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Abstract

Biological sensory systems react to changes in their surroundings. They are characterized by fast response and slow
adaptation to varying environmental cues. Insofar as sensory adaptive systems map environmental changes to changes of
their internal degrees of freedom, they can be regarded as computational devices manipulating information. Landauer
established that information is ultimately physical, and its manipulation subject to the entropic and energetic bounds of
thermodynamics. Thus the fundamental costs of biological sensory adaptation can be elucidated by tracking how the
information the system has about its environment is altered. These bounds are particularly relevant for small organisms,
which unlike everyday computers, operate at very low energies. In this paper, we establish a general framework for the
thermodynamics of information processing in sensing. With it, we quantify how during sensory adaptation information
about the past is erased, while information about the present is gathered. This process produces entropy larger than the
amount of old information erased and has an energetic cost bounded by the amount of new information written to
memory. We apply these principles to the E. coli’s chemotaxis pathway during binary ligand concentration changes. In this
regime, we quantify the amount of information stored by each methyl group and show that receptors consume energy in
the range of the information-theoretic minimum. Our work provides a basis for further inquiries into more complex
phenomena, such as gradient sensing and frequency response.
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Introduction

In order to perform a variety of tasks, living organisms

continually respond and adapt to their changing surroundings

through diverse electrical, chemical and mechanical signaling

pathways, called sensory systems [1]. In mammals, prominent

examples are the neurons involved in the visual, olfactory, and

somatic systems [2–5]. But also unicellular organisms lacking a

neuronal system sense their environment: Yeast can sense osmotic

pressure [6], and E. coli can monitor chemical gradients [7],

temperatures [8] and pH [9]. Despite the diversity in biochemical

details, sensory adaptation systems (SAS) exhibit a common

behavior: long-term storage of the state of the environment and

rapid response to its changes [10]. Intuitively, one expects that for

these SAS to function, an energy source – such as ATP or SAM –

is required; but is there a fundamental minimum energy needed?

To tackle this question, we first relate a generic SAS to a binary

information processing device, which is tasked to perform fast

information acquisition on the environment (response) and to

record subsequently the information into its longer term memory

(adaptation). Since the foundational works of Maxwell, Szilard and

Landauer, the intimate relationship between thermodynamic costs

and information processing tasks has been intensely studied [11–

17]. As a result, the natural mapping between a generic SAS and

an information processing device allows us to quantify the minimal

energetic costs of sensory adaptation.

The idea of viewing biological processes as information

processing tasks is not new [7,12,18]. However, rationalizing

sensory adaptation is complicated by recent studies that have

revealed that motifs in the underlying biochemical networks play a

fundamental role in the thermodynamic costs. For instance, the

steady state of feedback adaptive systems must be dissipative, with

more dissipation leading to better adaptation [19], an observation

echoed in the analysis of a minimal model of adaptive particle

transport [20]. Other studies have suggested that some feedfor-

ward adaptive systems may require dissipation to sustain their

steady state [21], while some may not [22,23]. Furthermore, past

studies [18,24] have approached the notion of information by

considering noisy inputs due to stochastic binding, a realm in

which adaptation may not be relevant due to the separation of

time-scales [25]. Here, we develop a different approach that avoids

these caveats by considering a thermodynamically consistent

notion of information that naturally incorporates the costs of

sensing in sensory adaptation. Specifically, we derive a collection
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of universal bounds that relate the thermodynamic costs of sensing

to the information processed. These bounds reveal for the first

time that for a generic SAS, measuring an environmental change

is energetically costly [(6) below], while to erase the memory of the

past is energetically free, but necessarily irreversible [(5) below]. By

formalizing and linking the information processing and thermo-

dynamics of sensory systems, our work shows that there is an

intrinsic cost of sensing due to the necessity to process information.

To illustrate our generic approach, we study first a minimal

four-state feedforward model and then a detailed ten-state

feedback model of E. coli chemotaxis. Owing to the symmetry

of its motif’s topology the four-state feedforward model does not

require energy to sustain its adapted state. Instead, all the

dissipation arises from information processing: acquiring new

information consumes energy, while erasing old information

produces entropy. By contrast, the E. coli model sustains its

nonequilibrium steady state (NESS) by constantly dissipating

energy, a requirement for adaptation with a feedback topology

[19]. In this nonequilibrium setting, we generalize our thermody-

namic bounds in order to pinpoint the additional energy for

sensing over that required to maintain the steady state. We find

with this formalism that in E. coli chemotaxis the theoretical

minimum demanded by our bounds accounts for a sizable portion

of the energy spent by the bacterium on its SAS.

Results

Universal traits of sensory adaptation
To respond and adapt to changes in an environmental signal E,

a SAS requires a fast variable, the activity A; and a slow variable,

the memory M. For example, in E. coli the activity is the

conformational state of the receptor, the memory the number of

methyl groups attached to it, and the signal is the ligand

concentration [7]. Without loss of generality, we consider in the

following all three variables normalized such that they only lie

between 0 and 1, and that the signal can only alternate between

two values: a low value 0 and a high value 1.

As a result of thermal fluctuations, the time-dependent activity

At and memory Mt are stochastic variables. Yet, the defining

characteristics of sensory adaptation are captured by their

ensemble averages SAtT and SMtT, both at the steady state and

in response to changes in the signal.

