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ON A GENERAL APPROACH ТО EXTINCTION 
AND BLOW-UP 

FOR QUASI-LINEAR HEAT EQUATIONS 

Исследуется асимптотическое поведение неотрицательных решений и = и( I х \, t) урав­
нения теплопроводности общего вида с источником или стоком тепла 
щ = Аф(а) ± Q(u)> где <р', Q — заданные неотрицательные функции. Показано, что 
тщательное использование метода, предложенного Фридманом и Маклаодом,. позволяет 
получить асимптотические оценки решений вблизи момента обострения или полного 
остывания, которые, как было установлено, являются точными для некоторых частных 
видов функций <р и Q. 

§ 1. Introduction 

In recent years, equations of the type 

( 1 . 1 ) ± ut = A ± Q (и)., 

have deserved considerable attention, both because of their relevance as physical 
models in Continuum Mechanics as well as for their intrinsic mathematical interest. 
Local (in time) existence of classical solutions for the various initial and boundary 
value problems associated to (1 .1 ) ± follows at once from standard parabolic theory 
when <p(s) = s and, say, Q(s) is continuous (cf. for instance [ 1 ] , [ 2 ] ) . However 
solutions need to be defined in a generalized way if, for instance, ip(u) = um with 
m > 1 (see [ 3 ] , [ 4 ] ) . We shall assume throughout this paper that 

(1 .2) <p G С 2 ( ( 0 , оо)) П C'( [0 , oo)) , QGC ' ( (0 , оо)) П С ( [0 , оо)) , 

Ч>'С*) > 0 > Q(s) > 0 for s > 0 . 

Moreover, we shall assume that a suitable theory of (possibly generalized) solutions 
is available in any of the cases to be considered. These will be referred to henceforth 
as the solutions without any further specification. 

It is well known that, for a wide choice of functions tp and Q, solutions of 
( 1 . 1 ) ± may develop critical behaviours in a finite time. To simplify this exposition, 
we shall reduce ourselves henceforth to the situation where (1 .1 ) ± holds for 
xGRM,N> 1, in some time interval (0 , T) with T < + o o , and 

(1 .3) u(x, 0 ) = u0(x) for jcER;vr, where u0(x) is continuous, nonnegative and 
bounded. 
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The foregoing arguments can be extended, however, to cover initial boundary value 
problems on bounded domains. Let us recall now some notation. A nonnegative 
solution u(x, t) of ( L l ) + , (L3) is said to blow-up in a finite blow-up time T > 0 
if u(x, t) solves ( 1 . 1 ) + in any strip Sx = RN * (0,x) with т < Г, and 

If this happens, we shall say that x0 is a blow-up point if there exist sequences 
{ x j , {tn} such that 

lim xn = x0 , lim tn = T , lim и (xnJ О = + 0 0 • 
n - > oo n-o 0 0 Л - » 0 0 

As suggested by the first order PDE obtained by dropping the diffusion term in 
( L l ) + , a necessary condition for blow-up to happen is 

( L 4 ) Хт^тЧ < 0 0 

(cf. for instance [5], [ 2 ] , and list of references in the books [6], [7]). On the 
other hand, we say that extinction occurs for (1.1)_, (1.3) if there exists 
T* < 4-co such that the solution of (Ll)_, (1.3) under consideration satisfies 
u(x, t) = 0 for t > T\ The infimum of such times T, T, is then named as the 
extinction time. A point xQ is termed as extinction point if there exist sequences 
{xn}, {tn} such that 

lim xn = xQ , lim tn = T and и (xn, tn) > 0 
n - > o o n-e»oo 

for any AZ. Again, dropping the diffusion term in (1.1)_ indicates that, in order to 
obtain extinction, one needs the assumption 

( L 4 , ) 1тЙ1Т< 0 0 f o r a n y E > 0 . 

