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We elucidate a ray picture of coherence for vectorial electromagnetic waves by using the Stokes parameters
for light rays defined by the optical Wigner function. Paraxial propagation is formulated as a complementary
Huygens principle. We show that the degrees of coherence are averages of the phase difference where the
weights are the Stokes parameters for light rays. We analyze the van Cittert–Zernike theorem for vectorial
waves in terms of ray propagation. We show that simple polarization measurements in a Young interferometer
determine the degrees of coherence for vectorial electromagnetic waves.
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I. INTRODUCTION

The proper assessment of coherence for vectorial waves is
a very basic and nontrivial issue only recently addressed in
depth, so that currently different and partially incompatible
approaches coexist �1–5�. Therefore, there are still interest-
ing items to be discovered in this area. In particular, this is
the case of the relationship between interferometric coher-
ence and polarization, as the two most relevant optical mani-
festations of coherence.

In this work we develop the connection between coher-
ence and polarization for vectorial electromagnetic waves.
To this end we find especially useful the spatial-angular
Stokes parameters defined by the optical Wigner function
that represent the polarization state of the rays of geometrical
optics �4–10�. In this work we show that this geometrical
formulation of the propagation of vectorial light contains co-
herence properties in a simple and enlightening way. More
specifically the contributions of this paper are as follows.

�i� The spatial-angular Stokes parameters provide a simple
picture of the propagation of vectorial light which is formally
identical to the Huygens principle but in terms of opposite
concepts, i.e., rays instead of waves and incoherent superpo-
sitions instead of coherent ones �Sec. III�. This is a vectorial
version of the scalar case examined in Ref. �10�.

�ii� Different degrees of coherence for vectorial waves
recently introduced in Refs. �1,2,4,5� can be expressed en-
tirely in terms of Stokes parameters �Sec. IV�.

�iii� In particular, the degrees of coherence introduced in
Refs. �1,2� are averages of the phase difference where the
weights are the Stokes parameters of geometrical rays �Sec.
IV�.

�iv� The Stokes parameters of light rays provide an ex-
ceedingly simple picture of the van Cittert–Zernike theorem
for vectorial electromagnetic fields �Sec. V�. This is the vec-
torial counterpart of the scalar case examined in Ref. �11�.

�v� Simple measurements of the Stokes parameters after a
Young interferometer allow us to determine diverse degrees
of coherence for vectorial electromagnetic waves �Sec. VI�.

II. STOKES PARAMETERS

In this section we recall the definitions and mutual rela-
tionships of previously introduced generalizations of the

Stokes parameters. Throughout we deal with second-order
correlation properties of transversal, stationary electric fields
fully described in the space-frequency domain by the cross-
spectral density tensor

�l,m�r1,r2,�� =� d��El�r1,t + ��Em
* �r2,t��exp�i��� , �2.1�

where l ,m=x ,y, and the angle brackets denote ensemble av-
erage. For the sake of simplicity in the following formulas
we will not specify the frequency �. The two-dimensional
real vectors r1,2 are coordinates in the plane orthogonal to the
main propagation direction along axis z. We assume that the
component of the electric field along axis z can be neglected
so that only two transversal field components are necessary.
The effectiveness of this approximation for Gaussian fields
has been examined in Ref. �12�.

The standard Stokes parameters expressing polarization
properties at a single spatial point r are the four real
quantities

sj�r� = tr�� j��r,r�� , �2.2�

for j=0,1 ,2 ,3, where � j are the Pauli matrices, and �0 is the
2�2 identity matrix. These parameters fully specify the lo-
cal polarization state at a given spatial point, but provide no
information about its evolution.

In order to account both for the actual polarization state
and its evolution two sets of generalized Stokes parameters
are available. On the one hand, we have the four two-point
complex Stokes parameters introduced in Refs. �13�

S̃j�r1,r2� = tr�� j��r1,r2�� , �2.3�

that include the spatial Stokes parameters as s�r�= S̃�r ,r�,
where s, S̃ denote the corresponding four-dimensional
vectors.