At a constant environmental signal E~e, the system relaxes to

an adapted e-dependent steady state, which may be far from

equilibrium [19]. In this state, the memory is correlated with the

signal, with an average value close to the signal, SMTst~De{EmD
where Em is a small error. The average activity however is adapted,

taking a value roughly independent of the signal,

SATst~1=2+Ead, with adaption error Ead.

Besides the ability to adapt, SAS are also defined by their

multiscale response to abrupt signal changes, which is illustrated in

Fig. 1. For example, given a sharp increase in the signal from

E~0 to 1 the average activity quickly grows from its adapted

Author Summary

The ability to process information is a ubiquitous feature of
living organisms. Indeed, in order to survive, every living
being, from the smallest bacterium to the biggest
mammal, has to gather and process information about
its surrounding environment. In the same way as our
everyday computers need power to function, biological
sensors need energy in order to gather and process this
sensory information. How much energy do living organ-
isms have to spend in order to get information about their
environment? In this paper, we show that the minimum
energy required for a biological sensor to detect a change
in some environmental signal is proportional to the
amount of information processed during that event. In
order to know how far a real biological sensor operates
from this minimum, we apply our predictions to chemo-
sensing in the bacterium Escherichia Coli and find that the
theoretical minimum corresponds to a sizable portion of
the energy spent by the bacterium.

Figure 1. Generic traits of sensory adaptive systems. (A/B) Typical time evolution of the average activity SAtT (dark blue) and average
memory SMtT (red) of a SAS in response to an abrupt increase or decrease in the signal E (orange). (C) Schematic states of a chemical receptor
(black) embedded in a cell (light blue) during the four key phases of adaptation. At tv0 the system is adapted; at t~0 there is a sudden increase in
the signal ligand concentration (orange flecks); at t~ta the receptor responds increasing its activity (full blue circle); and at time t~tm it is adapted
(the memory is full, red; while the activity is half full blue).
doi:10.1371/journal.pcbi.1003974.g001
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value to a peak 1{Eg characterized by the gain error Eg. This

occurs in a time ta, before the memory responds. After a longer

time tm&ta, the memory starts to track the signal, and the activity

gradually recovers to its adapted value (see Fig. 1A). For a sharp

decrease in the signal, the behavior is analogous (see Fig. 1B).

We identify a SAS as any device that exhibits the described

adapted states for low and high signals (0 or 1) and that reproduces

the desired behavior to abrupt increases and decreases in the signal

(see Fig. 1C for a cartoon biochemical example). While SAS

typically exhibit additional features (such as wide range sensitivity

[26,27]), they all exhibit the universal features illustrated in Fig. 1.

Minimal SAS: Equilibrium feedforward model
To facilitate the development of our formalism, we first present

a minimal stochastic model of a SAS, where the activity A and

memory M are binary variables (0 or 1). This model is minimal,

since it has the least number of degrees of freedom (or states)

possible and still exhibits the required response and adaptive

behavior. Treating the environmental signal E as an external field

that drives the SAS, the system can be viewed as evolving by

jumping stochastically between its four states depicted in Fig. 2A.

The rates for activity A transitions from a’?a given M~m at

fixed E~e are denoted W m
aa’(e), and those for memory M

transitions from m0?m given A~a are W mm’
a (e).

As an equilibrium model, it is completely characterized by a free

energy function, which we have constructed in the Methods by

requiring the equilibrium steady state to have the required signal

correlations of a SAS,

F (a,m; e)~De{mD(DmzDe{aDDg): ð1Þ

Dm&kBT ln E{1
m is the energy penalty for the memory to

mistrack the signal, ensuring adaptation (with T the temperature

and kB Boltzmann’s constant). In fact, one can show that

Ead&Em=4. Dg&kBT ln E{1
g is the penalty for the activity to

mistrack the signal when M=E; it thus becomes relevant after a

signal change, but before the memory adapts to the new signal,

ensuring response. In Figs. 2C and D the energy landscape

F (a,m; e) is represented for low and high signals (smaller radius

corresponds to less probability and larger energy). Note that for

fixed E~e, the adaptation error is zero when the energy penalty

to misstrack the signal becomes large Dm??, the system’s

configuration is then M~e and A takes on the values 0 and 1

with equal probability. Finally, the dynamics are set by fixing the

kinetic rates using detailed balance, e.g., ln W m
aa’(e)=W m

a’a(e)~

{ F (a,m; e){F (a’,m; e)½ �=kBT , and then choosing well-separated

bare rates to set the timescale of jumps: v for activity transitions

and k for memory transitions, with v&k, thereby enforcing the

well-separated time-scales of adaptation.

When there is a change in the signal, this model exhibits

response and adaptation as characterized in Figs. 1A and B

(verified in S1 and S2 Figures), and relaxes towards a dissipation-
less equilibrium steady state in which detailed balance is respected.

This is in contrast to previous studies on adaptive systems, which

demonstrated that maintaining the steady state for a generic

feedback system breaks detailed balance [19,20]. Our model,

however, differs by its network topology. As depicted in Fig. 2B, it

is a mutually repressive feedforward (all rates depend explicitly on

E, and the actions of A and M on each other are symmetric).

