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Classical Zeno dynamics in the light emitted by an extended, partially coherent source
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We provide theoretical and experimental evidence of a classical-optics realization of quantum Zeno dynamics.
In contrast to other approaches, the classical implementation is extremely simple and adaptable. Frequently
monitoring the transverse spreading of the light emitted by an extended source results in a nontrivial dynamics
where spreading and all other transverse effects associated with light propagation as the increase of spatial
coherence tends to be inhibited. This is fully equivalent to a quantum Zeno dynamics where monitoring whether
a quantum free particle at rest remains in a spatial interval causes inhibition of the quantum-state evolution,
including the degree of purity.
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I. INTRODUCTION

The Zeno effect was originally introduced as a quantum
phenomenon in which observation inhibits the evolution of
the observed system. Several versions were later discovered,
of which the most advanced is the so-called Zeno dynamics
[1], where observation does not necessarily inhibit evolution
but places some constraints. Typically, observation forces the
quantum state to remain within a given subspace of the sys-
tem’s Hilbert space, but otherwise, the system is free to evolve
under some effective Hamiltonian tailored alike by the original
free dynamics and the constraints caused by observation.

In this paper, we provide a classical-optics realization of
quantum Zeno dynamics. Frequent monitoring the transversal
spreading of the light emitted by an extended source results
in a Zeno dynamics where transversal spreading and all other
transversal effects usually associated with the propagation of
light are inhibited. Despite its classical-optics nature, this is
fully equivalent to a quantum Zeno dynamics of a free particle
in which monitoring its presence within some prescribed
spatial region tends to inhibit the evolution of the state. In
sharp contrast to other examples of quantum Zeno dynamics
currently in progress [2], this classical-optics approach has an
extremely simple experimental implementation. This can be
significant in order to investigate nontrivial examples of Zeno
dynamics taking advantage of the simplicity that characterizes
the classical-optics mimicking of quantum phenomena. For
example, arbitrary transformations of the complex wave func-
tion can be implemented by liquid-crystal plates with easily
tailored point-dependent complex transmittances. Different
classical-optical counterparts of other Zeno versions can be
found in Ref. [3].

The classical Zeno dynamics is rather counterintuitive to
the common sense, even to experienced scientists. Prompted,
if more or less of the light coming from an illuminated narrow
slit (source) will fall on a distant identical slit (detector) when
a number of identical aligned slits are inserted between them
[Figs. 1(a) and 1(b)], almost all scientists we have asked
respond “less light.” Intuitively, diffraction spreading in each
slit removes a fraction of the light power falling in the next
slit. For coherent illumination, opticians familiarized with
Fresnel zones know, however, that a few strategically placed
intermediate slits can create a lens effect that increases the

light power in the detector [4,5]. Recently, we have shown
that, for coherent illumination, insertion of an equally spaced
increasing number of slits always results in an increase of
the light power on the detector for a large enough number
of slits [6]. The same result holds irrespective of how the
increasing numbers of slits are distributed, e.g., randomly, in
the source-detector path so that it has no simple explanation in
terms of Fresnel zones. Increasing power in the detector was
interpreted as a (partial) inhibition of diffraction spreading
caused by frequent diffraction.

The phenomenon is more striking and has deeper im-
plications when the illumination is not spatially coherent,
for example, sunlight. In the setup of Fig. 1 illuminated
by partially coherent light, the power at the detector slit
approaches its value at the source slit when a number of
intermediate slits is inserted. The intermediate slits are found
to be more efficient for increasing the power at the detector
slit compared to the coherent case, which seems to contradict
the fact that diffraction spreading of partially coherent light is
more pronounced and, therefore, more difficult to halt. We then
easily observe, experimentally, this effect in light power using
standard light sources, a few slits, and a detector. Furthermore,
common optical intuition suggests that successive truncation
of the wave front in each slit will always result in higher
coherence at the detector slit [7], but we actually find that the
degree of coherence at the detector slit diminishes towards
its value at the source when a number of intermediate slits is
inserted (for a recent Zeno effect in coherence expressed as
the degree of polarization, see Ref. [8]). More generally, we
show theoretically that, in our particular case (observed free
propagation), the state of light (defined by the mutual intensity
J in the quasimonochromatic case [9]) approaches its initial
state at the source slit and, therefore, so does any observable
property of light that might be expressed in terms of J .

