotic values of the
magnetic function aðrÞ, i.e., að∞Þ ¼ a∞ ≠ 0. In turn, such
solutions are a result of the occurrence of the nonzero
asymptotic values of the electric function bðrÞ, i.e.,
bð∞Þ ¼ b∞ ≠ 0, which results from the equations of
motion arising from the Lagrangian. Most importantly,
the constant b∞ turns out to be a free parameter character-
izing the solutions, and sinceE depends both on a∞ and b∞,
andQe and J explicitly depend on a∞, the dependence of E
on Qe and J can be tracked. This situation applies to
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FIG. 6. Asymptotic value a∞ vs asymptotic value b∞ for the
Abelian Skyrme model for n ¼ 1, λ0 ¼ 0.2, λ1 ¼ 1.0, λ2 ¼ 0.01,
λ3 ¼ 0.5, and several values of κ.
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FIG. 7. Energy E vs electric charge Qe for the Abelian Skyrme
model for n ¼ 1, λ0 ¼ 0.2, λ1 ¼ 1.0, λ2 ¼ 0.01, λ3 ¼ 0.5, and
several values of κ.
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FIG. 8. Energy E vs angular momentum J for the Abelian
Skyrme model for n ¼ 1, λ0 ¼ 0.2, λ1 ¼ 1.0, λ2 ¼ 0.01,
λ3 ¼ 0.5, and several values of κ.
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(i) models supporting nontopological vortices, (ii) thep ¼ 2
AH model (see Fig. 5) and (iii) the gauged Skyrme model
(see Figs. 7 and 8). However, it is absent in the case of the
(usual) p ¼ 1 AH model.
In Appendix B, we have considered the gauge decou-

pling limits of these models. It turns out that in this limit J
is supported by the nontopological vortices of the complex
scalar models and the topological vortices of the Oð3Þ
Skyrme model. In the case of the topological vortices of
complex scalar (AH) models, our numerical results for the
p ¼ 2 AH model are not conclusive, but J is likely not
supported.
Most of the configurations in this work possess particle-

like generalizations in four spacetime dimensions.11 Thus it
is interesting to contrast these two cases. The first obser-
vation is that no Maxwell Chern-Simons terms exists in
d ¼ 3þ 1 spacetime dimensions. However, in that case,
the electric field decays sufficiently slowly so as to allow
for finite mass-spinning solutions with a Maxwell term
only in some models with gauged scalar fields.
Starting with the spinning Uð1Þ gauged vortices with a

nontopological scalar field, we notice the existence of d ¼
3þ 1 counterparts with many similar properties [20].
However, the total angular momentum of those charged
Q-ball solutions is proportional to the electric charge,
J ¼ nQe, with n an integer, the winding number. The
picture is very different for a Higgs-like complex scalar
field exhibiting symmetry-breaking dynamics, in which
case we are not aware of any finite mass-spinning particle-
like solution in d ¼ 3þ 1 dimensions. Also, note that there
exist noUð1Þ gaugedHiggs–Chern-Simons densities [25] in
even dimensional spacetimes, which would have been
necessary to enable spin in this case. The picture is different
for models with non-Abelian gauge fields, but that is outside
of the scope of this work.
The spinning solutions of the Abelian Skyrme model in

Sec. III also possess generalizations in 3þ 1 dimensions
for the Uð1Þ gauged Oð4Þ Skyrme model. An important
difference being that in that case there is no Chern-Simons
term in the Lagrangian, but nonetheless the axially sym-
metric solutions still support angular momentum. The
corresponding properties of the solutions are discussed
in [23], where it was seen that the angular momentum is
related linearly to the electric charge.12 Also in that model,
the energy increases monotonically with increasing electric
charge as shown in [26], which is probably due to the

absence of Chern-Simons dynamics. Nonzero angular
momentum persists in the gauge decoupling limit of this
model, namely the usual Skyrme model, as shown in [24]
and briefly recovered in Appendix B3 below.
Perhaps the most important conclusion from the results

