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Hccnenyercs aCMMNTOTMUECKOE MOBEAEHUE HEOTPULIATENbHBIX petuennit u = u(l x|, f) ypas-
HEHMs!  TEIUIOMPOBORHOCTM  OOLEr0 BMAA C  MCTOUYHMKOM WM CTOKOM  Terna
ur = Mp(u) = Q(u), rne ¢’, Q — 3anaHHble HeoTpuuaTeabHbie (yHkumu. ITokaszaHo, uTO
TIATENBHOE MCNOAb30BAHME METOAa, npemnoxeHHoro dpuamaHom u MakiaozoM, nossonser
MOJTyYH~b ACHMIITOTHMYECKME OLEHKM pEumleHHit BOJM3M MOMEHTa O0GOCTPEHMS WJIM MOJIHOTO
OCTBIBAHHUY, KOTOpPbIE, KAk 6le'lO YCTaHOBJICHO, SIBJSIOTCH TOYHBIMM JUISI HEKOTOPBIX YACTHBIX
BunoB dyukumit ¢ u Q.

§ 1. Introduction

In recent years, equations of the type
(LD,  y=Apu)=Q ),

have deserved considerable attention, both because of their relevance as phyéical
models in Continuum Mechanics as well as for their intrinsic mathematical interest.
Local' (in time) existence of classical solutions for the varicus initial and boundary
value problems associated to (1.1), follows at once from standard parabolic theory
when ¢(s) = s and, say, Q(s) is continuous (cf. for instance [1], [2]). However
solutions need to be defined in a generalized way if, for instance, ¢(u) = u™ with
m >1 (see [3], [4]). We shall assume throughout this paper that

(1.2) ¢ €ECYH(0, »)) NC'( [0, »)), Q€ C'((0, ®)) NC ([0, ©)),

'(s) >0, Q(s) >0 fors > 0.
Moreover, we shall assume that a suitable theory of (possibly generalized) solutions
is available in any of the cases to be considered. These will be referred to henceforth
as the solutions without any further specification.

It is well known that, for a wide choice of functions ¢ and Q, solutions of
(1.1), may develop critical behaviours in a finite time. To simplify this- exposition,
we shall reduce ourselves henceforth to the situation where (1.1), holds for
x€RY, N = 1, in some time interval (0, .T) with T < 4+, and

1.3) u(x, 0) =uy(x) for x€R”, where u,(x) is continuous, nonnegative and
bounded. .
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The foregoing arguments éan be extended, however, to cover initial boundary value
problems on bounded domains. Let us recall now some notation. A nonnegative
solution u(x, » of (1.1),, (1.3) is said to blow-up in a finite blow-up time T >0
if u(x, O solves (1.1), in any strip S, = R¥x (0;t) with v < T, and

lim ( sup u (x, t_)) =

->T xGRN .
If this happens, we shall say that x, is a blow-up point if there’ exist sequences
{x.}, {t,} such that

lim x, = x,, 1imt,i= T, limu(x,t)=+w,

n-»>w n-»o n-»

As suggested by the first order PDE obtained by dropping the diffusion term in
(1.1),, a necessary condition for blow-up to happen is

) g Q%].S < |

(cf. for instance [5], [2], and list of references in the books [6], [7]. On the
other hand, we say that extinction occurs for (1.1)_, (1.3) if there exists
T° < +» such that the solution of (I.1)_, (1.3) under consideration satisfies
u(x, » =0 for ¢= T°. The infimum of such times T° , T, is then named as the

extinction time. A point x, is termed as extinction point if there exist sequences
{x.}, {t,} such that

limx,=x,, lim¢, =T and u(x,t)>0

n-> n-»w
for any n. Again, dropping the dlffusxon term in (1.1)_ indicates that, in order to
obtain extinction, one needs the assumption

(1.49) ‘{QL(II]S<°~° foranye>0.