This inhibition is a bona fide classical realization of a quan-
tum Zeno dynamics. Fresnel diffraction is, indeed, formally
equivalent to nonrelativistic evolution of a free particle with the
replacement k/z → m/h̄t , where k is the wave number, z is the
propagation distance, m is the mass of the particle, and t is time
so that free-particle evolution may be referred to as diffraction
in time [10]. In the quantum context, the density matrix ρ

in position representation replaces the mutual intensity J ,
light power becomes position probability, coherence becomes
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FIG. 1. Experimental setup for observation of Zeno dynamics in
light propagation.

state purity, and the slits represent measurements of position,
projecting the state on the spatial interval they define. Thus,
the Zeno inhibition of transverse effects in light propagation
in a distance zD is equivalent to a quantum Zeno inhibition of
free-particle evolution in a time tD by repeated measurements
of position. The detector reading of the light power that has
crossed all slits is the classical version of the probability
that the free particle has always been found within the slit
regions. Actually, this is an extremely simple realization of the
so-called dynamical Zeno effects since the particle can evolve
freely within the subspace of positions defined by the slits [1].

II. NUMERICAL EVALUATIONS
OF LIGHT-POWER DYNAMICS

In preliminary numerical simulations, we focus on quasi-
monochromatic partially coherent illumination with mutual
intensity (within a scalar picture of light),

J (x1,x2) = 〈E(x1)E�(x2)〉 = 1

2a
exp

[
− (x1 − x2)2

d2

]
(1)

for x1,x2 ∈ [−a,a] and zero otherwise. The intensity I (x) =
J (x,x) within the slit is then uniform with transversal
coherence length proportional to d. The factor 1/(2a) makes
the power,

P =
∫ a

−a

dx J (x,x) (2)

to be normalized to unity at the source slit. The degree of
coherence between any pair of points in a slit is given by
μ(x1,x2) = |J (x1,x2)|/√I (x1)I (x2) [9], and the global degree
of coherence is characterized by [11]

μg =
[ ∫ ∫ a

−a
dx1dx2|J (x1,x2)|2]1/2

∫ a

−a
dx J (x,x)

= [tr(ρ2)]1/2

tr ρ
, (3)

where the last equality is the quantum-mechanical coun-
terpart in the form of quantum-state purity. In the Fresnel
approximation of diffraction, the mutual intensity propagates
according to

J (x ′
1,x

′
2) = k

2πz

∫ ∫ a

−a

dx1dx2J (x1,x2)

×K(x ′
1 − x1)K�(x ′

2 − x2), (4)

where K(x) = exp(ikx2/2z). With the slit labeling of Fig. 1,
the mutual intensity J (N)(x1,x2) on the detector slit N at
the distance zD from the source after diffraction in N − 1

FIG. 2. (Color online) Numerical results: (a) Power gain
P (N)/P (1) on the detector slit as the number of intermediate slits
N − 1 increases for coherent illumination (open dots) and partially
coherent illumination (dots). (b) Power gain P (4)/P (1) for three
intermediate slits as the degree of coherence of the source μg

increases. (c) Global degree of coherence μ(N)
g at the detector slit

as the number of intermediate slits increases for partially coherent
illumination with μg = 0.248. (d) Axial variation in the global degree
of coherence from the source value μg = 0.248 to the detector value
μ(N)

g as light traverses the intermediate slits.

intermediate slits is obtained by cascaded application of Eq. (4)
N times with distances z = zD/N .

