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We present a set of once subtracted dispersion relations which implement crossing sym-

metry conditions for the ππ scattering amplitudes below 1 GeV. We compare and discuss

the results obtained for the once and twice subtracted dispersion relations, known as

Roy’s equations, for three ππ partial JI waves, S0, P and S2. We also show that once

subtracted dispersion relations provide a stringent test of crossing and analyticity for

ππ partial wave amplitudes, remarkably precise in the 400 to 1.1 GeV region, where the

resulting uncertainties are significantly smaller than those coming from standard Roy’s

equations, given the same input.
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1. Introduction

In 1971 S. M. Roy 1 derived a set of coupled integral equations, the Roy Equations

(RE), for the ππ scattering partial waves, by implementing crossing symmetry con-

ditions into twice subtracted dispersion relations. In recent years, Roy’s equations

have been used in several ways: to obtain predictions for low energy ππ scattering us-

ing Chiral Perturbation Theory (ChPT) 2,3, to test those predictions (ChPT) 4,5,6,

and also to eliminate the well known ”up-down” ambiguity 7,8.

In a series of works, our group 5,6 has also used a dispersive approach, to obtain,

using also the most recent experimental results, a precise data parametrization of ππ

scattering amplitudes consistent with analyticity, unitarity and crossing. In fact, the

recent data from E865 collaboration at Brookhaven 9 and from NA48/2 10 provide

us with new and very precise information on the ππ scattering at low energies. In

our works we have combined Forward Dispersion Relations (FDR) and Roy’s Eqs.

Let us remark that we have only used the very general properties of analyticity,

crossing, etc... and data, so that the approach is model independent. Furthermore,
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we have not included ChPT constraints, so that our results could be used as tests

of ChPT. The advantage of FDR is that they are very precise, can be extended

up to any energy and do not depend on the large t behavior. In contrast, Roy

Eqs. use the full t dependence since they are written in terms of partial waves and

can only be used up to roughly 1.1 GeV. However, RE provide a simple and well

defined analytic extension of partial waves for the calculation of poles in the complex

plane. Such analytic extension of ππ scattering partial waves to the complex plane

is of particular interest for the understanding of the controversial sigma resonance.

Actually, Roy’s equations have been used to predict very precisely the sigma pole

position 11 using the ChPT determination of the scattering lengths.

We report here about our work in progress to improve our description of the

energy region above 400 MeV, that can subsequently provide a precise determination

of the sigma pole. Actually, when using standard RE, the large experimental error

of the scattering length a2
0 of the isospin 2 scalar partial wave, becomes a very large

uncertainty in the intermediate energy region and for the sigma pole determination.

For this reason we briefly describe here a new set of once-subtracted RE, denoted

GKPY Eqs. for brevity, and we show the relative sizes of the different contributions,

comparing them with those for standard RE. We show that, given the same input,

the uncertainties of standard Roy’s Eqs. are smaller than those of GKPY Eqs. at low

energies. However, the uncertainties of the once-subtracted GKPY Eqs. are smaller

than those of Roy’s Eqs. above, roughly 400 MeV, up to 1.1 GeV. Hence, in that

energy region, GKPY provide a very precise additional constraint for our dispersive

analysis of data, and a very precise analytic extension to determine the position of

the sigma pole from experiment.

2. Once and Twice Subtracted Dispersion Relations

A twice subtracted dispersion relation for the scattering amplitude T (s, t) of a given

process is an expression of the form:

ReT (s) = g(s1, s2) + h(s; s1, s2) +
(s1 − s)(s2 − s)

π

∫

∞

sth

ImT (s′)

(s′ − s)(s′ − s1)(s′ − s2)
ds′

+
(s1 − s)(s2 − s)

π

∫

−∞

−t

ImT (s′)

(s′ − s)(s′ − s1)(s′ − s2)
ds′ (1)

which relates the real part of an amplitude for a real s value to the imaginary part of

the amplitude integrated over the whole energy range, together with two functions,

g(t; s1, s2) and h(s, t; s1, s2), called the subtraction terms, ST (s). In the paper by

Roy 1 such a relation is written for the definite ππ scattering isospin amplitudes,

in a slightly modified way to show explicitly the crossing relations between the s

and u channels, and in which the subtraction points are taken to be s1 = s2 = 0.