Conditions under which I low-up (resp. extinction) occur in a finite number of points 
have been extensively discussed in the literature; see [8 ]— [11], [6], [7] (resp. [12]). 
The description of the asymptotics of solutions near blow-up points (resp. extinction 
points) at the blow-up time (resp. the extinction time) is an interesting problem in the 
general theory of non-linear evolution equations, and as such, it has been the object of 
considerable effort. As of now, a complete picture is only available for the one-dimensional, 
semilinear case where <p(s) = s, Q(s) = ̂  with p > 1 or Q(s) =e* in (1.1) + (resp. 
Q(s) = with 0 < p < 1 in.(! . !)_) . Let us specialize to the blow-up case (1.1) + with 
Q(s) =s", p > 1, for definiteness. It is then known that, to the first approximation, 
blow-up behaviour is self-similar, in the sense that the following result holds. If x = 0 is 
any blow-up point and u(x, t) blows up at t=T, then 

(1.5) Hm (Г - 0 , / ( p " ° и (x (T — t)U2, t) = (p - 1 ) " C P - O 5 

uniformly in sets \x \<C with С > 0 
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(cf. [13] — [17]). Notice that uT(x, t) = [(p - 1)(T - l ) ] l / 0 , " l } is an explicit self-
similar solution of (1.1) + under our current assumptions. Different behaviours appear 
when high-order asymptotics are considered, and a complete classification of them 
is now available. It was first obtained formally by the method of matched asymptotic 
expansions in [18] (cf. also [19] and [20], [13] for pioneering works in this 
direction). Later, these results were made rigorous by M. A. Herrero and J. J. L. 
Velazquez in the series of papers that will be published soon. Roughly speaking, 
the asymptotics at blow-up (including the nature of the singularity which appears 
there at blow-up time) depends of the number of maxima which collapse at the 
blow-up point. However, only the case of a single maximum reaching up to the 
blow-up point at the blow-up time is generic, in the sense of being preserved 
under small perturbations of initial values; a similar situation, exists for some 
quasilinear heat equations, see references in [6 , Chapter IV]). This corresponds to 
an asymptotic behaviour given by 

( 1 6 ) lim (Г - 0 , / ( P " 0 и ft ((T - t) I log (T - 0 I ) , / 2 , 0 = 

- (P - I )" l , c ^ " 0
 [ 1 + V] " l , 0 P " °" 

uniformly on sets \%\<C with С > 0, 

(1.7) l i m / ' * 1 2 \ "с ," о ( x т ч = ( 8/> ) 

The reader is referred to [6], [7], [13], [14], [21], [22] for related results, as 
well to [1.2] for corresponding results for the extinction problem. For the quasi-linear 
equation with <p(s) = + \o > 0y Q(s)=sp, we have single point blow-up for 
p > о + 1 while for p = о + 1 regional blow-up occurs, and if p E (1, о + 1) there 
exists global blow-up, see [6 ] and [23 ] for extensive references. Notice that in 
these cases asymptotic behaviours are quite different from (1.6) and (1.7), and 
nontrivial explicit self-similar solutions are asymptotically stable. See [6, Chapter 
IV] for the case p = a + 1 and [23] for p > о 4- 1. 

Let us state now the aim of this note. While solutions to (1.1 ) ± may indeed behave 
in many different ways for any choice of f and Q there, we believe that in any case 
only one behaviour is generic. Moreover, we expect this behaviour to be easily described 
by means of an easy-to-compute algorithm, to be described in the next Section. We 
should stress, however, that only one-sided bounds (as for instance (3.8) and (3.9) 
below) can be made rigorous at this stage when *p(s) & s, and even in such case, tight 
assumptions on the initial values are currently required. 

§ 2. Friedman-McLeod's method • 

From now on, we shall reduce ourselves to the study of radial solutions of 
( L l ) ± . Moreover, we shall also assume that 

ф(ы0)еС' , uQ(r) < 0 for r = lx I > 0, 



ON A GENERAL APPROACH TO EXTINCTION AND BLOW-UP 249 

so that the corresponding solution is radially symmetric and nonincreasing in 
r > 0. Following [9 ], we consider the auxiliary function 

(2.1) /(r,0 = r ^ V ( W ) ^ ( r , O + r ^ ( t t ( r , O ) , 

where 

(2.2) F (u ) is a C 2 -function (depending on <p and Q) which should satisfy 
F (u ) > 0 and F '(u) > 0 for и > 0. 