Figure 2(a) shows the calculated ratios between the power
P (1) on the detector without intermediate slits and the power
P (N) with N − 1 intermediate slits in the cases of coherent
illumination with the plane-wave front (μg = 1 for d = ∞)
as in Ref. [6] and of partially coherent illumination (μg =
0.248 for d = 0.1a) for a particular slit-detector distance zD .
Diffraction inhibition is evidenced by an increasing power
on the detector as more and more intermediate slits are
inserted compared to the case of no intermediate slits, i.e.,
P (N)/P (1) is larger than unity and grows with N . For partially
coherent illumination, the detected powers P (1) and P (N) are
much smaller than with coherent illumination since diffraction
spreading is faster, but the Zeno effect is more pronounced,
i.e., the gain P (N)/P (1) is considerably higher for any number
of intermediate slits. In the example of Fig. 2(a), three of
four slits suffice to obtain a gain of 120%, whereas, coherent
illumination requires tens of slits for a similar gain. For a
particular source-detector distance zD and number of slits
N , Fig. 2(b) illustrates the weakening of the Zeno effect as
the degree of coherence of the source increases. Qualitatively
similar results hold for other values of zD and N .

III. OBSERVATION OF THE ZENO EFFECT
IN LIGHT-POWER DYNAMICS

We have experimentally confirmed the existence of this
effect in light power using a light source, a few slits, and an
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FIG. 3. Experimental results: For a commercial incandescent
lamp, a white LED lamp, and a pigtailed laser diode (λ = 635 nm)
illuminating the system of slits of Fig. 1 with a = 0.3 and zD =
500 mm, measured power gain P (N)/P (1) on the detector slit as
a function of N . The symbols represent the average of a set of
measurements, and the bars represent the standard deviations. The
dashed curves are guides to the eye.

optical power meter in an optical bench. To show its generality,
a commercial filament lamp with a frosted bulb, a commercial
white light-emitting-diode (LED) lamp, and a pigtailed laser
diode are used as sources. The width of the source, intermedi-
ate, and detector slits is 2a = 0.6 mm. The filament and LED
are placed as close as possible to the source slit or imaged by
a lens on the source slit in order to increase the incoming light
power, but the results are substantially the same in the two
arrangements. The diverging output radiation from the fiber of
the diode is collimated by a lens in a beam of cross section of
about 1 cm. The power meter is attached to the backface of
the detector slit, placed at a distance of zD = 500 mm from
the source slit (about one diffraction length ka2/2 for the
mean-visible wavelength), and collects all light falling on it.
For each number N − 1 of intermediate slits equally spaced
zD/N , we evaluate the gain P (N)/P (1) at the detector slit
as the quotient between power-meter indications with N − 1
intermediate slits and with no intermediate slits. Alignment of
the intermediate slits is achieved by carefully maximizing the
power-meter indication each time that an intermediate slit is
inserted. As seen in Fig. 3, the power gain P (N)/P (1) on the
detector slit is greater than unity and grows with the number of
intermediate slits for all three sources. Despite the fact that the
LED and filament lamps are not quasimonochromatic sources,
the power gains are of the same order of magnitude as those
obtained numerically from the Gaussian quasimonochromatic
model. As expected, the Zeno effect is smaller and less
monotonous for the more coherent laser diode.

IV. NUMERICAL EVALUATIONS
OF COHERENCE DYNAMICS

More counterintuitive is that the degree of coherence of the
detector slit tends to retain its source value when intermediate
slits are inserted. Spatial limitation by an opening of the
radiation coming from a spatially incoherent source is well
known to be the simplest way to obtain a more spatially
coherent secondary source [7]. In Fig. 2(c), for example, the

FIG. 4. Grayscale representation of the two-point degree of
coherence μ(x1,x2), evaluated numerically, at (a) the source slit,
(b) at the detector slit without intermediate (N = 1) slits, and (c)
at the detector slit with 29 intermediate slits (N = 30). The source
coherence length is d = 0.2a (μg = 0.347), and the source-detector
distance is zD = ka2.