Similar topologies also underly recent suggestions for biochemical

networks that allow for adaptation with dissipationless steady states

[22,23].

Information processing in sensory adaptation
Any sensory system that responds and adapts can naturally be

viewed as an information processing device. In the steady state,

information about the signal is stored in the memory, since

knowledge of M allows one to accurately infer the value of E. The

activity A, on the other hand, possesses very little information

about the signal, since it is adapted and almost independent of the

signal. When confronted by an abrupt signal change, the activity

rapidly responds by gathering information about the new signal

value. As the activity decays back to its adapted value, information

is stored in the memory. However, to make room for this new

information, the memory must decorrelate itself with the initial

signal, thereby erasing the old information. Thus sensory

adaptation involves measurement as well as erasure of informa-

tion.

To make this intuitive picture of information processing precise,

let us focus on a concrete experimental situation where the signal is

manipulated by an outside observer. This is the setup common in

experiments on E. coli chemotaxis where the signal (the ligand

concentration) is varied in a prescribed, deterministic way [28]. To

be specific, the initial random signal Ei is fixed to an arbitrary

value ei, either 0 or 1, with probability p(ei), and the system is

prepared in the corresponding ei-dependent steady state, charac-

terized by the probability density pst(a,mDei). Then, at time t~0,

the signal is randomly switched to Ef with final value ef~0,1
(which may be the same as ei) according to the probability p(ef Dei).
The signal is held there while the system’s time-dependent

probability density pt(a,mDei,ef ), which conditionally depends on

both the initial and final signals, irreversibly relaxes to the final

steady state pst(a,mDef ). During this relaxation correlations

between the system and the final signal value Ef develop while

the correlations with the past value Ei are lost. As we will see, the

measure of information that captures this evolution of correlations

and naturally enters the thermodynamics of sensory adaptation is

the mutual information between the system and the signal.

Figure 2. Equilibrium adaptation in a symmetric feedforward
SAS. (A) Reaction network of the four states in activity, a, memory, m,
space, with kinetic rates W indicated for each transitions. (B) Topology
of the model: feedforward with mutual inhibition. For a fixed signal
E~e, a sudden increase in the memory makes the average activity
drop, and vice versa for activity changes. This symmetry of the
topology, which is at the core of detailed balance, allows an equilibrium
construction. (C/D) Representation of steady state probabilities
pst(a,mDe) for low/high (0=1) signals using the (a,m) space in (A). Wider
state diameter represents higher probability, thus lower energy.
doi:10.1371/journal.pcbi.1003974.g002
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The mutual information is an information-theoretic quantifica-

tion of how much a random variable U (such as the system) knows

about another variable V (such as the signal),

I(U ; V )~H(V ){H(V DU), ð2Þ

measured in nats [29]. Here, H(V )~{
P

p(v) ln p(v) is the

Shannon entropy, which is a measure of uncertainty. Thus, the

mutual information measures the reduction in uncertainty of one

variable given knowledge of the other. Of note, I(U ; V )§0 with

equality only when U and V are independent.

There are two key appearances of mutual information in sensory

adaptation capturing how information about the present is

acquired, while knowledge of the past is lost, which we now

describe. At the beginning of our experiment at t~0, the SAS is

correlated with Ei, simply because the SAS is in a Ei-dependent

steady state. Thus there is an initial information I(A0,M0; Ei) that

the SAS has about the initial value of the signal Ei. The signal is then

switched; yet immediately after, the SAS has no information about

the new signal value Ef , so I(A0,M0; Ef )~0. Then for tw0 the

SAS evolves, becoming correlated with Ef , thereby gathering (or

measuring) information DImeas
t ~I(At,Mt; Ef ){I(A0,M0; Ef )§0,

which grows with time. Concurrently it decorrelates from Ei, thus

erasing information DIeras
t ~I(A0,M0; Ei){I(At,Mt; EiDEf )§0

about the old signal, which also grows with time. This conditioning

I(At,Mt; EiDEf ) only takes into account direct correlations between

(A,M) and Ei, excluding indirect ones through Ef .

To illustrate this, we calculate the flow of information in the

non-disspative feedforward model for p(ei)~p(ef Dei)~1=2, which

is a 1-bit operation (because H(Ei)~ ln (2)nats~1bit). Fig. 3A

displays the evolution of the measured information (in black),

which we decomposed as

DImeas
t ~I(Mt; Ef )zI(At; Ef DMt):I

(M)
t zI

(ADM)
t , ð3Þ

where I (M) (red) is the information stored in the memory and

I (ADM) (blue) in the activity. We see the growth of DImeas proceeds

first by a rapid (t*ta) increase as information is stored in the

activity (I (ADM) grows) while the system responds, followed by a

slower growth as adaptation sets in (t*tm), and the memory

begins to track the signal. At the end, the system is adapted, and

there is almost no information in the activity, I (ADM)
? &0. With the

small errors we have, the information acquired reaches nearly the

maximum value of 1 bit, which is stored in the memory

DImeas
? &I (M)

? &1bits. Fig. 3B shows the erasure of information,

visible by the decrease of I(At,Mt; EiDEf ) from an initial value of

nearly one bit to zero when the system has decorrelated from the

initial signal Ei.