On the other hand, we have also the four real spatial-
angular Stokes parameters �5–9�

Sj�r,p� = tr�� jW�r,p�� , �2.4�

where W�r ,p� is the Wigner matrix*alluis@fis.ucm.es; http://www.ucm.es/info/gioq
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W�r,p� = � k

2�
	2� d2r���r − r�/2,r + r�/2�exp�ikr� · p� ,

�2.5�

and k is the wave number in vacuum. The four-dimensional
real vector S�r ,p� contains all optical properties attached to
the light ray at point r propagating along the paraxial direc-
tion specified by the real vector

P = �px,py,n� , �2.6�

where n is the index of refraction and p= �px , py�. The key
point of this representation is the extremely simple propaga-
tion law of S�r ,p� in the paraxial domain �7–9�. In particular,
under free propagation the spatial-angular Stokes parameters
S�z��r ,p� at any plane z are related to their counterparts at any
other plane z=0 in the form �7�

S�z��r,p� = S�0��r − zp/n,p� . �2.7�

The Sj�r ,p� parameters are related both with s�r� and

S̃�r1 ,r2� in the form

s�r� =� d2pS�r,p� �2.8�

and

S�r,p� = � k

2�
	2� d2r�S̃�r − r�/2,r + r�/2�exp�ikr� · p� ,

�2.9�

S̃�r1,r2� =� d2pS�R,p�exp�ik�r1 − r2� · p� , �2.10�

where

R =
1

2
�r1 + r2� . �2.11�

III. COMPLEMENTARY HUYGENS PRINCIPLE FOR
VECTORIAL LIGHT

Relations �2.7� and �2.8� can be regarded as the corner-
stone of the ray picture of polarization optics offered by the
Wigner-function approach. They can be taken as the basis of
a complementary Huygens principle for vectorial light analo-
gous to the standard Huygens principle but with inverted
terms �see Ref. �10� for the scalar version�. This complemen-
tary Huygens principle can be formulated in three steps.

�i� Each point r reached by the light becomes a secondary
source of rays propagating along different directions speci-
fied by p. From the propagation law �2.7� each ray �r ,p�
transports field properties encoded in their spatial-angular
Stokes parameters S�r ,p�.

�ii� The disturbance evolves as the result of the incoherent
superposition of the rays generated by the secondary sources.
This is illustrated by Eq. �2.8� expressing that the intensity
and the polarization state at each point r are the result of the

simple independent addition of the individual spatial-angular
Stokes parameters S�r ,p� associated to all rays p passing
through the same point r. We emphasize that the incoherent
character of the superposition is a universal key feature of
the Wigner formalism, independent of the actual coherence
properties of the wave, which are expressed in a different
way as shown below.

�iii� For the sake of completeness, this may be completed
by the input-output transformation experienced by the
spatial-angular Stokes parameters under local inhomoge-
neous alterations of the phase, intensity, and polarization de-
scribed by a 4�4 two-point complex matrix M�r1 ,r2�

S̃out�r1,r2� = M�r1,r2�S̃in�r1,r2� , �3.1�

relating the input and output two-point complex Stokes pa-
rameters. In the ray picture this becomes �9�

Sout�r,p� =� d2p�MW�r,p − p��Sin�r,p�� , �3.2�

where MW�r ,p� is the Wigner-Mueller matrix

MW�r,p� = � k

2�
	2� d2r�M�r − r�/2,r + r�/2�exp�ikr� · p� .

�3.3�

The price to be paid for the rigorous inclusion of coherent
phenomena within this ray picture are the unusual properties
of the generalized Stokes parameters for certain rays, i.e.,


S� 
 �S0, where S� = �S1 ,S2 ,S3�, which contrasts with the uni-
versally valid relation for the spatial Stokes parameters s0
	 
s�
, where s�= �s1 ,s2 ,s3� �8�. This occurs for the rays with a
Wigner matrix W�r ,p� that fails to be positive, as the vecto-
rial counterpart of the negativity of Wigner functions in the
scalar case. An investigation of the relation between negativ-
ity and coherence properties in the scalar case can be found
in Refs. �14,15�.

IV. DEGREE OF COHERENCE AND STOKES
PARAMETERS

Next we show that recently introduced degrees of coher-
ence for vectorial electromagnetic waves can be completely
expressed in terms of the polarization variables recalled in
Sec. II. The degree of coherence introduced in Ref. �1� can
be expressed as


1
2 =


tr ��r1,r2�
2

tr ��r1,r1�tr ��r2,r2�
=


S̃0�r1,r2�
2

s0�r1�s0�r2�
. �4.1�

Similarly, the degree of coherence introduced in Ref. �2�
can be expressed as �16�


2
2 =

tr���r1,r2���r2,r1��
tr ��r1,r1�tr ��r2,r2�

=

S̃�r1,r2�
2

2s0�r1�s0�r2�
. �4.2�

A further relation between 
1,2 and polarization variables
arises from the fact that Eq. �2.10� allows us to express

S̃�r1 ,r2� as the following average of the phase difference:
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S̃�r1,r2� =� d2pS�R,p�exp�i�� = �exp�i���S, �4.3�

where �=kP · �r1−r2�=kp · �r1−r2� is the phase difference �
between the points r1, r2 produced by a plane wave of wave
vector k=kP, where P is in Eq. �2.6�. The weight of each
plane wave p is the spatial-angular Stokes parameters
S�R ,p� for rays at the midpoint R �see Fig. 1�.

