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Abstract

Among the alternative Unobserved Components formulations within
the stochastic state space setting, the Dynamic Harmonic Regres-
sion (DHR) has proved particularly useful for adaptive seasonal ad-
justment signal extraction, forecasting and back-casting of time series.
Here, we show first how to obtain ARMA representations for the Dy-
namic Harmonic Regression (DHR) components under several random
walk specifications. Later, we uses these theoretical results to derive
an alternative algorithm based on the frequency domain for the identi-
fication and estimation of DHR models. The main advantages of this
algorithm are linearity, fast computing, avoidance of some numerical
issues, and automatic identification of the DHR model. To compare
it with other alternatives, empirical applications are provided.
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noloǵıa, program PB98–0075
†Dpto. de Fundamentos del Análisis Económico II. Universidad Complutense de
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1 Introduction

During the last two decades the literature on signal extraction has been
roughly based on the so-called model-based approach. Three directions have
emerged: (1) one, termed the ARIMA-model based or “reduced” form model
(see Box et al., 1978; Hillmer & Tiao, 1982; Burman, 1980; Gomez & Mar-
avall, 1996a); (2) a second one, termed optimal regularization (see Akaike,
1980; Jakeman & Young, 1984; Young, 1991); and (3) a third one that begins
by directly specifying the model for the components within a stochastic State
Space (SS) setting. This last SS formulation was originated in the 1960s in
the control engineering area and has been absorbed within the statistical
literature during the last years (see Harvey, 1989; West & Harrison, 1989;
Young et al., 1988; Young, 1994). In spite of some differences in the specifi-
cations, the models in these approaches are closely related. The relationship
and, in some cases, the exact equivalence of these methods is discussed in
Young & Pedregal (1999) within the context of optimal filter theory.

The Dynamic Harmonic Regression (DHR) model developed by Young
et al. (1999) belongs to the Unobserved Components (UC) type and is for-
mulated within the SS. Young et al. (1999) claim that this method yields
asymptotically equivalent results to the aforementioned approaches if the
models on which they are based are made compatible. The DHR model is
based on an spectral approach under the hypothesis that the observed time
series can be decomposed into several DHR components whose variances are
concentrated around certain frequencies. This is an appropriate hypothesis
if the observed time series has well defined spectral peaks which implies that
its variance is distributed around narrow frequency bands. Basically, the
method attempts to: (1) identify the spectral peaks, (2) assign a DHR com-
ponent to each spectral peak, (3) estimate the hyper-parameters that control
the spectral fit of each component to its corresponding spectral peak, and
(4) estimate the DHR components using the Kalman Filter and the Fixed
Interval Smoothing (FIS) algorithms.

In the univariate case, the DHR model can be written as an special case
of the univariate UC model which has the general form:

yt = Tt + Ct + St + et; t = 0, 1, 2, . . . ,

where yt is the observed time series, Tt is the trend or low-frequency com-
ponent, Ct is the cyclical component, St is the seasonal component, and et
is an irregular component normally distributed Gaussian sequence with zero
mean value and variance σ2

e , ({et} ∼ w.n. N(0, σ2
e)).

In the DHR model, Tt, Ct, and St consist of a number of DHR components,
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s
pj
t , with the general form

s
pj
t = ajt cos(ωjt) + bjt sin(ωjt), (1)

where pj and ωj are, the period and the frequency associated with each jth
DHR component respectively. Tt is the zero frequency term (Tt ≡ s∞t = a0t),
while the cyclical and seasonal components are Ct =

∑Rc
j=1 s

pj
t , and St =∑R

j=Rc+1 s
pj
t , respectively; where ωj = 1/pj, j = 1, . . . , Rc are the cyclical

frequencies, and ωj, j = (Rc + 1), . . . , R are the seasonal frequencies. Hence,
the complete DHR model is then

ydhrt =
R∑
j=0

s
pj
t + et =

R∑
j=0

{
ajt cos(ωjt) + bjt sin(ωjt)

}
+ et. (2)

The oscillations of each DHR component are modulated by ajt and bjt
which are stochastic Time Varying Parameters (TVP) within the family of
the Generalized Random Walk (GRW) models (Young, 1994); therefore, non-
stationarity is allowed in the various components. This DHR model can be
considered a straightforward extension of the classical harmonic regression
model, in which the gain and phase of the harmonic components can vary as
a result of estimated temporal changes in the parameters ajt and bjt.