One readily checks that / ( r , t) satisfies the following parabolic equation (cf. [25] 
for N=l and [26])' 

(2.3) 

where 

Jt = A / + q (и, r) , 

A / = ~aJrr + ~bJr + ~cJ , a = ~a(u) = <p' (w ) , 

. c - c ( « , r , / ) - - ^ - 2 T - ^ T 2 + a ^ ± i E F . 
and 

9 = ? ( « , г ) e r ^ 2 { ^ | ) + 2 ( l o g F ) ' =F ( £ ) ' } - r< 
4 > ' 

It then follows from the Maximum Principle (cf. [ 9 ] , [25]) that, under some 
conditions on <p, Q and / 0 , 0 has a constant sign for any t > 0 for which и(г, 0 
is well-defined. In particular, consider equation (1.1) + and suppose that u0(r) is 
such that 

(2.4a) 7(r, 0) < 0 for r > 0 ; 

(2.4b) / + ( a ) - 2 ^ - [AT - ] + 2 [logF <„ ) ]' -
F(u) 

< 0 for и > 0 ; 

(2.4c) ^ " ( и ) > 0 for и >0 . 

Then 

(2.5) J(r, t) < 0 for any r > 0 and any * > 0 for which u(r, t) is defined. 

On the other hand, consider equation (1.1)_, and suppose that u0(r) is such 
that 

( 2 . C a ) J(r, 0) > 0 for r > 0; 

(2.6b) / ( и ) = ! ^ | ^ + Ш ^ ] + 2 . D o g F ( n ) ] ' + 
F(u) > 0 for и > 0; 
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(2.6c) F"(u) < 0 for u>0. 

Then 

(2.7) / ( r , t) > 0 for any r > 0 and any * > 0. 

We shall analyze now some consequences of inequalities (2.5), (2.7). Suppose 
first that u(r, t) solves (1.1)+ and (2.5) holds. Integrating this last inequality 
yields 

(2.8) 2 "7° %^-ds>r2 for r > 0 , * e ( 0 , T). 

Therefore, if 

(2.9) Щи) = 2 / ^ Q . d s < oo for и > 0 , 

it follows from (2.8) that 

(2.10) u(r, t) < H-^r2) for r > 0, £ E (0, T). 

In this case r = 0 is a single blow-up point. Furthermore, if the behaviour of u(Q, t) 
for t ~ T is known, (2.8) provides an upper bound for u(ry t) when r ~ 0 and 
t ~ T. On the other hand, recalling the definition of / ( r , t) in (2.1), it follows that 
if we divide in (2.5) by and let r -* 0, we obtain 

(<p '(«K), + i 4 » < 0 at г = 0 
and, since by regularity 

N(<p'(u)u,),= ut-Q(u) at r = Q, 

we see that 

(2.11) щ < QO) - NF(u) at r = 0, for t G (0, Г). 

By integrating (2Л1), we derive a lower bound for u(0, t) when / ~ T. 
The previous results have immediate counterparts for equation (1.1)_. In this 

case, if (2.7) holds, (2.8) is to be replaced by 

(2.12) 2U(Jn ^lds<r2 for r > 0 , * Е ( 0 , Г ) . 

We may use (2.12) to derive a lower bound for the support of u(r, t) near the 
extinction time. Indeed, since wrr(0, t) < 0 and wr(0, 0 = 0, we have that 
w,(0, t) < - Q(w(0, 0) in (0, T), whence 

(2.13) ы(0, 0 > Ф Н ( Т - t) in (0, T), 

where 
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(cf. (1.4')). Therefore, if 

ds < + о© for any e > 0, 

we deduce from (2.13) that as 

supp u(ryt)= \r > 0 | и (г, t) > 0} 2 {r< S (*)}, 

where 

« 0 - 2 I ds . 

Finally, the analogue of (2.11) reads now 

(2.15) ut > -Q (u) - NF(u) at r = 0 for t G(0, T), 

and it yields the upper bound of u(Q,t). It is interesting to compare this with the 
lower one given by the simple inequality u'(0, t) < — Q(w(0, t)). 

It is apparent that the precise form of the above estimates depends crucially on 
the choice of F(u) in (2.1), which has to be made in such a way that (2.4) (resp. 
(2.6) in the case ( l . l ) J holds. This has been done for various values of 9 and Q 
(cf. for instance [7], [13], [14], [25]— [28] for the blow-up case, and [12] for 
extinction problems). We shall now comment on a formal procedure to perform such 
selection for rather general choices of 9 and Q. Consider first the blow-up case 
(1.1) +. Bearing in mind (2.4b), we examine the first order ODE 

§ 3. Selecting F{u) in (1.1)+ 

= 0 for и > 0 . 