In addition, and for convenience, the three isospin amplitudes are written as an

isospin vector amplitude ~T (s, t) = (T 0, T 1, T 2). This provides a relation among all
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the isospin processes by means of three crossing matrices Cst, Ctu, Csu, defined as:

~T (s, t, u) = Cst
~T (t, s, u) = Csu

~T (u, t, s) = Ctu
~T (s, u, t). (2)

By using these, s ↔ u crossing symmetry and the fact that on the t channel the

amplitudes with given isospin are of definite symmetry, the subtraction constants

can be rewritten as Cst[~C(t)+ (s−u) ~D(t)], with ~C(t) = (c0(t), 0, c1(t)) and ~D(t) =

(0, d(t), 0). Thus,

CstT (s = 0, t = t0, u = 4m2
π − t0) = T (s = t0, t = 0, u = 4m2

π − t0), (3)

which leads to:

CstT (0, t, 4m2
π − t) =

1

π

∫

∞

4m2
π

ds′
CstCsuIm~T (s′, t)

s′2
(4m2

π − t)2

s′ − 4m2
π + t

+ ~C(t) + (t − 4m2
π) ~D(t),

T (t, 0, 4m2
π − t) =

1

π

∫

∞

4m2
π

ds′

(

t2

s′ − t
+

(4m2
π − t)2

s′ − 4m2
π + t

Csu

)

Im~T (s′, 0)

s′2

+ Cst[~C(0) + (2t − 4m2
π) ~D(0)]. (4)

In order to express ~C(t) and ~D(t) in terms of known quantities one takes advantage

of the fact that (1±Ctu)/2 are orthogonal projectors over the s ↔ u symmetric or

antisymmetric components, and evaluate the amplitude at threshold:

~T (4m2
π, 0, 0) = 32π(a0

0, 0, a2
0) = Cst[~C(0)+4m2

π
~D(0)]+

1

π

∫

∞

4m2
π

ds′
Im~T (s′, 0)

s′2
16m2

π

s′ − 4m2
π

.

(5)

After projection into partial waves T I(s, t) = 32π
∑

ℓ(2ℓ + 1)Pℓ(x(t))f I
ℓ (s) one

obtains the full expression for Roy’s equations:

Re f I
ℓ (s) = a0

0δI0δℓ0 + a2
0δI2δℓ0

+
s − 4mπ

2

12mπ
2

(2a0
0 − 5a2

0) (δI0δℓ0 +
1

6
δI1δℓ1 −

1

2
δI2δℓ0)

+

2
∑

I′=0

1
∑

ℓ′=0

−

smax
∫

4m2
π

ds′KII′

ℓℓ′ (s, s′)Im f I′

ℓ′ (s′) + dI
ℓ (s, smax)

(6)

where the integrals with the kernels KII′

ℓℓ′ (s, s′) contain the contributions of the

S0, P and S2 waves below smax, and are called kernel terms, KT (s). The so called

driving terms dI
ℓ (s, smax) (abbreviated DT (s)) describe the influence of these waves

above smax, and of the higher partial waves from the ππ threshold to infinity. In our

previous analysis, the value s
1/2
max = 1420 MeV was chosen after studying the exper-

imental data on the ππ scattering 6. Above this energy a Regge parametrization is

used.
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The derivation of the GKPY equations follows this very same pattern, but begins

with a once subtracted dispersion relation. This leads to:

Re f I
ℓ (s) =

∑

I′ Cst
II′aI′

0 +
∑

ℓ′(2ℓ′ + 1)

×

∫ smax

4m2
π

ds′

{

Kℓℓ′(s, s
′)Imf I

ℓ′(s
′) − Lℓℓ′(s, s

′)
∑

I′

Csu
II′Imf I′

ℓ′ (s′)

+
∑

I′′ Cst
II′′

[

Mℓ(s, s
′)Imf I′′

ℓ′ (s′) − Nℓ(s, s
′)

∑

I′′′ Csu
I′′I′′′Imf I′′′

ℓ′ (s′)
]

}

+ Re f
(h.e.),I
ℓ (s).

(7)

In equations (6) and (7) the imaginary parts on the right hand side correspond to

the so called ”input” amplitudes, known in our case from experiment, while the real

parts on the left hand side correspond to the ”output” from the dispersion relations.

The integrals with the kernels K, L, N and M and high energy parts Ref
(h.e.)
ℓ (s)

in Eq. (7) have the same meaning as the kernel and driving terms, respectively,

in Roy’s equations. Their expressions are lengthy and will be detailed in a future

publication. Note that, as the once subtracted GKPY equations have kernel terms

that behave as ∼ 1/s2 at higher energies, instead of the ∼ 1/s3 behavior in Roy’s

Eqs., the weight of the high energy region is larger. However, as it is seen in Fig. 1

and explained in the next section, it is well under control, as the driving terms are

still smaller than the kernel terms. For our purposes here it is enough to describe

in detail just the subtraction constant terms in the first line of Eq. (7).

3. Numerical Results

Figure 1 presents a decomposition of the equations (6) and (7) into three parts:

the subtracting terms ST (s), the kernel terms KT (s) and the driving terms DT (s).

This is done for the S0, P and S2 waves. Note the different scales on the left

and right columns in the figure. The numerical calculations have been performed by

taking the Constrained Fit to Data amplitudes fitted from experiment in 5 as input.

This fit describes the experimental data well, and has been constrained to satisfy

Forward Dispersion Relations, Roy’s equations and some crossing sum rules. As can

be seen in Fig. 1, the ST (s) and KT (s) terms in Roy’s Eqs. become huge at higher

energies and suffer a strong cancelation. In fact, for a sufficiently large energy, both

terms are much larger than the unitarity bound |Ret| ≤ s1/2/2k ∼ 1, which is only

satisfied by the real part of the total amplitude after this strong cancelation. In the

case of the S2 and P we do not find such a huge cancelation, since both ST (s) and

KT (s) are small enough up to energies of about s ≈ 50m2
π ≈ (1 GeV)2.