global degree of coherence grows from μg = 0.248 to μ(1)
g =

0.838 (coherence distances from d = 0.1a to d 	 1.7a) in
free propagation from the source to the detector. One may
also think that the enhanced inhibition of diffraction spreading
in repeated diffraction is due to the increase in coherence in
each intermediate slit that lowers diffraction spreading, but
the numerical simulations show a more complex scenario.
As seen in Fig. 2(c), the degree of coherence μ(N)

g at the
detector slit decreases towards the source value μg as more
and more intermediate slits are inserted. The variation along
z of the global degree of coherence as light traverses the
intermediate slits is shown in Fig. 2(d). Free-space propagation
between two slits preserves the global degree of coherence
(horizontal segments). Limitation of the propagating field by
any of the intermediate slits suddenly raises the degree of
coherence (vertical segments). However, the more the “steps
up” in the global degree of coherence (N = 1,2,5,10,20), the
lower the degree of coherence μ(N)

g reached at the detector
slit. The degree of coherence μ(x1,x2) between any pair of
points at the detector also approaches its distribution at the
source. For example, the short coherence length (d = 0.2a)
at the source [Fig. 4(a)] becomes much longer (d ∼ 1) at the
detector slit upon free propagation without intermediate slits
[Fig. 4(b)] and diminishes almost monotonically towards the
source coherence length when more and more intermediate
slits are placed [Fig. 4(c)].

V. A SIMPLE THEORETICAL DESCRIPTION
OF THE ZENO DYNAMICS

Standard theoretical methods in optics allows us to prove
that the slits or the position measurements inhibit the evolution
of the state of light, defined by the mutual intensity J (x1,x2)
or of the particle state ρ(x1,x2) ≡ 〈x1|ρ|x2〉 = J (x1,x2) and,
therefore, of all their properties. Passage of light through the
system of slits in Fig. 1 is, indeed, equivalent to N bounces
of light in a resonator with finite-width planar strip mirrors
[7,12]. The diffraction modes associated with the resonator
are coherent fields that reproduce themselves from mirror
to mirror (slit to slit) aside from a constant, i.e., ψm(x) →
λmψm(x), m = 1,2, . . . ,∞, where λm is the mode eigenvalue
[13]. Its squared modulus usually is written as |λm|2 = 1 − δm,

052101-3



MIGUEL A. PORRAS, ALFREDO LUIS, AND ISABEL GONZALO PHYSICAL REVIEW A 88, 052101 (2013)

where δ1 < δ2 < δ3 are the mode losses per bounce. For planar
strip mirrors spaced L and if the resonator Fresnel number
NF = ka2/(2πL) is greater than unity, the losses per bounce
are given by δm = cmN

−3/2
F with cm 	 0.118m2 [14]. We

assume that the mutual intensity of the partially coherent light
on the source slit can suitably be represented as a sum of a
number of uncorrelated diffraction modes [12],

J (x1,x2) =
∑
m

Pmψm(x1)ψ�
m(x2), (5)

with adequate weights Pm. This representation allows writing
the mutual intensity on the N th slit after N − 1 intermediate
slits as J (N)(x1,x2) = ∑

m |λm|2NPmψm(x1)ψ�
m(x2) or

J (N)(x1,x2) =
∑
m

[
1 − cm

(
2πL

ka2

)3/2]N

Pmψm(x1)ψ�
m(x2).

(6)

This expression has different limits at large N depending on the
meaning of L. For fixed L, all terms in the sum in (6) approach
zero. The fundamental mode m = 1 tends to zero slower
compared to the other modes given its lower losses, which
yields J (N)(x1,x2) ∼ [1 − c1(2πL/ka2)3/2]NP1ψ1(x1)ψ�

1 (x2)
asymptotically at large N . This is the situation in an empty
resonator as light travels back and forth repeatedly from
mirror to mirror. The power tends to zero at the same time that
the residual amount of light becomes coherent (the mutual
intensity factorizes) due to repeated spatial filtering [7]. In
the Zeno scheme, however, L = zD/N . Use of the binomial
theorem in Eq. (6) leads to

J (N)(x1,x2) =
∑
m

Pmψm(x1)ψ�
m(x2)

×
[

1 − cm

(
2πzD

ka2

)3/2 1

N1/2
+ o

(
1

N1/2

)]
,

(7)

which evidences that the mutual intensity at the detector
approaches that at the source as the number of intermediate
slits within zD increases. Similarly, the evolution of the
density matrix tends to be inhibited as measurements of
position within tD are more frequent.