Setting z(u) =Q(u)/F(u), (3.1) gives 

(3.2) ( l + f ) * , = 2 ^ - ^ ( z - A T ) for tt>0. 

In addition to (1.2), we shall assume that 

(3.3) lim Q (u ) = 4- 00 , Q'(u )>0 , <p"0 ) > 0 for large и > 0 , 

and the following (finite or infinite) limit exists 

L = lim 
0 0 . [lOg Q ( И ) ] ' " 

Suppose now that L = 0 in (3.3). Then 

Q' 
- (u ) « — (u ) as и -» оо , and lim z (u ) = 00 
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Thus for large values of и > 0, (3.2) is asymptotically equivalent to 

whence 

z(u)~^^ff'(S)[logQ(s)Vds for и » 1 . 

Recalling the definition of z(u), we are thus led to the choice 

<3-4> F(u) « F0(u) = Q(u)4>'(u){2f4>'(s) [logQ (s) Yds}'' 

as и ~* oo, provided that L = 0 in (3.3). Notice that we are not saying that F0(u) 
in (3.4) will always satisfy (2.4b), although it can be readily checked that (2.4b) 
holds for и >> 1 with the above choice of F0 if 

S2 [ logQ(«)F < " T 2 W l t h Z ^ = W -

Instead, we are assuming that F(u) can be selected so that (2.4) holds and its 
asymptotic behaviour for large values of и is given by (3.4) in the case L = 0. If 
L > 0, it turns out that, as и -* oo5 (3.2) is asymptotically equivalent to 

1 \ , _ 01 

and it is easy to see that any solution of this equation satisfies 

/ ч 2 -f LN z (и) -з> ——— as и -» oo . 

We then expect that F{u) can be selected so that 

(3.5) F{u)= (N + | - ) ~ ' Q (и ) when L > 0 . 

E x a m p l e 1. Set <p'(s) = 1 in (1.1)+. In this case, L = 0 in (3.3), and therefore 
we expect 

In particular, we have 

(3.6a) F o ( u ) = _ ^ _ i f Q ( M ) = H ' , - P > 1 

(cf. [13], [14], [28]). 
(3.6b) i ?

0 ( « ) = ^ if Q ( « ) = e -

(cf. [7], [27]- [29]). 
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(3.6c) FQ(u)=\u{\ogu)p-x if Q(u) = (l + w) [log(l + u)]p , p>\ 

(cf. [28]). 
Notice that these functions satisfy (2.2) and (2.4c) for и >> 1. Furthermore, 

in view of (2.9), single-point blow-up will occur if 

(3.7) < + oo , 

which certainly holds in cases (3.6a, b). Consider the power-like case in (3.6a). It 
then follows from (2.8) and (2.10) (with F replaced by F0 and t= T) that the final 
profile should satisfy 

i £ _ L L r -i/(p -.) , l o g r i I / C P - о + 

+ Q (r - 1 , (< p ~ •> I logr I <2" № ~ о log I log r I) for r > 0 small enough 

(compare with (1.7) above). Moreover, whenever (1.5) holds (which is the case for 
different classes of solutions u(r, t) when N > 1), (2.8) yields 

(3.9) и ( r , t) < (T - 0 " , / ( p _ l ) j ( p - 1) + ( P 4 p

1 ) 2 r ) 2 + o(l)}~' 7 ( P _ I as t -»T , 

TJ = r[(T - r)l log (T - ! ] " , / 2 , uniformly on compact subsets in TJ, a result to be 
compared with (1.6). Recalling the result already known for the one-dimensional 
case (of Section 1 herein), we expect single point blow-up satisfying (3.8), (3.9) 
(with equality replacing the inequality sign there) to be the generic blow-up behaviour 
for solutionis of (1.1) + for which (1.5) holds. Notice that for the given choice of 
F(u) inequality (2.11) takes the form u' < Q(u){l — N/[2 log Q(u) ]} as t-+ T, and 
integrating near t=T with Q(u) = up yields the explicit lower bound 

M ( 0 , t) > [(p - 1)(Г - О Г . , / ( р " °{1 + N1 [2p\ log (T — 01 ]}. 