Thermodynamic costs to sensory adaptation
We have seen that through an irreversible relaxation, an SAS

first acquires and then erases information in the registry of the

activity, followed by the memory. The irreversibility of these

information operations is quantified by the entropy production,

which we now analyze in order to pinpoint the thermodynamic

costs of sensing. Specifically, we demonstrate in Methods that for a

system performing sensory adaptation in response to an abrupt

change in the environment, the total entropy production can be

partitioned in two positive parts: one caused by measurement

(DSmeas) and the other by erasure (DSeras). The second law thus

becomes

DStot
t ~DSmeas

t zDSeras
t §0, ð4Þ

with the reference set to an initial state at tv0. The erasure piece

DSeras
t ~kBDI eras

t §0, ð5Þ

is purely entropic in the sense that it contains no energetic terms. It

solely results from the loss of information (or correlation) about the

initial signal. By contrast, the energetics are contained in the

measurement portion,

DSmeas
t ~kBDH(At,Mt){Qt=T{kBDImeas

t §0, ð6Þ

where DH(At,Mt)~H(At,Mt){H(A0,M0) is the change in

Shannon entropy of the system and

Qt~
Ð t

0
ds
P

ei ,ef
p(ei,ef )

P
a,m _pps(a,mDei,ef )F(a,m; ef ) is the aver-

age heat flow into the system from the thermal reservoir.

A useful alternative formulation can be obtained once we

identify the internal energy Ut. For example, in the equilibrium

feedforward model, a sensible choice is the average energy

Ut~SF (At,Mt; Et)T (1). (Recall, that there is no unique division

into internal energy and work, though any choice once made is

thermodynamically consistent [30,31].) By substituting in the first

law of thermodynamics Qt~DUt{Wt, with Wt the work, we

arrive at

Wt{DF t§kBTDImeas
t : ð7Þ

This equation shows how the measured information DImeas
t

bounds the minimum energy required for sensing, which must be

supplied as either work Wt or free energyF t~Ut{kBTH(At,Mt).
Thus, to measure is energetically costly; whereas, erasure is
energetically free, but necessarily irreversible. In particular, for

sensing to occur, the old information must be erased (DI eras
t w0),

implying that the process is inherently irreversible,

DStot
t §kBDI eras

t w0: ð8Þ

Together (5) and (7) quantify the thermodynamic cost of sensing

an abrupt change in the environment by an arbitrary sensory

system.

Figure 3. Information measurement and erasure in sensory
adaptation. (A) Information acquired about the new signal as a
function of time. The information stored in the activity I

(ADM)
t (dark blue)

grows as the system responds, and then goes down as it adapts, when

the information in the memory I
(M)
t (red) grows. The total information

measured DImeas
t (black) shows the effect of both. (B) Information lost

about the old signal I(At,Mt; EiDEf ) (black), and its decomposition in
memory (red) and activity (blue) information. Model parameters are
Ex~10{2 for x = a, m, g; v~1=40s{1 and k~1=200s{1 .
doi:10.1371/journal.pcbi.1003974.g003
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We have demonstrated from fundamental principles that

sensing generically requires energy. However, (7) does not dictate

the source of that energy: It can be supplied by the environment

itself or by the SAS. The distinction originates because the

definition of internal energy is not unique, a point to which we

come back in our analysis of E. coli chemotaxis.

Using again our equilibrium feedforward model as an example,

we apply our formalism to investigate the costs of sensory

adaptation. Since this model sustains its steady state at no energy

cost, the ultimate limit lies in the sensing process itself. We see this

immediately in Fig. 4 where we verify the inequalities in (4) and

(7). Since F in (1) is explicitly a function of the environmental

signal E, the sudden change in E at t~0 does work on the system,

which is captured in Fig. 4A by the initial jump in W . This work is

instantaneously converted into free energy DF and is then

consumed as the system responds and adapts in order to measure.

Thus, in this example the work to sense is supplied by the signal

(the environment) itself and not the SAS, which is consistent with

other equilibrium models of SAS [23]. Furthermore, Fig. 4B

confirms that the erasure of information leads to an irreversible

process with net entropy production. The bounds of (4) and (7) are

not tightly met in our model, since we are sensing a sudden change

in the signal that necessitates a dissipative response. Nonetheless,

the total entropy production and energetic cost are on the order of

the information erased and acquired. This indicates that these

information theoretic bounds can be a limiting factor for the

operation of adaptive systems. We now show that this is the case

for E. coli chemotaxis, a fundamentally different system as it

operates far from equilibrium.

Extension to NESS and application to E. coli chemotaxis
We have quantified the thermodynamic costs in any sensory

adaptation system; however, for systems that break detailed

balance and maintain their steady state far from equilibrium, (5)

– (8) are uninformative, because of the constant entropy

production. A case in point is E. coli’s SAS, which enables it to

perform chemotaxis by constantly consuming energy and produc-

ing entropy through the continuous hydrolysis of SAM.