Conditions under which Llow-up (resp. extinction) occur in a finite number of points
have been extensively discussed in the literature; see [8]— [11], [6], [7] (resp. [12]).
The description of the asymptotics of solutions near blow-up points (resp. extinction
points) at the blow-up time (resp. the extinction time) is an interesting problem in the
general theory of non-linear evolution equations, and as such, it has been the object of
considerable effort. As of now, a complete picture is only available for the one-dimensional,
semilinear case where p(s) =s, Q(s)=s" with p > 1 or Q(s) =¢' in (1.1), (resp.
Q(s) =s” with 0 < p <1 in . (1.1)_). Let us specialize to the blow-up case (1.1), with
Q(s) =s*, p > 1, for definiteness. It is then known that, to the first approximation,
blow-up behaviour is self-similar, in the sense that the following result holds. If x=0 is
any blow-up point and u(x, 7 blows up at ¢=T, then

(L) lm (T - "D u(x (T = 2, 1) = (p — 1)/6-D
! t-»T

uniformly in sets Ix I<C with C > 0
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(cf. [13]— [17]D. Notice that u,(x, » = [(p — 1)(T — ) ]®-" is an explicit self-
similar -solution of (1.1), under our .current assumptions. Different behaviours appear
when high-order asymptotics are considered, and a complete classification of them
is now available. It was first obtained formally by the method of matched asymptotic
expansions in [18] (cf. also [19] and [20], [13] for pioneering works in this
direction). Later, these results were made rigorous by M. A. Herrero and J. J. L.
Veldzquez in the series of papers that will be published soon. Roughly speaking,
the asymptotics at blow-up (including the nature of the singularity which appears
there at blow-up time) depends of the number of maxima which collapse at the
blow-up point. However, only the case of a single maximum reaching up to the
blow-up point at the blow-up time is generic, in the sense of being preserved
under small perturbations of initial values; a similar situation exists for some
quasilinear heat equations, see references in [6, Chapter IV ]). This corresponds to
an asymptotic behaviour given by

e m T -9 VuE (T - 1) llog (T — 1) 1)2,7) =

=(p-1) -1 [1 + (%)E’]_W_D

uniformly on sets 1§ 1<C with C > 0,

1.7 . Ix 12 \ VG- 8p \"¢7"

Jim (Tiog 1x17) uxT)= ((p— 1)2)

The reader is referred to [6], [7], [13], [14], [21], [22] for related results, as
well to [12] for corresponding results for the extinction problem. For the quasi-linear
equation with ¢(s) =s*',0 >0, Q(s) =s°, we have single point blow-up for
p >0 + 1 while for p =0 + 1 regional blow-up occurs, and if p € (1,0 + 1) there
exists . global blow-up, see [6] and [23] for extensive references. Notice that in
these cases asymptotic behaviours are quite different from (1.6) and (1.7), and
nontrivial explicit self-similar solutions are asymptotically stable. See [6, Chapter'
IV] for the case p=0o + 1 and [23] for p >0 + 1.

Let us state now the aim of this note. While solutions to (1.1), may indeed behave
in many different ways for any choice of ¢ and Q there, we believe that in any case
only one behaviour is generic. Moreover, we expect this behaviour to be easily described
by means of an easy-to-compute algorithm, to be described in the next Section. We
should stress, however, that only one-sided bounds (as for instance (3.8) and (3.9)
below) can be made rigorous at this stage when ¢(s) # s, and even in such case, tight
assumptions on the initial values are currently required.

§ 2. Friedman-McLeod’s method -

From now on, we shall reduce ourselves to the study of radial solutions of
(1.1),. Moreover, we shall also assume that

Q(U)EC', uy(r)<0 for r=1x120,
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so that the corresponding solution is radially symmetric and nonincreasing in
r>0. Followmg 9 ], we consider the auxiliary function

Q2.D J(r, t)—r” \p'(u) u(r,t) + rNF(u(r, 1)),
where

(22)  F(u)isaC? -function (depending on ¢ and Q) which should satisfy
F (u) >0 and F’(u)>0 for u > 0.

‘One readily checks that J(r, 1) satisfies the followmg parabolic equation (cf. [25]

for N=1 and [26])
2.3) J,=AJ+q(u,'r),

where .