The square modulus of the first component of Eq. �4.3�
provides 
1, while 
2 is given by the square modulus of the
complete four-dimensional vector in Eq. �4.3�. These are two
vectorial analogs of the scalar case examined in Eqs. �36�
and �38� of Ref. �10�, where it is shown that the degree of
coherence for scalar waves is proportional to a phase-
difference average where the weight of each plane wave is
the corresponding Wigner function at the midpoint. This re-
sult is interesting since it agrees well with the physical un-
derstanding that partial coherence is related to phase fluctua-
tions, and also agrees with the common interpretation of rays
as local plane waves.

Another approach to vectorial coherence �4,5� considers
the distance D between the 4�4 correlation matrix M

M = ���r1,r1� , ��r1,r2�
��r2,r1� ��r2,r2�

	 , �4.4�

and the 4�4 identity matrix I representing fully incoherent
and unpolarized light

D =
4

3
tr�� 1

tr M
M −

1

4
I	2� =

4

3
� tr�M2�

�tr M�2 −
1

4
� , �4.5�

where the numerical factors are introduced for normalization
so that 1	D	0. Then, D can be entirely expressed in terms

of the Stokes variables s�r� and S̃�r1 ,r2� since

tr M = s0�r1� + s0�r2� , �4.6�

tr�M2� =
1

2
�s2�r1� + s2�r2� + 2
S̃�r1,r2�
2� . �4.7�

Finally the overall degree of coherence for vectorial
waves 
G introduced as a weighted average of the local de-
gree of coherence 
2 �17�


G
2 =

� d2r1d2r2 tr ��r1,r1�tr ��r2,r2�
2
2�r1,r2�

�� d2r tr ��r,r��2 �4.8�

can be expressed in terms of polarization variables in the
form �18�


G
2 =

2�2

k2

� d2rd2pS2�r,p�

�� d2rd2pS0�r,p��2 �4.9�

or, equivalently,


G
2 =

2�2

k2

� d2rd2pS0
2�r,p��1 + P2�r,p��

�� d2rd2pS0�r,p��2 , �4.10�

where

P2�r,p� =
S�2�r,p�
S0

2�r,p�
. �4.11�

It must be noted that P cannot be straightforwardly inter-
preted as a degree of polarization because of the properties of
S recalled at the end of Sec. III.

V. VAN CITTERT–ZERNIKE THEOREM

As a significant example of application of coherence con-
cepts let us address the geometrical picture of the vectorial
van Cittert–Zernike theorem expressing the second-order sta-
tistical properties of light at a plane z in terms of the same
properties at the source plane z=0.

Within a purely raylike picture the van Cittert–Zernike
theorem for vectorial light is just Eq. �2.7�, i.e., S�z��r ,p�
=S�0��r−zp /n ,p�, that for fully incoherent sources becomes
S�z��r ,p��s�0��r−zp /n�, as a suitable counterpart of the sca-
lar case �11�. This means that the spatial-angular Stokes pa-
rameters at point r of the plane z and direction p are the
standard spatial Stokes parameters at the point of the source
plane connected with r through the ray p �see Fig. 2�.

A more wavelike picture can be elaborated from Eq. �2.7�
via Eq. �2.10� by expressing in the most general case the

two-point complex Stokes parameters S̃�z��r1 ,r2� at z in terms
of the ray parameters S�0��r ,p� at the source plane z=0

S̃�z��r1,r2� =� d2pS�0��R − zp/n,p�exp�ik�r1 − r2� · p� . �5.1�

Then for definiteness, let us consider the quasihomoge-
neous partially coherent light with

��r1,r2� = �2�

k
	2

��R�
exp�− �r1 − r2�2/Ac�

�Ac
, �5.2�

where R is in Eq. �2.11�, ��R� is the matrix part of the cross
spectral density matrix depending exclusively on R, and Ac

FIG. 1. Picture of the average in Eq. �4.3�.
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represents the coherence area over the source plane. The case
of an incoherent source is obtained in the limit Ac→0, so
that the second factor in Eq. �5.2� tends to a delta function

�2��r1−r2�.

