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We construct a model for the quark-gluon vertex of Landau gauge QCD. This is of twofold interest: on the one 
hand the quark-gluon interaction is at the heart of quark confinement, on the other hand it is a central element 
in hadron phenomenology based on QCD Greens functions. We employ the non-Abelian one-loop diagram in 
perturbation theory, which is of order No. As a novelty we replace the tree-level quark and gluon propagators in 
this diagram by their dressed counterparts solving the Dyson-Schwinger equations. The N¢-suppressed Abelian 
diagram is an order of magnitude smaller in various kinematics. We also study the effect of ghost dressing factors 
on the vertex obtaining a construction in good agreement with recent low-momentum lattice calculations. 

1. C o n s t r u c t i o n  o f  t h e  v e r t e x  m o d e l  

The  infrared suppression of the gluon 2-point 
function in QCD [1,2] entails tha t  the bare qq9 
vertex, usually employed in the rainbow trun- 
cation of the Dyson-Schwinger Equation (DSE), 
is insufficient to trigger dynamical chiral sym- 
met ry  breaking. Therefore we expect an in- 
fi'ared enhancement  in the quark and gluon ver- 
tex, as suggested also by its Slavnov-Taylor Iden- 
t i ty  (STI). A model vertex with a Ball-Chiu 
or Curt is-Pennington structure multiplied by en- 
hancing ghost factors has been successfully em- 
ployed in [3] in the quark DSE. For a short sum- 
mary  of these results see ref. [4]. 

In this work we report  a diagrammatic con- 
s t ruct ion based on the one-loop perturbative 
QCD corrections to the bare vertex [5]. 

There  are two relevant diagrams, to which we 
refer as Abelian and non-Abelian due to the ver- 
tex at tached to the gluon (as is customary). In 
bo th  diagrams we substitute the quark and gluon 
propagators  by their dressed counterparts solving 
the DSE's [3]. These are added to the bare vertex 
Z1F%, and the renormalization constant is fixed 
by imposing that  the ~/~ component is unity at a 
renormalization point of 2 GeV. 

The non-Abelian diagram, depicted in figure 1 
dominates over the Abelian one nominally by a 
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factor N 2. We have checked that  1) this dom- 
inance by an order of magnitude remains after 
loop integration in the vertex for various kine- 
matics and 2) the impact of the Abelian vertex 
on the quark DSE is smaller by the same factor 
by performing a kinematic average with the ker- 
nel of the DSE as weighting function. Therefore 
to a precision of 10 % or even better one can ig- 
nore the Abelian diagram. 

2. N u m e r i c a l  r e s u l t s  

The vertex is projected into the tensor basis 
from appendix A in [6]. The loop integral is calcu- 
lated numerically in four dimensions with a stan- 
dard Gauss-Legendre grid. In one computer code 
we perform the spin sums numerically, in an al- 
ternative calculation we employ a form code to 
reduce the kernel analytically to relatively com- 
plex but tractable scalar integrals. 

If the internal qq9 vertices are taken as bare 
Z1F~, then the construction, that  qualitatively 
has the right behaviour, is not strong enough to 
reproduce lattice data  and trigger chiral symme- 
t ry  breaking in the quark DSE. This, as com- 
mented above, is expected and can be remedied 
by enhancing the internal vertices by a ghost 
dressing factor. In figure 2 we compare the re- 
sulting qqg vertex with lattice data  at the so 
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Figure 1. The non-Abelian one-loop correction to 
the quark and gluon vertex is the basis of our non- 
perturbative model. To this end we replace in- 
ternal propagators by their dressed counterparts 
and enhance the internal vertices with one ghost 
dressing function each reflecting the STI. 
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Figure 2. Comparison of our results with lattice 
data in the particular kinematic section Pl = P~- 
mq(2 GeV) is set to 115 MeV but similar results 
are obtained at the other lattice data set available 
at 60 MeV. 

called "asymmetric point" characterized by pg = 
0, Pl = p2 where the gluon momentum vanishes, 
Pl flows into the vertex and P2 exits. This com- 
parison is successful for the leading Dirac ampli- 
tude A1 and the scalar amplitude, A3. The am- 
plitude 4p2A2 vanishes in our model at low mo- 
menta, whereas the lattice data (with large er- 
rors) seem to approach a constant value implying 
a divergence of A2. 