AJ=ZJ,,+’ZJ,+'¢J, Ca=au)=¢' (1),

b= n )= S (0 - oy - e

T=C@nt)= ;i(“’;fl—zF'—’z-gf"J+ BE it
and

(I=tI(u,r)Er."’FZ{S:%(N#:%)-fj2(log1"‘)’=F(%)’}—r""*zﬁ—(}ﬁ;i

It then follows from the Maximum Principle (cf. [9], [25]) that, under some
conditions on ¢, Q and F, J(r, /) has a constant sign for any z.> 0 for which u(r, 9
is well-defined. In partlcular consider equation (1.1), and suppose that u ,(r) -is
such that

24a)  J(r,0) <0 for r=0;
(2.4b) =92 y_Q@) ()|’ ' :
I.(u) Y [N F(u)]+2[logF(u)‘] F(a) <0 for u>0;
(2400  F"(u)=0 for u >0.
Then
2.5 J(r,t) <0 for any r = 0. and any ¢ = 0 for which u(r, 9 is defined.

On the other hand, éonsider equation (1.1)_, and suppose that u,(r) is such
that

2.Ca) J(r,0) =0 for r = 0;

(2.6b) 1<u)- [ %(u]nuogf'(u)]' [%i(_)l]l-"forwo;
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(2.60) F'"(u) <0 for u>0.
Then
Q.n J(r,t) = 0 for any r = 0 and any ¢ = 0.

We shall analyze now some consequences of inequalities (2.5), (2.7). Suppose
first that u(r, t) solves (1.1), and (2.5) holds. Integrating this last mequallty

yields

u(0,¢) ' .
Q8 2 ?}J—lds>r for r>0, t€(0,T).
¢ u(nt) ()

Therefore, if

2.9 H(u)EZf 5;78(13<ooforu>0
it follows from (2.8) that

(2.10) u(r,t) < H'(P?) for r >0, t € (0, T).

In this case r=0 is a single blow-up point. Furthermore, if the behaviour of (0, 1)
for t = T is known, (2.8) provides an upper bound for wu(r,#) when r=0 and
t = T. On the other hand, recalling the definition of J(r, #) in (2.1), it follows that
if we divide in (2.5) by ¥ and let r » 0, we obtain

@'(u,), + Fu) <0 at r=0
and, since by regularity
N @' (W), = u,— Q(u) at r=0,
we see that )
(2.1D) u, < Q(u) — NF(u) at r=0, for ¢t € (0, 7).

By integrating (2.11), we derive a lower bound for u(0, /) when ¢t = T.
The previous results have immediate counterparts for equation (1.1)_. In this

case, if (2.7) holds, (2.8) is to be replaced by

(0,t ’
212 2 f ﬂ(—% <r?for r>0, 1€(0,T).

“We may use (2.12) to derive a lower bound for the support of u(f 0 near the
extinction time. Indeed, since «,(0,7) <0 and u(O ) =0, we have that

u(0, ) = — Q(u(0, t)) in (0, T), whence .
(2.13) u(0, t) =2 ®(T — 1) in 0, T),
.where

(D(”)—fQ(n)




ON A GENERAL APPROACH TO EXTINCTION AND BLOW-UP 251

(cf. (1.4')). Therefore, if

€

2.19) f ds< + » for any £>0,

o
we deduce from (2.13) that as t =T
supp u(r,t)=A{r=0|u(r,t)>0}2{r<S(®},
where '
o (-9 |
S(t) =2 M—)- ds .
©=2 1 ¥ .
Finally, the analogue of (2.11) reads now
2.15) u, =z —Q (u) — NF(u) at r=0 for t €0, 7),
and it yields the upper bound of u(0, #. It is interesting to compare this with the
lower one given by the simple inequality u'(0, 1) < —Q(u(0, ?)).
§ 3. Selecting F(u) in (I.1)+

It is apparent that the precise form of the above estimates depends crucially on
the choice of F(u) in (2.1), which has to be made in such a way that (2.4) (resp.
(2.6) in the case (1.1).) holds. This has been done for various values of ¢ and Q
(cf. for instance [7], [13],[14], [25]— [28] for the blow-up case, and [12] for
extinction problems). We shall now comment on a formal procedure to perform such
selection for rather general choices of ¢ and Q. Consider first the blow-up case
(1.1),. Bearing in mind (2.4b), we exzmine the first order ODE

G.D 's;_, [N — —L-%]+2[10gF(u)]' [%J(z_)l] =0 for u>0.