For the cross-spectral density matrix in Eq. �5.2� we get

S�0��r,p� = s�
�0��r�exp�− k2p2Ac/4� , �5.3�

where s�
�0��r� are the spatial Stokes parameters at the source

plane determined by � in the form

s�,j
�0��r� = tr���r�� j� . �5.4�

Finally performing the change of integration variables r=R
−zp /n in Eq. �5.1� we get in the limit of an incoherent source
Ac→0

S̃�z��r1,r2� =
n2

z2 exp�i
kn

2z
�r1

2 − r2
2���

−�

�

d2rs�
�0��r�

�exp�i
kn

z
�r2 − r1� · r� , �5.5�

which fully agrees with the wave picture in Ref. �19�. This
relation expresses the coherence at plane z as a Fourier trans-
form of the polarization distribution at the source plane.

We can appreciate that Eqs. �5.1� and �5.3� reproduce the
structure of coherence as a phase difference average in Eq.
�4.3�, where the weights are the spatial Stokes parameters
s�

�0��r�, as the whole consequence of the incoherence of the
source. The connection between polarization and coherence
for partially coherent sources of the form �5.2� can be further
analyzed by applying the overall degree of coherence in Eq.
�4.8� to this case, leading to


G
2 =

�

4
Ac

� d2rs�
2�r�

�� d2rs�,0�r��2 , �5.6�

which can be expressed also as


G
2 =

�

4
Ac

� d2rs�,0
2 �r��1 + P2�r��

�� d2rs�,0�r��2 , �5.7�

where P�r� is the standard local degree of polarization

P2�r� =
s��

2�r�
s�,0

2 �r�
, �5.8�

and s�= �s1 ,s2 ,s3�.
The weight s�,0

2 �r� in Eq. �5.7� is the intensity distribution
at the source, and provides a measure of the effective area
of the source �see Ref. �20�, and references therein�. More
explicitly, if, for example, P�r�= P is constant and ��R�,
s�,0�r� are Gaussian, ��R��exp�−�r1+r2�2 /As�,
s�,0�r��exp�−4r2 /As� �with As	Ac as a necessary condition
for the positivity of ��r1 ,r2�� we get that the degree of co-
herence is proportional to the quotient of the coherence area
Ac to the effective area of the source As and to the degree of
polarization of the source


G
2 =

Ac

2As
�1 + P2� . �5.9�

VI. MEASUREMENT

The relations developed in the preceding sections suggest
that polarization measurements may be used to determine in
practice the degrees of coherence for vectorial electromag-
netic waves. To analyze this point let us focus on the Young
interferometer. The two apertures are located at coordinates
r1, r2 in the plane z=0. They are described by Gaussian
field-amplitude transmission coefficients identical for both
components t�r�=exp�−r2 / �2b2�� where b represents the
width of the aperture. The width b is assumed to be small
enough so that the field is approximately constant within
each aperture. In such a case the field after the apertures at
z=0 is E�0��r�
 t�r−r1�E�r1�+ t�r−r2�E�r2� and the interfer-
ence depends exclusively on the statistics of the illuminating
field just at the two points of interest r1,2. Strictly speaking,
the limit b→0 cannot be taken. This is because the Stokes
parameters and the amount of light that crosses the apertures
are proportional to the area of the apertures �i.e., proportional
to b2� so that for b=0 no light will reach the interference
plane.

More specifically, the spatial-angular Stokes parameters
just after the apertures at z=0 are �5�

S�0��r,p� =
k2b2

�
exp�− b2k2p2��s�r1�exp�−

�r − r1�2

b2 �
+ s�r2�exp�−

�r − r2�2

b2 �
+ exp�−

�r − R�2

b2 �S�R,p�� , �6.1�

where

FIG. 2. Illustration of the vectorial version of the van Cittert-
Zernike theorem in terms of the spatial-angular Stokes parameters
S�z��R ,p� at the observation plane z and the spatial Stokes param-
eters s�0��r� at the source plane z=0.