We now investigate a more interesting sec- 
tion of kinematic space, that we denote "totally 
asymmetric" point, characterized by the relations 
p2 = 2pl and P9 = 3pl between the moduli of the 
momenta. This point is interesting because the 
tensor basis used is non-singular and all twelve 
different Dirac amplitudes A1-4, Vt-s contribute 
to the vertex. We plot the four leading structures 
in figure 3. 

The other eight Dirac amplitudes are increas- 
ingly smaller, down to two orders of magnitude 
below the plotted ones. Thus there is a rich hyrar- 
chy of Dirac amplitudes that can help in model 
building. 

3. Mass dependence  and  Chiral  S y m m e t r y  
B r e a k i n g  

Once we are in possession of a construction 
that successfully compares to lattice data, we 
employ it to perform a study of the mass de- 
pendence of the vertex. First note the Abelian 
one-loop diagram contains two quark propaga- 
tors, and is therefore suppressed as 1/M 2 in the 
heavy quark limit, whereas the non-Abelian dia- 
gram will damp as 1/Mq. Therefore future cal- 
culations relating observables in the charmonium 
and bottomonium systems (see [8] for discussion) 
will be sensitive to what class of diagrams enters 
the vertex model. 

An interesting observation is that for the range 
of quark masses considered in the lattice calcula- 
tions, the Aa Dirac amplitude has a maximum. 
If the current quark mass is further increased, 
the intermediate quark propagator suppresses the 
vertex loop. Conversely, approaching the chiral 
limit, the quark mass function takes its minimum 
value dictated by chiral symmetry breaking alone 
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Figure 3. Leading tensor structures in the kine- 
matic  section given by pl := p, p2 = 2p, pg = 3p 
in our model construction. 

Figure 4. Mass dependence of the quotient A1/A 
tha t  equals 1 in an Abelian theory (as incorpo- 
rated in the Ball-Chiu construction). 

and the scalar part  of the loop construction also 
has a minimum (slight corrections to this result 
are expected after self-consistently solving a ver- 
tex equation).  

As for the leading Ax amplitude, we plot in fig- 
ure 4 the quotient AI/A,  where deviations from 
uni ty  signal departures from the Abelian Ward- 
Takahashi identity. 

4. O u t l o o k  

Results similar to ours have been indepen- 
dently obtained [9] in a different scheme. This 
exploits the STI for the three-gluon vertex to 
model it. Since this amounts to the resummation 
of a total ly different class of diagrams we would 
need be t te r  lattice data  to distinguish both mod- 
els. Our  construction is of course valid (within 
approximations) for all possible kinematics and 
not  just  when the gluon momentum vanishes• On 
the positive side, both works concur in predicting 
p~A2(p 2) to vanish as p ~ 0. We should note that  
the existing lattice data, with large error bands, 
suggests instead this limit is finite, implying a di- 
vergence in the vertex, in the Dirac amplitude A2. 

When  multiplied by appropriate powers of p 
the resulting dimensionless Dirac amplitudes of 

our vertex construction vanish as p --~ 0 except 
the leading structure ),1 tha t  takes a finite value. 

Whether  a divergence can arise as a conse- 
quence of the feedback of the obtained vertex 
model on the loop construction itself (implying 
a self-consistent solution is needed) or as a conse- 
quence of the backreaction on the quark SDE is a 
topic under current scrutiny. The construction of 
a quark scattering kernel based in our model ver- 
tex and consistent with chiral symmetry is now 
straight-forward. 