1

The stochastic evolution of ajt and bjt is defined by a two dimensional
stochastic state vector xjt = [ljt djt]

′, where ljt and djt are respectively the
changing level and slope of the associated parameter. The evolution of xjt is
described by a GRW process of the form

xjt = Fjxjt−1 + Gjηjt, j = 0, 1, . . . , R, (3)

where ηjt = [νjt, ξjt]
′; {νjt} ∼ w.n. N(0, σ2

νj
); {ξjt} ∼ w.n. N(0, σ2

ξj
); R =

Rc +Rs; and

Fj =

[
αj βj
0 γj

]
, Gj =

[
δj 0
0 1

]
.

By restricting certain values in Fj and Gj, the GRW model comprises a
large number of characterizations found in the signal extraction literature
(Young, 1984). For instance, the Integrated Random Walk (IRW): α = β =
γ = 1, δ = 0; the scalar Random Walk (RW): α = β = δ = 0, γ = 1;
the Smoothed Random Walk (SRW): 0 < α < 1, β = γ = 1, δ = 0; as
well as Harvey’s Local Linear Trend: α = β = γ = 1, δ = 1; and the

1The main difference between the DHR model and related techniques, such as Harvey’s
structural model, lies in the formulation of the UC model for the periodic components and
the method of optimizing the hyper-parameters .
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“Damped Trend”: α = β = δ = 1, 0 < γ < 1 (see Harvey, 1989; Koopmans
et al., 1995). Although not directly related to the main body of this paper,
it is instructive to consider the nature of the prediction equations for the
various GRW processes. While the RW prediction is constant at the level
of the prediction origin, the SRW allows a range of intermediate possibilities
between the RW and the IRW models as function of α. If we restrict our
analysis to the cases (0 ≤ α, β ≤ 1, γ = 1, δ = 0), we deal with RW, SRW,
IRW specifications and also with stationary models. Then, the reduced form
of (3) can be written as

(1− αjL)(1− βjL)ljt = ξjt−1 ; 0 ≤ αj, βj ≤ 1 (4)

The method for optimizing the hyper-parameters of the model (i.e., the vari-
ances σ2

dhr = [σ2
0, σ

2
1, . . . , σ

2
R]
′

of the processes ξj, j = 0 . . . , R, and the vari-
ance σ2

e of the irregular component) was formulated by Young et al. (1999) in
the frequency domain, and is based upon expressions for the pseudo-spectrum
of the full DHR model:

fdhr
(
ω,σ2

)
=

R∑
j=0

σ2
jSj(ω) + σ2

e ; σ2 =
[
σ2
dhr, σ

2
e

]′
(5)

where σ2
jSj(ω) are the pseudo-spectra of the DHR components spj , and σ2

e is
the variance of the irregular component (Young et al., 1999, p. 377).

A simple manipulation of (5) allow us to write

fdhr
(
ω, [NVR, σ2

e ]
)

= σ2
e

[
R∑
j=0

NV Rj · Sj(ω) + 1

]
,

where NVR is the vector with elements NV Rj = σ2
j/σ

2
e , j = 1, 2, . . . , R.

Young et al. (1999) propose one final simplification using the estimate of
the residual white noise from an AutoRegressive (AR) model. Young et al.
(1999) describe the complete DHR algorithm in the following four steps:

1. Estimate an AR(n) spectrum fy(ω) of the observed time series and use
its associated residual variance σ̂2 as the estimation of σ2

e . The AR
order is identified by the Akaike’s Information Criterion.

2. Find the Linear Least Squares estimate of the NVR parameter vector
which minimizes the linear least squares function

J (fy, fdhr) =
m∑

k=1

[
fy(ωk)− fdhr(ωk, [NVR, σ̂2])

]2
; (6)

where ωk ∈ [0 π] are the m points where the pseudo-spectra fy and fdhr
are evaluated.
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3. Find the Non-linear Least Squares estimate of the NVR parameter
vector which minimizes the non-linear least squares function

JL (fy, fdhr) =
m∑

k=1

[
log fy(ωk)− log fdhr(ωk, [NVR, σ̂2])

]2
(7)

using the result from step 2 to define the initial conditions.

4. Use the NVR estimates from step 3 to obtain the recursive forward pass
(Kalman filter) and backward pass (FIS algorithm) smoothed estimates
of the DHR components.