ALFREDO LUIS PHYSICAL REVIEW A 76, 043827 �2007�

043827-4



S�R,p� = S̃�r1,r2�exp�ikp · �r2 − r1�� + c.c. �6.2�

and c.c. stands for complex conjugation.
The geometrical picture describes this interference phe-

nomenon as the incoherent superposition of rays originated
in three secondary point sources �5�. There are two sources at
the apertures with S�0��r j ,p��s�r j�, j=1,2, which are inde-
pendent of p, and a further source at the midpoint between
the apertures R= �r1+r2� /2 with S�0��R ,p��S�R ,p�
�see Fig. 3�.

The practical determination of the degrees of coherence
via Eqs. �4.1�, �4.2�, and �4.5�–�4.7� requires the measure-

ment of s�r j� and S̃�r1 ,r2�. This is the point addressed until
the end of the section. The determination of s�r j� can be
achieved by the measurement of the Stokes parameters at the
apertures s�0��r j�=s�r j�.

On the other hand, the determination of S�R ,p� and

S̃�r1 ,r2� can be carried out via the measurement of the spatial
Stokes parameters s�z��r� at the far field z→�. From Eqs.
�2.7� and �2.8� we get

s�z��r� =� d2pS�0��r − zp/n,p� , �6.3�

and after a change of variables

s�z��r� = �n

z
	2� d2r�S�0��r�,p = n�r − r��/z� . �6.4�

When z→� we have that p=n�r−r�� /z tends to be indepen-
dent of the integration variable r� so that p→nr /z. In such a
limit, from Eqs. �6.1� and �6.4� we get

s����r� =
n2k2b4

z2 exp�− b2k2n2r2/z��s�r1� + s�r2� + S�R,p

= nr/z�� . �6.5�

This means that after the measurement of the Stokes pa-
rameters at the apertures s�r1,2� and at the far field s����r� the
spatial-angular Stokes parameters S�R ,p� can be determined
for small enough b in the form

S�R,p� 

z2

n2k2b4 �s����r = zp/n� − s�r1� − s�r2�� . �6.6�

In turn, this allows us to determine S̃�r1 ,r2� via Eq. �6.2�.
More specifically, since S̃�r1 ,r2� are eight real quantities it is
only necessary to measure the four real point Stokes param-
eters s����r� at two properly chosen points in the far plane.
For example these can be the points r0,�=zp0,� /n defined by
the conditions

kpl · �r2 − r1� =
nk

z
rl · �r2 − r1� =

l

2
, �6.7�

for l=0,�. In such a case from Eq. �6.2� it follows that

S�R,p0� = S̃�r1,r2� + S̃*�r1,r2� ,

S�R,p�� = i�S̃�r1,r2� − S̃*�r1,r2�� �6.8�

and then

S̃�r1,r2� =
1

2
�S�R,p0� − iS�R,p��� . �6.9�

This is equivalent to the polarization resolved visibility con-
sidered for 
2 in Ref. �16�, but focusing on the ray picture.

In this regard let us also notice that from Eq. �6.2�

Sj,max�R,p� = 2
S̃j�r1,r2�
 , �6.10�

for j=0,1 ,2 ,3, where the maximum refers to variations of p,
and it must be taken into account that the maximum for each
j may be obtained for different values of p. Thus, alternative
expressions for the degrees of coherence are


1
2 =


S0,max�R,p�
2

4s0�r1�s0�r2�
�6.11�

and


2
2 =


Smax�R,p�
2

8s0�r1�s0�r2�
. �6.12�

VII. CONCLUSIONS

We have elaborated a basic connection between coherence
and polarization for vectorial electromagnetic waves. This
connection is expressed in terms of the spatial-angular polar-
ization variables defined from the optical Wigner function
and attached to the geometrical rays. This analysis benefits
from the simple propagation law satisfied by the spatial-
angular Stokes parameters.

This allows a simple formulation of vectorial light propa-
gation entirely in terms of the incoherent superposition of
generalized rays, expressed by a suitable analog of the Huy-
gens principle. We have shown that some of the recently
introduced definitions of the degree of coherence are aver-
ages of the phase difference, where the weights are the

FIG. 3. Illustration of the Young interferometer for vectorial
light from the perspective of the Wigner picture leading in the far
plane to the relation s����r��s�r1�+s�r2�+S�R ,p=nr /z�.
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spatial-angular Stokes parameters. This formulation provides
also a simple picture of the van Cittert-Zernike theorem for
vectorial waves in terms of the polarization state at the
source. Moreover, from a practical perspective we have
shown that the measurement of the polarization state at the
apertures and at the far field of a Young interferometer

provides the degrees of coherence for the input beam illumi-
nating the apertures.
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