When Q(u) - e?, (3.8) is to be replaced by 

(3.10) u(r, T) < 21 log r\ + log I log r\ + log 8 + o(l) as r >̂ 0, 

whereas instead of (3.9) there holds 

« 3 , 1 , , и(„ о , - io S (r - ,) - , „ g ( 1 + $ - W - V I 1

 + 

+ 0(itot(r-oiJ X " T 

uniformly on subsets TJ = r[(T - r)l log (T - r)l ] " , / 2 < С < + o o , provided that 

limju (x (T - t)ui, О + log(r - О] = 0 э 
uniformly on compact sets Ы < С < oo (this is the analogue of (1.5) in.the current 
case). Again, we expect single-point blow-up with the behaviour specified by the 
right-hand sides of (3.10), (3.11), to be then the generic situation in the exponential 
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case. Inequality (2.11) implies u(0, t) > I log (T — t)\ + Nf [21 log (T — t)\ ] as 
t-*> T. Notice that the asymptotic behaviour given in the right-hand side of (3.11) 
is proved by J. Bebernes, S. Bricher and V. A, Galaktionov to be asymptotically 
stable with respect to small perturbations of the coefficients of the semilinear equation 
щ = Au + e.' 

When Q(u) = (1 + u) [log(l + u) Y with p > 1, (3.7) holds for p > 2. Actually 
single point blow-up is expected only in this case, whereas blow-up on a region of 
finite measure (regional blow-up) is expected for p = 2 (see also [30]). and blow-up 
in R" (global blow-up) is expected for 1 < p < 2 (cf. [6], [28], [31], [32]). 

E x a m p l e 2. We now turn our attention to quasi-linear equations, where 
<p'(s) Ф 1. For instance, consider 

(3.12) ut = div(w° Vn) + e \ 

where a > 0 is a fixed constant. Then L = 0 in (3.3), and 

FQ(u ) ~ \ e u for и » 1 . 

This leads to the following estimate corresponding to single point blow-up: 

u(r, t) < J log ^ l l o g r 2 l - j J [1 + o ( l ) ] 

for r > 0 small enough, and t ~ T. If instead of (ЗЛ2), we have 

и t = div (if Vu) + with о > p , p > 1 , 

it follows that L = o/$ > 0, whence 

Then, if p > o + 1, (2.10) yields (cf. [25], [26]) 

q 2 ( ^ o a

+ 2 p ) r l \ f o r r>0 small, t~T. 

This is now the single-point blow-up case. If p = о + 1 (resp. 1 < p < o + 1), we 
expect regional blow-up (resp. global blow-up) to occur; cf. [6, Chapter IV] and 
[33]. Consider finally the equation 

и t = div (e uVu) + иp with p > 1. 
In this case L = f o o in (3.3), and therefore F0(u) = u*/N for u » l . Since (2.9) 
does not hold, we do not expect single point blow-up to occur. Actually, (2.10) 
gives now 

и (г, t) < и (0, Г) - ^ w*(0, t) e -«°''>[1 + о (1)] 

as ^ T uniformly on compact subsets, which strongly suggest the existence of 
global blow-up. 
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, § 4. The absorption case 

In view of our previous analysis, a crucial point towards understanding the 
asymptotic behaviour of solutions of (Ll)_ near the extinction time consists in a 
suitable choice of function F(u) satisfying (2.2) and (2.6). As in § 3, we shall 
assume that such a choice is possible, and proceed to derive formally the behaviour 
of such F(u) for и > 0 small enough. To this end, we shall assume that (3.3) holds 
with limits и -*> oo replaced by и -*> 0. Since z = Q/F solves now 

we readily see that, if L = 0 in (3.3) with и -» 0, we may expect 

(4.1) F(u)~F0(u) = Q(u)4>'(u){2f<p'(S)[logQ(S)Vds}-1 

и 

for 0 < и « 1. When L > 0, we take 

(4.2) F(u) ~Fc(u) = 6 f o r 0 < n « l , 

where с > 0 is fixed, but otherwise arbitrary. A routine computation shows then 
that all the required assumptions on Fc(u) hold for 0 < и < < 1. 

E x a m p l e 3. Set y(s) = s in (1.1)_. Then L = 0 in (3.3) with, w 0, and 
therefore we expect 

f C ) ' W - 2 i l ^ ( ! , ) | f o r o < « « i . -

In particular, we have 
4 

(4.3a) F0(u) = 2 p , if Q ( M ) = « " , 0 < P < 1 , 

(4.3b) F0(u ) = \u llogu l a " ' if Q (и ) = и llogu l a , a > 1 . 