in this paper pertaining to the Uð1Þ gauged scalar field
model with Maxwell–Chern-Simons dynamics is the anal-
ogywith the results pertaining to non-AbelianHiggsmodels
with Yang-Mills–Chern-Simons dynamics presented in
Ref. [18]. There, we have studied SOð5Þ and SUð3Þ gauged
Higgs models featuring “Chern-Simons” dynamics, where
the “Chern-Simons” densities employed are what we have
referred to as Higgs–Chern-Simons [5,25,27] densities. [As
it happens, the magnetic (topological) charge in the SOð5Þ
model was zerowhile in the SUð3Þmodel it was nonzero, in
both cases with nonzero Qe.] It was observed there, like
here, that theminimumof the energy did not always coincide
with the Qe ¼ 0 configuration. We maintain that this effect
is due to the presence of Chern-Simons dynamics in both
cases, which is remarkable since the Higgs–Chern-Simons
densities in even dimensions are gauge invariant in contrast
to the Chern-Simons and Higgs–Chern-Simons densities in
odd dimensions, which are gauge variant. In spite of the
different gauge transformation properties of the Higgs–
Chern-Simons densities in even and odd dimensions, we
observe the same dynamical effect in both cases. (It should
be added that this analogy is not complete in relation to the
dependence of the energy on the angular momentum. This is
due to the well-known absence of a global angular momen-
tum for non-Abelian Higgs configurations with a net
magnetic charge [28,29].)
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APPENDIX A: CONVENTIONS AND
CONSERVED CHARGES

The solutions in this work are studied in a fixed three-
dimensional Minkowski spacetime background with a line
element

ds2 ¼ gμνdxμdxν ¼ dt2 − dx2 − dy2; ðA1Þ
where t is the time coordinate and x, y are the usual
Cartesian coordinates. The same line element expressed

11A review of spinning solitons in various d ¼ 3þ 1 models
can be found in [20].

12This contrasts with the (2þ 1)-dimensional case at hand
where the angular momentum is generically proportional to the
square of the electric charge. One should not seek too deep a
reason for this difference between 2þ 1 and 3þ 1 dimensions,
since the definitions of the electric charge in each case is different,
in the former case being reliant on the presence of the Chern-
Simons term, and the latter on electric-magnetic duality.
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in cylindrical coordinates r, θ [with r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and

θ ¼ arctanðx=yÞ] reads

ds2 ¼ dt2 − dr2 − r2dθ2; ðA2Þ

where 0 ≤ r < ∞ and 0 ≤ θ < 2π.
Note that throughout the paper, the Greek indices like μ,

ν run from 0 to 2 (with x0 ¼ t and x̂i ¼ xi=r), Latin indices
like i, j ¼ 1, 2 label space coordinates, and Latin letters like
a, b correspond to internal group indices for scalar field
multiplets with a ¼ α; 3, b ¼ β; 3, and α, β ¼ 1, 2.
Given a model with Lagrangian density L, the energy-

momentum tensor Tμν of the solutions is most easily
defined by introducing the spacetime metric gμν into the
action and assuming it to be arbitrary (see, e.g., Ref. [30]).
Then Tμν (which is directly symmetric and gauge invariant)
is obtained by differentiating the density of the action with
respect to the metric13:

Tμν ¼
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LÞ
δgμν

; ðA3Þ

(note that the metric gμν is set equal to the Minkowski
metric after differentiation). For configurations whose
energy-momentum tensor does not depend on both θ
and t, Tt

t and Tt
θ ≡ J z corresponds to the energy density

and angular momentum density, respectively. The total
mass-energy E and total angular momentum J are the
integral of these quantities,

E ¼ 2π

Z
∞

0

drrTt
t; J ¼ 2π

Z
∞

0

drrTt
θ: ðA4Þ

The solutions possess also an electric charge whose
definition is based on the Maxwell equation

λ2
1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
FμνÞ þ 2κενρσFρσ ¼ jν ðA5Þ

where

jμ ¼ 1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LSÞ

δAμ
; ðA6Þ

where LS is the part of the Lagrangian density different
from the Maxwell and the CS terms.
The electric charge is the volume integral of j0 ¼ j0 ¼ ρ,