As an example, Eq. (6) with only the fundamental and first-
order mode in Eqs. (2) and (3) gives, assuming that ψ1(x) and
ψ2(x) are normalized to unity, P (N) = P1|λ1|2N + P2|λ2|2N

and μ(N)2
g = (P 2

1 |λ1|4N + P 2
2 |λ2|4N )/P (N)2. Note that evalua-

tion of the degree of coherence from (3) for an arbitrary mixture
of modes would require the knowledge of their shapes since
the modes are not orthogonal, but the symmetry properties of
the fundamental and first-order modes [13] make the above
expression for μ(N)

g independent of their shapes. Figure 5(a)

FIG. 5. From (6), (a) power gain and (b) global degree of
coherence from as functions of N for fixed distance L = 0.25ka2

(gray curves) and for L = zD/N with zD = 0.25ka2 (black curves)
in the Zeno scheme. The source is a mixture of the two modes with
P1 = P2 = 0.5 with degree of coherence μ2

g = 0.5.

shows that the power P (N) tends to zero in the resonator
arrangement (gray curve) but increases up to the source power
in the Zeno scheme (black curve) following a similar trend
as in the numerical simulations and in the measured values.
Similarly, the coherence in the resonator is seen, in Fig. 5(b),
to build up to unity (gray curve) but to decrease down to the
source value in the Zeno arrangement (black curve).

VI. CONCLUSION

Summarizing, we have presented classical and quantum
Zeno dynamics that manifest preventing spreading and an
increase in spatial coherence or state purity in the free evolution
of a localized wave packet. To some extent, the coexistence
of the two effects might be regarded as paradoxical since
increasing power through a distant slit invokes collimation
and spatial coherence, which is precisely prevented by
the same scheme. Both effects actually are seen to coexist
because the evolution of the state of light or of the quantum par-
ticle is inhibited. We also remark about the extremely simple
experimental arrangement, accessible even to undergraduate
laboratories, for the observation of this Zeno effect.
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[11] J. Tervo, T. Setälä, and A. T. Friberg, J. Opt. Soc. Am. A 21,
2205 (2004).

[12] W. Streifer, J. Opt. Soc. Am. 56, 1481 (1966).
[13] A. G. Fox and T. Li, Bell Syst. Tech. J. 40, 453 (1961).
[14] L. Ronchi, Appl. Opt. 9, 733 (1970).

052101-5

http://dx.doi.org/10.1016/S0030-4018(97)00207-1
http://dx.doi.org/10.1016/S0030-4018(01)01192-0
http://dx.doi.org/10.1119/1.12204
http://dx.doi.org/10.1119/1.12204
http://dx.doi.org/10.1111/j.1749-6632.1995.tb38981.x
http://dx.doi.org/10.1103/PhysRevLett.97.110402
http://dx.doi.org/10.1364/OE.16.003762
http://dx.doi.org/10.1364/AO.7.000483
http://dx.doi.org/10.1364/JOSA.59.000559
http://dx.doi.org/10.1016/0030-4018(70)90110-0
http://dx.doi.org/10.1103/PhysRevA.84.052109
http://dx.doi.org/10.1103/PhysRevA.84.052109
http://dx.doi.org/10.1016/0031-9163(63)90400-1
http://dx.doi.org/10.1103/PhysRevA.87.064102
http://dx.doi.org/10.1103/PhysRevA.87.064102
http://dx.doi.org/10.1103/PhysRev.88.625
http://dx.doi.org/10.1103/PhysRevA.83.043608
http://dx.doi.org/10.1103/PhysRevA.83.043608
http://dx.doi.org/10.1364/JOSAA.21.002205
http://dx.doi.org/10.1364/JOSAA.21.002205
http://dx.doi.org/10.1364/JOSA.56.001481
http://dx.doi.org/10.1002/j.1538-7305.1961.tb01625.x
http://dx.doi.org/10.1364/AO.9.000733



