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Talbot effect in metallic gratings under Gaussian illumination
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Abstract

Metallic gratings can be found in applications such as optical metrology. Due to their fabrication process, the surface presents a cer-
tain roughness. In this work, the effect of roughness on Talbot effect has been analyzed when the grating is illuminated with a Gaussian
beam. A model based on Fresnel regime is used in order to determine the intensity distribution in the near field. Contrast of the self-
images is obtained and it is found that it decreases in terms of the distance between the grating and the observation plane. When the
autocorrelation function of roughness presents a Gaussian behaviour, the diffracted beams are still Gaussian although some of their
properties change. For example, the width of the diffracted beams increases with respect to the case of the standard chrome on glass
gratings. On the other hand, the power of each diffracted beam is independent on the roughness properties of the surface.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In most cases, diffraction gratings made of glass or
chrome on a glass substrate are used. For these gratings,
the current fabrication process allows periods ranging from
microns to several nanometers. However, there exist cases,
such as optical metrology, where very long diffraction grat-
ings (>3 m) are required. In these cases, glass gratings are
not available since they are very difficult to manufacture
and handle. Then, diffraction gratings engraved in a steel
tape substrate are used. Up to date, the period of such grat-
ings can only be found in the hundred of microns range.
The surface of these diffraction gratings presents a certain
roughness. Recently steel tape gratings with periods
around 20–40 lm have been developed and then the dif-
fractive behaviour of such gratings becomes important.
For example, Talbot effect becomes relevant. In Talbot
effect, when a periodic object is illuminated with a mono-
chromatic light wave, images of the object appear at certain
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distances behind it [1–3]. This phenomenon has received
continuous attention, not only from a theoretical point of
view, but also because of its wide range of applications,
such as spectroscopy, optical metrology, moiré interferom-
etry, laser array illumination, phase locking of the laser
array, etc. [4–7]. The case of gratings without roughness,
illuminated with a Gaussian beam has been analyzed in
the classical work by Szapiel and Patorski [8].

In this work, the effect of roughness of metallic reflection
gratings on the self-imaging process is analyzed when they
are illuminated with a Gaussian beam. Roughness is mod-
elled using statistical techniques in order to determine the
mutual intensity function, and then the intensity distribu-
tion at the observation plane.

2. Theoretical approach

Let us consider the scheme of Fig. 1. A diffraction grat-
ing with a rough surface is illuminated with a Gaussian
beam. We assume that the rough diffraction grating can
be mathematically defined as the multiplication of two
factors
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Fig. 1. Scheme that shows the propagation of the diffraction orders in the
near field produced by a grating with roughness.
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GðxÞ ¼ gðxÞtðxÞ; ð1Þ
where x is the transversal coordinate at the grating plane.
The first factor corresponds to a grating described as

gðxÞ ¼
X

n

an exp½iqnðxþ DxÞ�; ð2Þ

being an the Fourier coefficients of the grating, q = 2p/p, p

the grating period and Dx a relative displacement of the
grating. The second factor is the reflectance of the surface
and it is related to the surface topography f(x1), which is
random and whose average level is null, hf(x1)i = 0. We
will assume an infinite conductivity. We will also consider
a normal distribution in heights wðzÞ ¼ expð�z2=2r2Þ=ffiffiffiffiffiffi

2p
p

r where z = f(x1) and r is the standard deviation
[9]. Then, the reflectance results t(x1) = exp[i2kf(x1)],
where k = 2p/k and k is the wavelength. When a finite
conductivity needs to be considered, this reflectance can
be obtained considering in addition the Fresnel equations
for reflectance [9]. The correlation properties of roughness
will be defined below in relation to the mutual intensity
function.

Let us consider that the diffraction grating is illuminated
with a monochromatic Gaussian beam. The period of the
grating p is assumed much larger than the wavelength k
of the incident field, thus a scalar treatment is possible.
For simplicity, the waist of the Gaussian beam is placed
at the grating plane

U 0ðx0Þ ¼ A0 exp � x0

x0

� �2
" #

; ð3Þ

where A0 is the maximum amplitude and x0 is the beam
width. Then, the amplitude just after the grating is

U 1ðx1Þ ¼ A0tðx1Þ exp � x1

x0

� �2
" #X

n

an exp iqnx1ð Þ; ð4Þ

where we have considered, without loss of generality, that
Dx = 0. Due to roughness, statistical properties of the field
need to be considered. In particular, the mutual intensity of
the beam just after the grating is [10]

Jðx1; x01Þ ¼ hU 1ðx1ÞU �1ðx01Þi; ð5Þ
where hÆi means averaging. Normally, the topography f(x1)
is unknown. However, the statistical properties of the
surface are included in the autocorrelation function
htðx1Þt�ðx01Þi which is measurable. There exist several
common models to fit the experimental autocorrelation
function [11–13]. Considering several theoretical and
experimental works [14,15], we have used a Gaussian auto-
correlation function

htðx1Þt�ðx01Þi ¼ exp �ðx1 � x01Þ
2

T 2
0

" #
; ð6Þ

where T0 is the correlation length of the field [9]. Then the
mutual intensity just after the grating, given by Eq. (5), re-
sults in