Notice that these functions satisfy (2.2) and (2.6c) for 0 < и << 1. In the case 
considered in (4.3a), (2.12) with (2.13) yield the following estimate 

(4.4) и ( г , О > [ ( 1 - p) (T - O] , / ( - p ) (1 - ^ ) [1 + о (1) ] as t - T 

where TJ = r[(T — ^)llog(T — t) \ ] _ l / 2 , and convergence is uniform oii sets 
0 < i] < с < 7]0 with т]0 = 2[p(l - p)"1 I й 2 The fact that this is the actual asymptotic 
behaviour whenever u0(x) has a single maximum has been recently proved by 
•M. A. Herrero and J. J. L. Veldzquez., Notice that inequality (2.15) provides the 
explicit upper bound 

и (0, t) < [(1 - p) (T - t) f o - ^ l •+ NI [2p Hog (T - t) I ]} as г'-* Г. 
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Consider now ( 1 . 1 ) . with the absorption term given in (4.3b). Then (2.14) holds 
if and only if a > 2, whereas (1.4) is satisfied whenever a > 1. When a > 2, we 
obtain 

и (г, О > exp ( -{ [ (a - 1) (T - t) ( l - ^^'Y[I + о (I)]) 
as t -*> Ty 

where \ = r (T — t ) ~ m , m = ^(a — ^ 1 ) ] '
 a n ( ^ ^ e a ^ o v e e s ^ m a * e is uniform on 

sets 0 < I < с <\0 with £ 0 = 2 (a - 2)" , / 2 (a - 1) w . When 1 < a < 2, we obtain as 
a lower bound a function which is positive everywhere, namely 

n ( r f 0 * c * p ( - { [ ( a . - 1 ) ( Г - 0 +|J) ,^"Y ,[1 + o ( l ) ] ) 

as t-+ T 

uniformly on sets 0 < ^ < c < + o o , where \ , = 2 ( 2 - a)~U2 (a - 1) m . This indicates 
that single point extinction is confined to the parameter range a > 2. 

Finally, we notice that for a general semilinear equation, (2.14) implies that the 
condition (cf. (1.4')) 

yields global extinction, i. е., u(x, t) > 0 everywhere near t=T. 
E x a m p l e 4. To conclude, we consider the equation 

(4.5) ut = d i v (if Vu) - и p with a > 0 , 0 < p < 1. 

We then have L > 0 in (3.3), whence the choice Fc(u) = up+a/c for 0 < и << 1. 
Assumptions (2.2) and (2.6c) hold then for 0 < и << 1 provided that p + о < 1. 
Notice that we obtain in this case 

(4.6) u(r,t)> [(1 - p)(T - t) ]'/(•-'> (1 - |4 ) T"* 

as t-*> T9 where t, = r(T - *) _ U 2 , t,* = 2c and (4.6) holds uniformly on sets 
0 < < й < t>0. A comparison of (4.4) and (4.6) suggests the existence of nontrivial 
boundary layers when о -* 0 in (4.5). 

§ 5. Concluding remarks 

1. We expect that the method introduced by Friedman and McLeod in [9] will 
describe generic critical behaviours of solutions of (1.1) ± near blow-up or extinction 
times. More precisely, we conjecture that, if the behaviour of u(0, t) as t -*> T near 
a blow-up or extinction point is known, all the information about the corresponding 
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asymptotics on small compact subsets near the origin is encoded in the first order 
ODE 

y'(u)ur + rF(u) = 0 for r > 0 as t-*> T, 

where an optimal choice of F(u) is to be- done, as indicated in § 3 and 4 above. 
2. The same approach has beer, used in' [34 ] (see also [35 ] with one-dimensional 

analysis) for the equation with gradient-like diffusion ut = d iv ( IVu\ a Vu) + iP, and 
-single point was proved to exist if о > 0,P > a Different parabolic equations 
with nonlocal terms have been considered in [36] and by C. J. Budd, J. W. Dold 
and V. A. Galaktionov. 

The authors were partially supported by EEC Contract SC1-0019-C. The first 
and the fourth authors were also partially supported by CICYT Research Grant 
PB90-0235. 
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