In the case of the GKPY equations for all waves, however, the ST (s) terms

are constant (see eq. 7), and in fact much smaller than the KT (s) terms, which

are clearly the dominant ones. Therefore, no big cancellations between any two

terms are needed in order to reconstruct the total real part of the amplitude. Note

that, although the DT (s) terms in the GKPY equations are larger than in Roy’s
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equations due to the fact that there is one subtraction less, they are still small

compared with the dominant term KT (s). Thus, the high energy behavior is still

well under control.

Figure 2 presents a comparison between the total output amplitudes from Roy’s

and GKPY equations for the S0, P and S2 waves. The error bands plotted around

the input amplitudes represent the difference between the input and the output,

and were generated using a Monte Carlo Gaussian sampling of all parameters in

the Constrained Fit to Data (within 6 standard deviations). The asymmetric errors

correspond to the independent left and right widths of the generated distribution

for 105 events. As can be seen on Fig. 2, even though the CFD set of amplitudes

was not constrained to fulfill the GKPY equations, they are very well satisfied,

with the differences between input and output amplitudes being generally smaller

than in the case of Roy’s equations. A new Constrained Fit to Data in which the

parametrizations are constrained not only to FDR, sum rules and Roy’s Eqs., but

also to the GKPY equations, and in which the functional form of the parametriza-

tions is refined is in progress.

Especially relevant is that above s ≈ 8m2
π ≈ (400 MeV)2 the error bands in

all the three waves for the GKPY equations are significantly narrower than those

obtained for Roy’s equations. As already explained, this comes from the fact that

the term ST (s) is a constant, and does not grow with energy, as it was the case

with Roy’s equations. The errors for the GKPY equations in the three waves come

almost completely from the KT (s) terms. As their absolute values are smaller than

those of the corresponding functions for Roy’s equations, their errors are also smaller

above s ≈ 8m2
π. Comparing the non-symmetric widths of the error bands for Roy’s

equations on Fig. 2 with those calculated in 5 as

∆RetIℓ =

√

∑

j

δ2
j , (8)

where δj is the error coming from varying the j-th parameter of the CFD set, one

obtains, as expected, quite similar results. This is because the errors coming from

each individual parameter are small, and the number of parameters is large. In

principle the usual Monte Carlo Gaussian sampling keeps a better detail of the

correlations, and since they provide asymmetric errors. they will also be used to

estimate our errors.

4. Conclusions

We have briefly introduced a new set of dispersion relations for ππ partial waves,

called GKPY for brevity, with one subtraction and crossing symmetry implemented

in a similar way as it is done in Roy Eqs. Both GKPY and Roy Eqs. provide the

amplitude as a sum of three kinds of contributions: “subtraction terms” which con-

tain the subtraction constants, “kernel terms” that contain the dispersive integrals

of S0-, P - and S2-waves up to a given energy, and the “driving terms” that contain
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6 R. Kamiński et al.

contributions from the rest of waves and high energies. As we have shown here, in

the case of the new GKPY, the dominant role for the S0-, P - and S2-waves is played

by the so called kernel terms. They contain information on the energy dependence

of other partial waves below 1420 MeV. In contrast, for standard Roy’s equations

strong cancellations between kernel and subtracting terms occur in the S0 and S2

partial waves, since these terms are several times bigger than the corresponding

ones in the GKPY equations. Actually, in Roy Eqs. the subtraction terms grow

quadratically with energy and the large experimental uncertainty on the scattering

lengths thus propagates to higher energies as a large source of error. Hence, despite

Roy Eqs. provide a stringent test for amplitudes at low energy, the GKPY provide

an even stronger constraint above roughly s1/2 = 400 MeV, where they have sig-

nificantly smaller errors than Roy’s equations, given the same input. We have also

shown here that, although the dependence on the less known high energy input

is less suppressed than in standard Roy Eqs., the driving terms are still small in

comparison with the KT and ST.

In conclusion, we have shown that GKPY are a good tool to constraint ππ

amplitudes in the intermediate energy region. A full data analysis using amplitudes

constrained to satisfy simultaneously Forward Dispersion Relations, Roy and GKPY

equations is in progress. Once the data analysis is completed, GKPY should also

provide a very precise analytic extension to the complex plane that could be relevant

for the study of the poles associated to light resonances.
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Fig. 1. Decomposition of the results from Roy’s and 1S equations into subtracting term ST,

kernel term KT, and driving term DT for the S0-, P - and S2-waves. Note the different scales used

in the left and right columns.
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Fig. 2. Comparison of results from Roy’s and 1S equations for waves S0, P and S2. The gray

bands correspond to the errors for these equations. The dashed and solid lines represent the input

and output amplitudes, respectively.