Qe¼def
Z

j0d2x ¼ 2π

Z
∞

0

drrj0: ðA7Þ

APPENDIX B: THE GAUGE DECOUPLING
LIMITS: SPINNING VORTICES

In these appendixes, we study the gauge decoupling
limits of the pure p ¼ 1 (nontopological), pure p ¼ 2
Higgs, and theUð1Þ gauged Skyrme models, in the absence
of the Chern-Simons term since the latter vanishes in this
limit. Our motive here is to consider the spin of these
vortices in the stationary limit.
The Lagrangians in the gauge decoupling limits follow

from the replacements

aðrÞ → n; bðrÞ → ω; ðB1Þ

and in this limit the axially symmetric Ansätze (10) and (56)
for the scalar fields are upgraded by replacing14 the unit
vector nα in them with

n̂a ¼
�
cosðnθ − ωtÞ
sinðnθ − ωtÞ

�
: ðB2Þ

1. Spinning Q-vortices

The simplest model possessing spinning solitons in
2þ 1 dimensions contains a single complex scalar field
φ [or, equivalently, a scalar doublet ϕa (a ¼ 1, 2)]. Its
Lagrangian reads [here we follow the notation of (8)]

L ¼ λ1ð∂μφ
�∂μφÞ − Vðjφj2Þ ¼ λ1ð∂μϕ

αÞ2 − Vðjϕαj2Þ;
ðB3Þ

with Vðjϕαj2Þ as a Uð1Þ-invariant smooth potential.
Equation (B3) is the gauge decoupling limit of Eq. (3).
The scalar field Ansatz factorizing the ðθ; tÞ dependence

of ϕα is

φ ¼ ϕ1 − iϕ2; ϕα ¼ hðrÞn̂α; ðB4Þ

where hðrÞ is the (real) scalar amplitude, n is an integer, and
ω > 0 is the frequency (η is set to 1). The fact that the ðt; θÞ
dependence of ϕ occurs in the above form implies that the
energy-momentum tensor of the model is t, θ independent.
However, its components will depend on both n and ω. One
possible expression of the potential Vðjϕαj2Þ which allows
for spinning vortices with finite mass is given by (29).
Making the replacements (B1) in the reduced Lagrangian

of the gauged system (12), we have the Lagrangian

r−1L ¼ λ1

�
h02 þ

�
n2

r2
− ω2

�
h2
�
þ c3h2 þ c2h4 þ c1h6:

ðB5Þ

13Note that, as usual, the CS terms in (1) do not contribute to
the energy-momentum tensor.

14In the gauged models, the angular momentum is calculated in
terms of the static fields due to the presence of the Abelian field.
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The angular momentum density of a spinning vortex is
given by

J ¼ λ1nωh2: ðB6Þ

In contrast to the case of a Higgs (or a Goldstone)
field discussed in Sec. II, the scalar field vanishes asymp-
totically, hðrÞ → 0, such that this model does not possess
any topological features. However, a conserved Noether
charge Q is still associated with the complex scalar field φ,
since the Lagrange density is invariant under the global
phase transformation φ → φeiα, leading to the conserved
current

jμ ¼ −φ�∂μφ − φ∂μφ�; ∇μjμ ¼ 0: ðB7Þ

The corresponding conserved chargeQ is the integral of j0.
One can easily see that the relation

J ¼ nQ ðB8Þ

holds, such that angular momentum is quantized. In view of
this relation, the spinning vortices can be thought of as
corresponding to minima of energy with fixed angular
momentum.
Spinning solutions of the model (B3) were discussed by

several authors, starting with the early work [31] (see also
[32]). They are the lower-dimensional counterparts of the
better-known Q-balls in 3þ 1 dimensions [20] and share
all their basic properties. Treating ω, n, and the parameters
in the potential U as input variables, the Q-vortices exist
only in a certain frequency range, ωmin < ω < ωmax. The
limiting behavior of the spinning solutions at the limits of
the ω interval is rather intricate, and has not been discussed
yet in a systematic way in the literature. It appears that both
E and Q increase without bounds at the limits of the ω
interval. Also, these configurations do not always possess a
static limit, with J > 0.
At a critical value of the frequency, both the mass-energy

and angular momentum of the solutions assume their
minimal value, from where they monotonically rise towards
both limiting values of the frequency. Considering the mass
of the solutions as a function of the Noether chargeQ, there
are thus two branches, merging and ending at the minimal
charge and mass. The solutions are expected to be stable
along the lower branch, when their mass is smaller than the
mass of Q free bosons.
Some results of the numerical integration for n ¼ 1 are

shown in Fig. 9 (note that similar results are found
for n > 1).