Nevertheless, there is a refinement of the second law for genuine

NESS in terms of the nonadiabatic DSna
t and adiabatic DSa

t

entropy productions, DStot
t ~DSa

t zDSna
t [32]. Crudely speaking,

DSa is the entropy required to sustain a nonequilibrium steady

state and is never null for a genuine NESS; whereas DSna is the

entropy produced by the transient time evolution. When the

system satisfies detailed balance DSa
t ~0 always, be it at its

equilibrium steady state or not; when its surroundings change, the

entropy production is entirely captured by DSna
t . We can refine

our predictions for a NESS by recognizing that DSna
t captures the

irreversibility due to a transient relaxation, just as DStot
t does for

systems satisfying detailed balance. Analogously to Eqs. (6) and (8),

we derive (see Methods):

kBDH(At,Mt){Qex
t =T§kBDImeas

t , ð9Þ

DSna
t §kBDIeras

t §0: ð10Þ

Here,

Qex
t ~{kBT

Ð t

0
ds
P

ei ,ef
p(ei,ef )

P
a,m _pps(a,mDei,ef ) ln pst(a,mDef )

is the excess heat flow into the system, roughly the extra heat flow

during a driven, nonautonomous process over that required to

maintain the steady state [33]. As a result, it remains finite during

an irreversible relaxation to a NESS, even though the NESS may

break detailed balance.

E. coli is a bacterium that can detect changes in the concentration

of nearby ligands in order to perform chemotaxis: the act of

swimming up a ligand attractor gradient. It is arguably the best

studied example of a SAS. At a constant ligand concentration ½L�,
chemoreceptors in E. coli – such as the one in Fig. 1C – have a fixed

average activity, which through a phosphorylation cascade trans-

lates into a fixed switching rate of the bacterial flagellar motor.

When ½L� changes, the activity of the receptor A (which is a binary

variable labeling two different receptor conformations) increases on

a time-scale ta*1ms. On a longer time-scale tm*10s, the

methylesterase CheR and methyltransferase CheB alter the

methylation level of the receptor in order to recover the adapted

activity value. In this way, the methylation level M (which ranges

from none to four methyl groups for a single receptor) is a

representation of the environment, acting as the long-term memory

(see diagram in Fig. 5A). One important difference with the

previous equilibrium model is that the chemotaxis pathway operates

via a feedback. The memory is not regulated by the receptor’s

signal, but rather by the receptor’s activity (see motif in Fig. 5B).

The implication is that energy must constantly be dissipated to

sustain the steady state [19], thus (9) and (10) are the appropriate

tools for a thermodynamic analysis.

There is a consensus kinetic model of E. coli chemoreceptors

[7,27,34–36] whose biochemical network is in Fig. 5A. The free

energy landscape of the receptor coupled to its environment is

F (a,m; ½L�)~Dm(a{
1

2
)(m0{m)z(a{

1

2
) ln

1z½L�=KI

1z½L�=KA

� �
ð11Þ

:F0(a,m)zV (a; ½L�) ð12Þ

with Dm the receptor’s characteristic energy, m0 the reference

methylation level, and KA=I the active/inactive dissociation

constants (values in Methods). In (11) the first term F0 corresponds

to the energy of the receptor, and the second V comes from the

interaction with the environment (de facto a ligand reservoir). The

dynamics of this receptor consist of thermal transitions between the

states with different activity, while transitions between the different

methylation levels are powered by a chemical potential gradient

Dm~6kBT due to hydrolisis of the methyl donor SAM (see

Methods). Continuous hydrolysis of SAM at the steady state sustains

Figure 4. Thermodynamics of adaptation in an equilibrium
SAS. (A) Energetic cost as a function of time given by the work W
provided by the environment (red), free energy change of the system
DF (orange), and dissipated work W{DF (black), compared to the
measured information DImeas (grey dashed), which gives the lower
bound at every time. (B) Total entropic cost DStot (black) and
decomposition in measurement DSmeas (gray) and erasure DSeras

(yellow). Parameters as in Fig. 3.
doi:10.1371/journal.pcbi.1003974.g004
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the feedback at the expense of energy, allowing accurate adaptation

in the ligand concentration range KI%½L�%KA, see Fig. 5B.

To begin our study, we develop an equation analogous to (7),

which requires identifying the internal energy of our system. As

stated above, we consider the binding and unbinding of ligands as

external stimuli, and thus define the internal energy as

Ut~SF0(At,Mt)T. Using the excess heat Qex
t , we consistently

define the excess work through W ex
t ~DUt{Qex

t , analogous to the

first law. Upon substitution into (9) gives

W ex
t {DF t§kBTDImeas

t , ð13Þ

showing just as in (7) that measuring requires excess work and free

energy. Because here the internal energy U is not a function of the

ligand concentration, W ex is not due to signal variation: It

represents the energy expended by the cell to respond and adapt to

the external chemical force.

In Fig. 5C, we compare W ex
t and DF t to DImeas

t during a ligand

change of D½L�*102mM. The sudden change in ½L� produces a

smooth, fast (*ta) increase in the free energy as the activity

transiently equilibrates with the new environment. The excess

work driving this response comes mainly from the interaction with

environment. As adaptation sets in (*tm), the receptor utilizes

that stored free energy, but in addition burns energy by the

consumption of SAM. Thus, in order to adapt the cell consumes

the free energy stored from the environment, as well as additional

excess work coming now mostly from the hydrolysis of SAM

molecules. The inequality in (7) with the measured information is

satisfied at all times.