5. Q u e s t i o n s  f r o m  t h e  a u d i e n c e .  

How are Euclidean space singularities in the 
two-point functions mapped to Minkowski 
space after analytical continuation? 
This is a nonperturbative problem and we 
lack a full answer at this stage. One has 
obtained some understanding of the analyt- 
ical structure of the two-pohl~ fuuctioa~ iu 
a recent work [10]• Also Hamiltoniafi calcu- 
lations in Coulomb gauge, not in Euclidean 
space, provide clear evidence for the picture 
of ghost enhancement and gluon suppres- 
sion at low momentum [11]. 
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• The running as you are employing seems 
to be somewhat too high in the middle- 
momentum range. What is the impact of 
this in the results reported? 
This study does not aim at precisely pin- 
pointing details of the propagators and ver- 
tex functions, but to obtain insight into 
their qualitative features and structure, and 
identify possible divergences that may oth- 
erwise escape lattice calculations. In this 
respect, the impact of this few-percent de- 
viation can be ignored. 

• Why is the dressing of the three-gluon ver- 
tex omitted? 
As can be observed in figure 5, all dressing 
of the triple gluon vertex can be absorbed 
in the quark-gluon scattering kernel. Our 
model based on the one-loop correction to 
the qqg vertex can be also viewed as an ap- 
proximation to this kernel. In this exact 
equation [12] we are neglecting completely 
the two last terms, involving the ghost- 
quark scattering kernel and the three-gluon- 
quark scattering kernels, as their skeleton 
expansion starts at two loops. 

Figure 5. Exact Vertex DSE equation. 

in figure 2 are a courtesy of the authors of [7]. 
F. L. E. thanks the hospitality of the Tiibingen 
Institute as well as a DAAD stipendium and 
Univ. Complutense travel grant. Partial support 
from grants FPA 2000-0956, BFM 2002-01003 
(MCYT, Spain), Al 279/3-4, Fi 970/2-1, and 
GRK683 (DFG, Germany). 

R E F E R E N C E S  

1. R. Alkofer and L. von Smekal, Phys. Rept. 
353 (2001) 281 [arXiv:hep-ph/0007355]. 

2. P.O. Bowman et al., arXiv:hep-lat/0402032. 
3. C. S. Fischer and R. Alkofer, Phys. Rev. D 

67 (2003) 094020 [arXiv:hep-ph/0301094]. 
4. C. S. Fischer, F. Llanes-Estrada and 

R. Alkofer, arXiv:hep-ph/0407294. 
5. A. I. Davydychev, P. Osland and L. Saks, 

Phys. Rev. D 63 (2001) 014022 
6. J. Skullerud and A. Kizilersu, JHEP 0209 

(2002) 013 [arXiv:hep-ph/0205318]. 
7. J . I .  Skullerud, P. O. Bowman, A. Kizilersu, 

D. B. Leinweber and A. G. Williams, JHEP 
0304 (2003) 047 [arXiv:hep-ph/0303176]. 

8. M. S. Bhagwat, A. Holl, A. Krassnigg, 
C. D. Roberts and P. C. Tandy, arXiv:nucl- 
th/0403012. 

9. M. S. Bhagwat and P. C. Tandy, arXiv:hep- 
ph/0407163. 

10. R. Alkofer, W. Detmold, C. S. Fischer and 
P. Maris, Phys. Rev. D 70 (2004) [arXiv:hep- 
ph/0309077]. 

11. A. P. Szczepaniak and E. S. Swanson, 
Phys. Rev. D 65 (2002) 025012 [arXiv:hep- 
ph/0107078]; D. Zwanziger, arXiv:hep- 
ph/0312254; C. Feuchter and H. Reinhardt, 
arXiv:hep-th/0402106; id. work in prepara- 
tion. 

12. W. J. Marciano and H. Pagels, Phys. Rept. 
36 (1978) 137; E. Eichten and F. Feinberg, 
Phys. Rev. D 10 (1974) 3254. 

We thank M. Bhagwat, C. D. Roberts and P. 
Tandy for valuable discussions. The lattice data 