2. Gauge decoupled p= 2 Abelian-Higgs model: Spin?

The gauge decoupling limit of the p ¼ 2 AH model is
the p ¼ 2 Goldstone model (see Ref. [5] and references
therein) whose static Hamiltonian is

Hð2Þ
0 ¼ 4λ2ðεαβ∂μϕ

α∂νϕ
βÞ2 þ 24λ1ðη2 − jϕαj2Þ2j∂μϕ

βj2
þ 18λ0ðη2 − jϕαj2Þ4; ðB9Þ

which in the static axially symmetric limit yields the energy
density functional

r−1Hð2Þ ¼ 2λ2η
4½r−2ð½ð1 − h2Þn�0Þ2�

þ 24λ1η
6ð1 − h2Þ2

��
h02 þ n2h2

r2

��

þ 18λ0η
8ð1 − h2Þ4; ðB10Þ

which supports radially symmetric Goldstone vortices.
Our aim here is to consider the axially symmetric

stationary Lagrangian corresponding to the static system
(B9). In particular, we need the one-dimensional reduced
Lagrangian of this system; this can be obtained directly
from Eq. (38) by applying the replacements (B1) to it,
yielding

r−1Lð2Þ ¼ −2λ2η4½r−2ð½ð1 − h2Þn�0Þ2 − ðωð1 − h2Þ0Þ2�

− 24λ1η
6ð1 − h2Þ2

��
h02 þ n2h2

r2

�
− ω2h2

�

− 18λ0η
8ð1 − h2Þ4: ðB11Þ

The question is, does this system support spin? In
contrast to the p ¼ 1 nontopological vortices considered
above, it is not obvious if this system can sustain nonzero
angular momentum.
First, it is easy to verify the existence of static configu-

rations in the ω ¼ 0 limit. However, the numerical accuracy
deteriorates very fast with increasing ω without an obvious
reason for that behavior. The source of this apparent
pathology may be gleaned by noting that the quadratic
kinetic term in (B11) is nonstandard, and there is no μ2 − ω2

4.1

4.2

4.3

4.4

 0.95  0.975  1  1.025  1.05
ω

M/(2π)

J/(2π)n=1

FIG. 9. Energy E and angular momentum J are shown as a
function of field frequency for the typical global (nontopological)
vortices.
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type coefficient of h2 (for small h). Moreover, it is impos-
sible to alter the (reduced) potential ð1 − h2Þ4 by hand, e.g.,
to produce the desired type of coefficient without violating
the energy lower bound. This likely indicates the absence of
spin for these pure p ¼ 2 vortices.

3. Stationary ungauged Skyrmion:
Gauge decoupling limit

We have seen from our work in Section IV B that the
angular momentum of the Uð1Þ gauged Skyrme model
vanished in the absence of the Chern-Simons term. [See
Eq. (70) when κ ¼ 0.] Thus, in the gauge decoupling limit
when the Chern-Simons term is absent and κ ¼ 0 effec-
tively, one might expect the angular momentum to vanish.
Remarkably, this is not the case; it is well known from the
work of Ref. [22] that in this limit the angular momentum is
supported.
While this fact is known, here we nonetheless verify it

for completeness, in concert with the other two gauge
decoupling limits given in Secs. B1 and B2.
Consider the Lagrangian (50) in the gauge decoupled

limit, namely, the usual Skyrme model

LSkyrme ¼ −
1

8
λ3j∂ ½μθa∂ν�θbj2 þ

1

2
λ1j∂μθ

aj2 − 1

2
λ0V½θ3�;

ðB12Þ

and the component of the stress tensor relevant to the
calculation of the angular momentum,

Ti0 ¼
1

2
λ3ð∂ ½iθa∂j�θbÞð∂ ½jθa∂0�θbÞ − λ1∂iθ

a∂0θ
a: ðB13Þ

The stationary Ansatz is adapted from the static Ansatz (56)
by replacing the unit vector nα with n̂α given by Eq. (B2).
The result is

Ti0 ¼
nω
r
P½λ1Pþ 2λ3ðP0 þQ0Þ�; ðB14Þ

leading to the volume integral for the angular momentum

J ¼ 2πnω
Z

P½λ1Pþ 2λ3ðP0 þQ0Þ�rdr; ðB15Þ

which does not vanish if ω ≠ 0, provided of course that
such solutions to the stationary equations exist, which we
know they do [22].
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