The energetic cost of responding and adapting to the ligand

change is roughly 0:5kBT , of which much has already been used by

t*tm~10s. In comparison, the cost to sustain the chemotaxis

pathway during this time is roughly *6kBT (see Methods). This

means that the cost to sensing a step change is about 10% of the cost

to sustain the sensing apparatus at steady-state. During this process

the cell measures (and erases) roughly *0:3 bits, less than the

maximum of 1 bit despite its very high adaptation accuracy. This

limitation comes from the finite number of discrete methylation

levels, so that the probability distributions in m-space for large and

low ligand concentrations have large overlaps (S3 Figure). In other

words, it is difficult to discriminate these distributions, even though

the averages are very distinct, which results in lower correlation

between the methylation level and signal. The minimal energetic

cost associated to measuring these *0:3 bits (&0:2 nats) is 0:2kBT .

E. coli dissipates roughly 0:5kBT during this process, thus the

energetic cost of sensory adaptation is slightly larger than twice its

thermodynamic lower bound (2:5&0:5=0:2).

We further explored the cost of sensing in E. coli by examining

the net entropy production for ligand changes of different

intensity. In Fig. 6A, we plot the amount of information erased/

measured for different step changes of the signal up to

D½L�*105mM taking as lower base ½L�~50mM. The green

shading highlights the region where adaptation is accurate

(D½L�%KA). The information erased is always below 1 bit and

saturates for high ligand concentrations, for which the system is

not sensitive. The total entropic cost (that is, DSna
? ) and its relation

with the information erased appears in Fig. 6B. The dependence is

monotonic, and thus reveals a trade-off between information

processing and dissipation in sensory adaptation. Notably, for

small acquisition of information (small ligand steps) it grows

linearly with the information, an effect observed in ideal

measurement systems [17].

Discussion

We have derived generic information-theoretic bounds to

sensory adaptation. We have focused on response-adaptive sensory

systems subject to an abrupt environmental switch. This was

merely a first step, but the procedure we have outlined here only

Figure 5. Energetic costs of adaptation in an E. coli chemotaxis SAS. (A) Network representation of the nonequilibrium receptor model with
five methylation and two activity states. Green arrows represent the addition/removal of methyl groups driven by the chemical fuel SAM. (B)
Corresponding negative feedback topology, displaying the dissipative energy cycle (green arrow) sustained by adiabatic entropy production, due to
the consumption of chemical fuel. (C) Energetics of nonequilibrium measurement in the chemotaxis pathway for a ligand concentration change of
DL~102mM (other parameters in Materials and Methods). The instantaneous change in ligand concentration performs chemical work on the cell,
which increases its free energy DF as the cell responds. To adapt, the bacterium has to provide excess work W ex from its own chemical reservoir, the
fuel SAM.
doi:10.1371/journal.pcbi.1003974.g005
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relies on the validity of the second law of thermodynamics, and

therefore can be extend to any small system affected by a random

external perturbation to which we can apply stochastic thermo-

dynamics, which is reviewed in [37].

Our predictions are distinct from (although reminiscent of)

Landauer’s principle [11,12], which bounds the minimum energy

required to reset an isolated memory. By contrast, the information

erased in our system is its correlations with the signal. There is

another important distinction from the setup of Landauer, and

more broadly the traditional setup in the thermodynamics of

computation [11] as well as the more recent advancements on the

thermodynamics of information processing in the context of

measurement and feedback [15,38–45]. There the memory is reset

by changing or manipulating it by varying its energy landscape. In

our situation, the erasure comes about because the signal is

switched. The loss of correlations is stimulated by a change in the

measured system – that is the environmental signal; erasure does

not occur because the memory itself is altered. Also relevant is

[46], which addresses the minimum dissipated work for a system to

make predictions about the future fluctuations of the environmen-

tal signal, in contrast to the measured information about the

current signal, which we have considered.

Our results predict that energy is required to sense changes in

the environment, but do not dictate that source of energy. Our

equilibrium feedforward model is able to sense and adapt by

consuming energy provided by the environment. E. coli’s
feedback, however, uses mostly external energy to respond, but

must consume energy of its own to adapt. The generic bounds

here established apply to these two distinct basic topologies,

irrespective of their fundamentally different energetics. For E. coli,
to quantify to what extent W ex is affected by SAM consumption

and ligand binding, a more detailed chemical model is required in

conduction with a partitioning of the excess work into distinct

terms. An interesting open question in this regard, is why nature

would choose the dissipative steady state of E. coli, when

theoretically the cost of sensing could be paid by the environment.

For a ligand change of 102mM, in the region of high adaptation,

the information measured/erased is *0:3 bits. We observed that

the corresponding average change in the methylation level for a

chemoreceptor is *0:75, suggesting that a methylation level can

store *0:5 bits for such 1-bit step response operations. Despite the

small adaptation error, information storage is limited by fluctu-

ations arising from the finite number of discrete methylation levels.