Jðx1; x01Þ ¼ A0j j2e
�

x1�x0
1

T 0

� �2

e
�

x1þx0
1

x0

� �2 X
n

X
n0

ana�n0e
iqðnx1�n0x0

1
Þ:

ð7Þ
We are interested in the near field. Then, the mutual inten-
sity at a distance z is obtained performing the Fresnel prop-
agation of the mutual intensity at z = 0 [10]

Jðx2;x02Þ¼
Z 1

�1

Z 1

�1
Jðx1;x01Þ

� exp
ik
2z
ðx2� x1Þ2

� �
exp � ik

2z
ðx02� x01Þ

2

� �
dx1dx01:

ð8Þ

The average intensity is obtained directly from the mutual
intensity using hI(x2)i = J(x2,x2). Introducing the mutual
intensity function obtained in Eq. (7) into Eq. (8), and solv-
ing the integrals, the average intensity distribution at the
observation plane results in

hI2ðx2; zÞi /
X

n

X
n0

a�n0an exp
iðn� n0Þqx2

1þ ðz=z0Þ2ð1þ x2
0=T 2

0Þ

" #

� exp
�2½x2 � ðnþ n0Þqz=2k�2

x2ðzÞ þ 2ðkz=pT 2
0Þ

" #

� exp
�izðn2 � n02Þq2=2k

1þ ðz=z0Þ2ð1þ x2
0=T 2

0Þ

" #

� exp
�ðn� n0Þ2q2x2

0=8

1þ z0=zð Þ2=ð1þ 2x2
0=T 2

0Þ

" #
; ð9Þ

where x2ðzÞ ¼ x2
0½1þ ðz=z0Þ2� and z0 ¼ px2

0=k is the
Rayleigh distance [16]. The first exponential factor of Eq.
(9) accounts for the period of the fringes which results

p̂ ¼ p½1þ ðz=z0Þ2ð1þ x2
0=T 2

0Þ�. In principle, p̂ depends on
roughness. However, this dependence is not normally sig-
nificant since it is notorious when z� z0, and in this regime
the intensity goes to zero due to the exponential diminish-
ing factors of Eq. (9). The second exponential factor ac-
counts for the direction of propagation of the different
diffraction orders and their profiles. It can be observed that
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the profile of the diffraction orders is also Gaussian. How-
ever, the width of the diffracted beams x2

Rough ¼ x2ðzÞþ
2ðkz=pT 0Þ2 increases when the correlation length T0

decreases. The third exponential factor accounts for the
Talbot effect and shows the positions where Talbot self-
images are formed. Finally, the fourth exponential factor
accounts of an interaction between different orders of
diffraction.

When the experimental autocorrelation function of the
topography fits better to another model (exponential, trian-
gular, etc.), the integrals of Eq. (8) normally need to be
solved by numerical methods.

In order to understand the self-imaging process under
Gaussian illumination in presence of roughness, several
computations have been performed. For this, we have
assumed that a metallic grating can be modelled as a binary
phase grating. Then, the Fourier coefficients of the grating
are

an ¼
aðe�id � 1Þsinc ðnpaÞ; n 6¼ 0;

aðe�id � 1Þ þ 1; n ¼ 0;

	
ð10Þ
Fig. 2. Talbot planes. The period of the grating is p = 40 lm, the wavelength o
(a) without roughness, T0!1, (b) with high roughness, T0 = 300 lm and (c) w
a phase grating and the summatories runs from n,n 0 = �11:11. Note that aliasin
the size of x in the figures is 3000 lm.
where a is the ratio between the upper and the lower part of
the grating and d is the phase delay produced by the grating.

In Fig. 2, it is shown that the zone of interference
between the different diffraction orders decreases when
roughness is considered.

For the limit case of null roughness (T0!1) the inten-
sity results in

hI2ðx2; zÞi /
X

n

X
n0

a�n0an exp
iðn� n0Þqx2

1þ z=z0ð Þ2

" #

� exp
�2 x2 � ðnþ n0Þqz=2k½ �2

x2ðzÞ

" #

� exp
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1þ ðz=z0Þ2

" #

� exp
�ðn� n0Þ2q2x2

0=8

1þ ðz0=zÞ2

" #
: ð11Þ

Finally, when we are in a plane wave illumination ap-
proach, x0!1, the classical result for Talbot effect is
recovered [1] as
f the incident beam is k = 0.68 lm, the width at the grating is x0 = 500 lm:
ith very high roughness, T0 = 100 lm. In this example, we have considered
g is produced in the figures since the period of the grating is p = 40 lm and
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hI2ðx2; zÞi /
X

n

X
n0

a�n0an

� exp iðn� n0Þqx2½ �exp iðn02� n2Þ q
2

2k
z

� �
: ð12Þ

To characterize the quality of the self-images produced
by the steel tape grating, an important parameter is the
contrast, which is defined as