Setting z(u) = Q) /Fw), (3.1) gives
(3.2 2\ 09 9" &
| (1+z)z 2Q‘ g (z—N) for u>0.

In addition to (1.2), we shall assume that

u=»c

(3.3 lmQu)=+w®, Q)>0, ¢"'(u)=0 for large u>0,
[

and the following (finite or infinite) limit exists

- logp'(u)]'
L .,llrfi [log Q (u)] "

Suppbse now that L=0 in (3.3). Then

%r(u)<<%(u) as u~e, and limz(u)= .

u-»>0

i
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Thus for large values of u > 0, (3.2) is asymptotically equivalent to

_2Q e
Q ¢

Z,

whence

z(u)= ') .? ¢'(s) [logQ (s)Vds for u>>1.

Recalling the definition of z(u), we are thus led to the choice

GO FW=Fu) = Q@) ()[2]¢'(s) losQ () Vds)”

as u - o, provided that L=0 in (3.3). Notice that we are not saying that F,(u)
in (3.4) will always satisfy (2.4b), although it can be readily checked that (2.4b)
‘holds for u >> 1 with the above choice of F, if

fogp'()Va(w) 4 Q)
im0 @)1 m+2 Vith ) =%y

Instead, we are assuming that F(u) can be selected so that (2.4) holds and its
asymptotic behaviour for large values of u is given by (3.4) in the case L=0. If
L >0, it turns out that, as u » =, (3.2) is asymptotically. equivalent to

(1 +%)zf=g’-[2—L(z—‘N)] :

Q
and it is easy to see that any solution of this equation satisfies
2+ LN
z(u) - 2 u-—> oo,

We then expect that F(u) can be selected so that

3.5 F(u)=<N+%)-'Q(u) when L>0.

Example l. Setp'(s) =1 in (1.1),. In this case, L=0 in (3.3), and therefore
we expect '

Fu) = Fy(u) =

In particular, we have

as u-—» x .,

_Q@)
210gQ (u)

(3.6a) Fy(u) = if Qu)=u’,  p>1

2plogu
(cf. [13], [14], [281]).

(B.6b)  Fyu)=5 if Q(u)=e

«f. (71, 127]1— [29 D.
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(3.6¢) Fo(u)=%u(logu‘)"’" if Qu)=Q0+u)log(l+u)P, p>1

(cf. [28D. ,
Notice that these functions satisfy (2.2) and (2.4c) for u >> 1. Furthermore,
in view of (2.9), single-point blow-up will occur if

3.7 rlogQ(s) ..

Q.7 f 00 ds< 4 oo,

which certainly holds in cases (3.6a, b). Consider the power-like case in (3.6a). It
then follows from (2.8) and (2.10) (with F replaced by F, and #=T) that the final
profile should satisfy

: -/ -1
3.8) wu(r, T) < (.(E%[_)lz) FYCe=D log r |Ve-D 4
+ 0 (rYe-" |logr 1@-P/¢-D]og |logr 1) for r>0 small enough

(compare with (1.7) above). Moreover, whenever (1.5) holds (which is the case for
different classes of solutions u(r, ) when N = 1), (2.8) yields

, I
B9 u(r s (T-nVep-1)+ ﬁpranz + o) as 1T,

n =rl(T - 9! log (T — ¥l 172, uniformly on compact subsets in 1, a result to be
compared with (1.6). Recalling the result already known for the one-dimensional

“case (of Section 1 herein), we expect single point blow-up satisfying (3.8), (3.9)

(with equality replacing the inequality sign there) to be the generic blow-up behaviour
for solutions of (1.1), for which (1.5) holds. Notice that for the given choice of
F(u) inequality (2.11) takes the form u' < Q(u){l — N/[21log Q(w) 1} as t > T, and
integrating near t=T with Q(u) = u” yields the explicit lower bound
u@0,0) = [(p— (T -HI'""e-"{1+N/[2pl log (T — D ]}.