Receptors’ cooperativity, which is known to reduce fluctuations of

the collective methylation level, may prevent this allowing them to

store more information. On the energetic side, we have shown that

the cost of sensing these ligand changes per receptor is around

10% of the cost of sustaining the corresponding adaptive

machinery. We also showed that the energetic cost of binary

operations is roughly twice beyond its minimum for large ligand

changes, in stark contrast with everyday computers for which the

difference is orders of magnitude. Taken together these numbers

suggest that 5% of the energy a cell uses in sensing is determined

by information-thermodynamic bounds, and is thus unavoidable.

Future work should include addressing sensory adaptation in

more complex scenarios. One which has recently aroused

attention is fluctuating environments, which so far has been

addressed using trajectory information [44,45,47]. However,

under physiological conditions this is unlikely to play a significant

role given the large separation of time-scales between binding,

response, and adaptation [25]. Another scenario is a many bits

step operation, in which instead of high and low signals a large

discrete set of ligand concentrations is considered. Frequency

response and gradient sensing are also appealing [27], since in

them the system is in a dynamic steady state in which the memory

is continuously erased and rewritten. Analysis of such scenarios is

far from obvious, but the tools developed in this work constitute

the first step in developing their theoretical framework.

Methods

Kinetics of equilibrium feedforward model
We determine a collection of rates that exhibit response and

adaptation as in Fig. 1 by first decomposing the steady state

distribution as pst(a,mDe)~pm(mDe)pa(aDm,e). As a requirement to

show adaptation, the memory must correlate with the signal, which

we impose by fixing pm(mDe)~dm,e(1{Em)z(1{dm,e)Em. Next, in

the steady state the activity is SATst&1=2, or since A is binary the

probability A~1 is about 1=2. Recognizing that Em is small, the

average SATst is dominated by adapted configurations with M~e.

Thus, adaption will occur by demanding that pa(1D0,0)~1=2{Ea

and pa(1D1,1)~1=2zEa, with a model parameter Ea%1. Finally, to

fix the activity distribution for non-adapted configurations, M=e,

we exploit the time-scale separation ta%tm. In this limit, after an

abrupt change in the signal, the activity rapidly relaxes. To

guarantee the proper response, we set pa(1D0,1)~1{Eg and

pa(1D1,0)~Eg. Using the symmetry condition pst(a,mDe)~

pst(1{a,1{mD1{e) we complete knowledge of pst. The energy

levels F(a,m; e) are obtained using the equilibrium condition

F~{kBT ln pst, where we choose as reference F (0,0; 0)~
F (1,1; 1)~0. Equation (1) is an approximation of this energy to

lowest order in the small errors. Finally, the kinetic rates are obtained

using either the approximate or exact energy function, imposing

detailed balance, and keeping two bare rates, v and k, for activity

and memory transitions: W m
aa’(e)~veF (a’,m;e)=kBT for activity tran-

sitions and W mm’
a ~keF (a,m’;e)=kBT for memory transitions.

Information bounds on the thermodynamics of sensory
adaptation

The bounds in (5) and (6) follow from a rearrangement of the

second law of thermodynamics [48]. Consider a system with states

x [(a,m) for SAS] with signal-dependent (free) energy function

F (x; e) in contact with a thermal reservoir at temperature T . The

system is subjected to a random abrupt change in the signal.

Specifically, the initial signal is a random variable Ei with values ei

(which are 0,1 in the main text), which we randomly change at

t~0 to a new random signal Ef with values ef . For times tw0, we

model the evolution of the system’s stochastic time-dependent state

Xt as a continuous-time Markov chain.

Figure 6. Information-dissipation trade-off in E. coli chemotax-
is. (A) Relationship between information erased/acquired and size of
the signal increase. Shaded in green is the region of accurate adaptation
(D½L�vKA). (B) Entropy production as a function of information erased/
acquired as step size is varied. The more information is processed by the
cell the higher the entropic cost. Notice the linear scaling between
dissipation and information for small information (small ligand changes).
Dashed lines refer to values in Fig. 5C. Parameters as in Methods.
doi:10.1371/journal.pcbi.1003974.g006
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We begin our analysis by imagining for the moment that the

signal trajectory is fixed to a particular sequence (ei,ef ). Then our

thermodynamic process begins prior to t~0 by initializing the

system in its ei-dependent steady state pst(xDei)!e{F (x;ei)=kBT . At

t~0, the signal changes to ef and remains fixed while the system’s

probability density pt(xDei,ef ), which conditionally depends on the

entire signal trajectory, evolves according to the master equation

[49]

_ppt(xDei,ef )~
X
x’=x

W
ef
xx’pt(x’Dei,ef ){W

ef
x’xpt(xDei,ef ), ð14Þ

where W
ef
xx’ is the signal-dependent transition rate for an x’?x

transition. The transition rates are assumed to satisfy a local detailed

balance condition, ln W
ef
xx’=W

ef
x’x~{(F (x; ef ){F (x’; ef )=kBT ,

which allows us to identify the energy exchanged as heat with the

thermal reservoir in each jump. Eventually, the system relaxes to the

steady state pst(xDef )!e{F (x;ef )=kBT corresponding to the final

signal value ef .