C ¼ IMAX � IMIN

IMAX þ IMIN

; ð13Þ

where IMAX and IMIN are the maximum and minimum
intensity of the fringes, respectively. Since the incident
beam is Gaussian, the intensity depends on the location
x2 of the beam with respect of the origin of coordinates.
A solution is to determine the contrast at x2 = 0, where
the intensity of the incident beam presents a maximum.
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Fig. 3. Contrast in terms of the distance z from the grating to the observation
low roughness (dash), T0 = 300 lm, high roughness (solid), and T0 = 100 lm
waist x0 = 500 lm and (b) with collimated illumination, x0!1. In this exam
n,n 0 = �11:11.
Then, we define the maximum and minimum intensity as
those obtained at Dx = 0 and Dx = p/2, where Dx is a rel-
ative displacement of the grating as defined in Eq. (2).
Then, contrast results in

C ¼
P1

n¼1
P1

n0¼1Cn;n0 ðzÞana�n0 1� exp ipðn� n0Þ½ �f gP1
n¼1
P1

n0¼1Cn;n0 ðzÞana�n0 1þ exp ipðn� n0Þ½ �f g ; ð14Þ

where

C¼ exp aðn2�n02Þþbðnþn0Þ2þcðn�n0Þ2
h i

;
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T 2
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plane p = 40 lm, k = 0.68 lm for several roughness parameters: T0!1,
, very high roughness (dash + dot): (a) with Gaussian illumination, beam

ple, we have considered a phase grating and the summatories runs from
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0

8 1þ p2x4
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In Fig. 3a, the contrast is shown for different roughness
parameters and a finite beam width (x0 = 500 lm). Com-
paring this result to that obtained for the case of plane wave
illumination (x0!1), Fig. 3b, it is shown that roughness
affects to contrast. It decreases faster when roughness is
present. We can also observe that when high roughness is
present only the first Talbot planes appear and eventually
Talbot planes disappear for very high roughness.

When another model of autocorrelation function is
used, the behaviour of the contrast is similar to that
obtained in Fig. 3. Roughness produces a decrease of the
intensity in terms of the distance between the grating and
the observation plane, being the envelope different for dif-
ferent models.

3. Non-interference zone

As it is shown in Fig. 2, there is a distance from which the
different diffraction orders do not interfere. This distance
corresponds to zN = px0/2k, which can be easily obtained
from a geometrical analysis. For distances longer than zN,
Talbot planes disappear since the different diffraction orders
do not overlap. In this regime, z > zN the intensity results in

hI2ðx2; zÞi /
X

n

janj2 exp
�2z2ðh� nk=pÞ2

x2ðzÞ þ 2ðkz=pT 0Þ2

( )
; ð15Þ

where h = x2/z. As it is well known, several diffraction
beams appear. The maxima of the diffracted Gaussian
beams are placed at ph = nk, which is the linear version
of the well-known grating equation. It is observed that,
when the autocorrelation function of roughness is Gauss-
ian, Eq. (6), the diffracted beams are also Gaussian. The
width of the Gaussian beams is affected by roughness,
increasing from x2(z) to x2(z) + 2(kz/pT0)2, that is, the
shorter the correlation length of roughness, the wider the
diffracted beams. This increasing can be observed in Fig. 2.

It is also important to analyze whether roughness pro-
duces a redistribution of the power amongst diffraction
orders. Power is defined as the total intensity for each order
n, which results [16]

P n¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þð z
z0
Þ2 1þðx0

T 0
Þ2

h ir Z 1

�1
janj2 exp

�2ðx2�nkz=pÞ2

x2ðzÞþ2ðkz=pT 0Þ2

( )
dx2

¼
ffiffiffi
p
2

r
x0janj2; ð16Þ

which is independent on the correlation length of the field.
As a consequence, there is not a redistribution of power
amongst the diffraction orders due to roughness.
4. Conclusions

In this work, we have analyzed Talbot effect for the
case of metallic gratings when they are illuminated with
a Gaussian beam. An example of this kind of gratings
is those engraved on a steel substrate. These gratings
are not ideal since they present a rough surface. When
the autocorrelation function of roughness presents a
Gaussian behaviour, then the diffracted beams are still
Gaussian, but their parameters change. The width of
these beams increases with respect those obtained with
ideal gratings. Also, at locations where the diffraction
orders interfere, a self-imaging process happens, but the
contrast of fringes is smaller than for the case where
roughness is not present. On the other, hand power redis-
tribution amongst the different orders of diffraction does
not happen.
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