When Q(u) = ¢, (3.8) is to be replaced by v
(3.10) u(r,T) <2l logrl +log | logrl +1og8 + o(1) as r» 0,
whereas instead of (3.9) there holds '

) 2. — )
GID  u(t) < = log(T - 1) — log (1 + L] —_%T_—Qﬂu+

1

+ O(_Ilog(T— ") l) as t-»T

uniformly on subsets n = r[(T — 1)1 log (T — )1 /2 = C < + o, provided that
1im[u (x (T = ">, t) + log(T — z)] =0,
=»>T 7,

uniformly on compact sets 1xI< C.< o (this is the analogue of (1.5) in the current

case). Again, we expect single-point blow-up with the behaviour specified by the
right-hand sides of (3.10), (3.11), to be then the generic situation in the exponential
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case. Inequality (2.11) implies (0, ?) = llog (T — #)| + N/[2llog (T — £)1] as
t - T. Notice that the asymptotic behaviour given in the right-hand side of (3.11)
is proved by J. Bebernes, S. Bricher and V. A. Galaktionov to be asymptotically
stable with respect to small perturbations of the coefficients of the semilinear equation
u=Au+e.

When Q) = (1 +w) [log(l +u) > with p>1, (3.7) holds for p > 2. Actually
single point blow-up is expected only in this case, whereas blow-up on a region of
finite measure (regional blow-up) is expected for p=2 (see also [30]). and blow-up
in R¥ (global ‘blow-up) is expected for 1 < p <2 (cf. [6], [28], [31], [32D.

Example 2. We now turn our attention to quasi-linear equations, where
¢'(s) # 1. For instance, consider

(3.12) u,=div(w Vu) + e,

where ¢ > 0 is a fixed constant. Then L=0 in (3.3), and
(o}
Fo(u)z—z-e“ for u >>1.
This leads to the following estimate corresponding to single point blow-up:.

or? 5
u(r,t)s=< Ilog —4—‘Ilogr (d | [1+o(1)]
~ for r > 0 small enough, and ¢ = T. If instead of (3.12), we have
u,=div (& Vu) + ub witho>p,' p>1,
it follows that L =0/ > 0, whence

(o}

Fy(u) =;V—OT=2—B-u" for u >>1.
Then, if p >0 + 1, (2.10) yields (cf. [25], [26])

d[ﬁ—gc+l)]

=1/ B-(o+1)]
1.2 ~
u(r’t)s{Z(N0+ZB) r} for r>0 sma]l,{ T.

This is now the single-point blow-up case. Ifp=0c+1 (resjp. I<Bp<ao+1), we
expect regional blow-up (resp. global blow-up) to occur; cf. [6, Chapter IV] and
[33]. Consider finally the equation

u,=div(e“Vu) + u® with § > 1.
In this case L = + in (3.3), and therefore Fy(u) = u®/N for u>> 1. Since (2.9)

does not hold, we do not expect single point blow-up to occur. Actually, 2.10) -
gives now

u(r,t) <u(,t)- er:,u”(O, t) e[l + o (1)]

as t- T uniformly on compact subsets, which strongly suggest the existence of
global blow-up. :
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§ 4. The absorption case

In view of our previous analysis, a crucial point towards understanding the
asymptotic behaviour of solutions of (1.1)_ near the extinction time consists in 3
suitable choice of function F(u) satisfying (2.2) and (2.6). As in § 3, we shall
assume that such a choice is possible, and proceed to derive formally the behaviour
of such F(u) for u > 0 small enough. To this end, we shall assume that (3.3) holds
with limits u - o replaced by u - 0. Since z = Q/F solves now

z’(l——i—) +%—’,L<N+z) =—% as u-0,

we readily see that, if L=0 in (3.3) with u - 0, we may expect

. N ' -
(4.1) Fu)=Fyu)=0Q )¢ )2 ¢'(s) llogQ (s)I'ds)”
for 0 <u<<1. When L>O, we take V

4D F)=Fe) =20 o gy,

where ¢ > 0 is fixed, but otherwise arbitrary. A routine computation shows then
that all the required assumptions on F(u) hold for 0 < u << 1.