Since the signal trajectory is fixed, this process is equivalent to a

deterministic drive by an external field, and therefore the total

entropy production rate will satisfy the second law [48]

_SS
tot

t (ei,ef )~kBLtH(XtDei,ef ){ _QQt(ei,ef )=T§0, ð15Þ

where LtH(XtDei,ef )~{
P

x _ppt(xDei,ef ) ln pt(xDei,ef ) is the rate of

change of the Shannon entropy of the system conditioned on the

entire signal trajectory; and

_QQt(ei,ef )~
X

x

_ppt(xDei,ef )F (x; ef )~{kBT
X

x

_ppt(xDei,ef ) ln pst(xDef )

ð16Þ

is the heat current into the system from the thermal reservoir given

the signal trajectory. Since (15) holds for any signal trajectory, it

remains true after averaging over all signal trajectories sampled

from the probability density p(ei,ef ):

_SS
tot

t ~kBLtH(XtDEi,Ef ){ _QQt=T§0, ð17Þ

with H(XtDEi,Ef )~
P

ei,ef
p(ei,ef )H(XtDei,ef ), and noncondi-

tioned thermodynamic quantities, such as _QQt, denote signal

averages. We next proceed by two judicious substitutions of the

definition of the mutual information (2) that tweeze out the

contributions from the measured and erased information. First,

we replace the Shannon entropy rate as LtH(XtDEi,Ef )~
LtH(XtDEf ){LtI(Xt; EiDEf ), and then immediately repeat

LtH(XtDEf )~LtH(Xt){LtI(Xt; Ef ). The result is a splitting of

the total entropy production rate as _SS
tot

t ~ _SS
eras

t z _SS
meas

t , with one

part due to erasure

_SS
eras

t ~{kBLtI(Xt; EiDEf )§0, ð18Þ

and one due to measurement

_SS
meas

t ~kBLtH(Xt){ _QQt=T{kBLtI(Xt; Ef )§0: ð19Þ

The bounds in (5) and (6) follow by integrating (18) and (19) from

time 0 to t.

To prove the positivity of (18) and (19), we use the definition of

entropy and heat to recast them in terms of a relative entropy

D(f DDg)~
P

x f (x) ln (f (x)=g(x)) [29] as

_SS
meas

t ~{kB

X
ef

p(ef )
X

x

_ppt(xDef ) ln
pt(xDef )

pst(xDef )

~{kB

X
ef

p(ef )LtD½pt(xDef )DDpst(xDef )�
ð20Þ

_SS
eras

t ~{kB

X
ei ,ef

p(ei,ef )
X

x

_ppt(xDei,ef ) ln
pt(xDei,ef )

pt(xDef )

~{kB

X
ei,ef

p(ei,ef )LtD½pt(xDei,ef )DDpt(xDef )�:
ð21Þ

Positivity then follows, since the relative entropy decreases

whenever the probability density evolves according to a master

equation, as in (14) [50].

To arrive at (9) and (10) for genuine NESS, we repeat the

analysis above applied to the average nonadiabatic entropy

production rate (cf. (17))

_SS
na

t ~kBLtH(XtDEi,Ef ){
_QQ

ex

t

T
§0, ð22Þ

where _QQ
ex

t ~{kBT
P

ei,ef
p(ei,ef )

P
x _ppt(xDei,ef ) ln pst(xDef ) is the

excess heat flow into the system [33], taking special note that now

pst is the nonequilibrium stationary state and cannot be related to

the energy, as in the equilibrium case above (16).

Description of the chemotaxis model
The parameters for F (a,m,s) in (11) are taken from [7] for a Tar

receptor: KI~18:2mM, KA~3000mM, Dm~2, m0~1. The kinetic

rates are obtained using local detailed balance and restricting to two

characteristic time-scales. For a-transitions, the rates are

W m
aa’(e)~t{1

a exp½(a{a’)(Dm(m{m0){e)=2�, with ta~1ms the

typical activation time. For m-transitions, the rates for active states

are W mm’
1 ~t{1

m (dm,m’{1zdm,m’z1 exp½{Dm=2zDm�), and for

inactive states, W mm’
0 ~t{1

m (dm,m’z1zdm,m’{1 exp½Dm=2{Dm�).
Here, Dm~6kBT is the chemical potential force for the hydrolyza-

tion of a SAM fuel molecule, which occurs when a methyl group is

added or removed by CheR and CheB respectively [19], and at the

steady state tm
_SS

tot

st ~Dm&6kBT .

Supporting Information

S1 Figure Adaptation in equilibrium feedforward SAS to
a step increase. Time evolution of average activity (left) and

memory (right) during an increase from 0 to 1 of the

environmental signal at time t = 0 for the equilibrium feed-

forward model.

(PDF)

S2 Figure Adaptation in equilibrium feedforward SAS to
a step decrease. Time evolution of average activity (left) and

memory (right) during a decrease from 0 to 1 of the environmental

signal at time t = 0 for the equilibrium feed-forward model.

(PDF)
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S3 Figure Probability distributions of the methylation
level for low and high signals. Probability distribution of

methylation levels for low (orange) and high (blue) ligand

concentration levels in the chemotaxis pathway. To the left,

ligand concentrations of [L] = 94mM and [L] = 720mM were

used, which are in the adaptive region KI,,L,,KA. To the

right ligand concentrations of [L] = 720mM and [L] = 5760mM,

outside the adaptive region. Notice the large overlap of the

distributions. This effect reduces the memory capacity of E. coli.
(PDF)
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