Example 3. Set ¢(s) =s in (1.1).. Then L=0 in (3.3) with.u - 0, and
therefore we expect '

Fu)= “for O<u<<l1.:

N Q)
Fo(”)"zuogQu(u)l

In particular, we have

(4.33)  F,(u)=

uP
2p Hogu | Q)=u*, 0<p<l,

(4.3b) Fo(u) = %u Hogu 1°™ if Q(u)=ullogul*, a>1.

Notice that these functions satisfy (2.2) and (2.6c) for 0 < u << 1. In the case
considered in (4.3a), (2.12) with (2.13) yield the following estimate

. _—
(4.4) w(r,t)=[(1=p)(T-1)] ‘/“‘”’(1 - 11117)':" "M+o()]as t»>T

. 0 .
where 1 A='r[(T — )log(T = )1 T?, and convergence is ~ uniform ori sets
0 <1 =< c¢<mn, with n, =2[p(1 — p)"'1” The fact that this is the actual asymptotic
behaviour whenever uy(x) has a single maximum has been recently proved by

‘M. A. Herrero and J. J. L. Veldzquez.. Notice that inequality (2.15) provides the
explicit upper bound ’ .

wu@,)<[A-p T —-t) "L+ N/ [2pllog(T—1t) 1]} as t-T.
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Consider now (1.1)_ with the absorption term given in (4.3b). Then (2.14) holds
if and -only if o > 2, whereas (1.4) is satisfied whenever a > 1. When a > 2, we
obtain

u(r,‘i>zexp(—{[<a—‘1) (T —1) 17D (1 - 25)"‘“ '+ oM
as t—»T,

o —
2 (- 1)
sets 0 <& < c<E, with §, = 2 (@ — 2)"/%(a — 1) ™. When 1 <a < 2, we obtain as
a lower bound a function which is positive everywhere, namely

where E =r (T —t)™ , m= ik and the above estimate is uniform on

u(rt) = exp (—{i@-1) (lT £) Ve (1 + E )"“‘ M+ oy
as t—>T

uniformly on sets 0 <& < ¢ < +o0, where ‘g =2(2—a)™ (@ — 1) . This indicates
that single point extinction is confined to the parameter range o > 2.

Finally, we notice that for a general semilinear equation, (2.14) implies that the
condition (cf. (1.4'))

logQ (s) d -
s=+
’!)" Q(s)
yields global extinction, i. e., u(x, ) > 0 everywhere near t=T.
Example 4. To conclude, we consider thc; equation

4.5 u =div(@ Vu) — u® witho >0, 0<p<l1.

We then have L >0 in (3. 3), whence the choice F,(u) = u?*°/c for 0 < u << 1.
Assumptions (2.2) and (2.6c) hold then for 0 < u << 1 provided that p +0 < 1.
Notice that we obtain in this case

\/(1-p)
+

@O u(nt)z((1-p)(T-1) 17001 —%—;)

as t—>T, where T =r(T -1, t2=2c and (4.6) holds uniformly on sets
0 <% = b <%, A comparison of (4.4) and (4.6) suggests the existence of nontrivial
boundary layers when o - 0 in (4.5).

§ 5. Concluding remarks

1. We expect that the method introduced by Friedman and McLeod in [9] will
describe generic critical behaviours of solutions of (1.1), near blow-up or extinction
times. More precisely, we conjecture that, if the behaviour of u(0, ?) as ¢ » T near
a blow-up or extinction point is known, all the information about the corresponding
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asymptotics on small compact subsets near the origin is encoded in the first order
ODE

¢'(Wu,+rFu)=0for r>0as t~>T,

where an optimal choice of F(ux) is to be. done, as indicated in § 3 and 4 above.

2. The same approach has beer used in [34] (see also [35] with one-dimensional
analysis) for the equation with gradient-like diffusion u, = div(IVul® Vu) + &, and
single point was proved to exist if o > 0, B‘> o + 1. Different parabolic equations
with nonlocal terms have been considered in [36] and by C. J. Budd, J. W. Dold
and V. A. Galaktionov.
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