This optimization algorithm has been used extensively over the past years, in
the micro-CAPTAIN DOS program, and more recently in a Matlabr tool-
box under the CAPTAIN heading. As a time series/forecasting algorithm it
has been used in different areas of research such as business cycle analysis
(Garćıa-Ferrer & Queralt, 1998), environmental issues (Young & Pedregal,
1999), industrial turning point predictions (Garćıa-Ferrer & Bujosa-Brun,
2000), forecasting economic sectorial demand (Garćıa-Ferrer et al., 1997),
etc. Additionally, the DHR model is a powerful signal extraction alter-
native that can compete well with the best known techniques such as the
X-12 ARIMA (Findley et al., 1996), the ARIMA-model based models like
SEATS/TRAMO (Gomez & Maravall, 1996b; Maravall, 1993) and the struc-
tural model STAMP program (Koopmans et al., 1995).

2 ARMA models for the DHR components

In this section it is shown that each DHR component has an AutoRegres-
sive Moving Average (ARMA) representation and, therefore, an associated
pseudo-covariance generating function.

The trend follows an AR(2) model:

(1− α0L)(1− β0L)Tt = ξ0t−1, {ξ0t} ∼ w.n. N(0, σ2
ξ0

); (8)

hence, its pseudo-covariance generating function is

ΛT (z) =
σ2

0

[1 −α0z][1 −β0z][1 −α0z
−1][1 −β0z

−1]
I, (9)

where
1
b
I is the inverse2 of the sequence b in the field of fractions of formal

sequences, C((z)). The Nyquist component also follows an AR(2) model

(1 + αRL)(1 + βRL)s2 = ξRt−1, {ξRt} ∼ w.n. N(0, σ2
ξR

) (10)

2See Section A in the Appendix.
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and therefore its pseudo-covariance generating function is

ΛT (z) =
σ2
R

[1 +αRz][1 +βRz][1 +αRz
−1][1 +βRz

−1]
I (11)

For the case of the remaining cyclical and seasonal components two propo-
sitions are shown3. The first one states that for each cyclical and seasonal
component spj there is a sequence Λspj ∈ C(z) such as its extended Fourier
transform4, FE, is the pseudo-spectrum of spj . The second one shows the ex-
istence of an ARMA model whose pseudo-covariance generating function is
Λspj . Consequently, the pseudo-spectrum5 of the ARMA model is the pseudo-
spectrum of spj . The pseudo-spectrum for these components are given by6:

fspj (ω) = FE (Λspj (z)) =
1

2
[fa(ω − ωj) + fa(ω + ωj)] , ωj ∈ (0, π).

It follows that each pseudo-spectrum fspj can be stated as

fspj (ω) = σ2
j




1
2

1
(1+α2−2α cos(ω−ωj))(1+β2−2β cos(ω−ωj))

+ 1
2

1
(1+α2−2α cos(ω+ωj))(1+β2−2β cos(ω+ωj))


 . (12)

Finally, the pseudo-covariance generating function for the irregular com-
ponent is Λe(z) = σ2

e .
The consequence of the previous results is that we can write the DHR

model ydhrt =
∑R

j=0 s
pj
t + et, as a sum of (R + 1) ARMA models plus a

white noise process {et}. The specific ARMA model for each DHR component
depends on the type of GRW processes followed by its aj and bj parameters.
In all cases, however, the modulus of the AR roots are always α−1

j and β−1
j [see

Equation (3)]. Table 1 shows the corresponding ARMA models for the DHR
components under different GRW specifications: AR, RW, SRW, and IRW.
Finally, Table 2 shows the alternative ARMA specifications for the different
components: trend, cyclical and seasonal, and the Nyquist component.

3 The new BGF estimation algorithm

In the original NV R optimization algorithm two questions arise. First, the
logarithmic transformation is used because it produces a more clearly located

3The propositions and their proofs can be seen in Section B in the Appendix.
4The extended Fourier transform FE is the application that corresponds to each fraction

of finite sequences p ∗ (q)−1I the fraction F (p)/F (q) where F (x) is the Fourier transform
of x. For more details see Bujosa et al. (2001)

5Here we define the pseudo-spectrum of an ARMA processes as the extended Fourier
transform of its pseudo-covariance generating function (see Bujosa et al., 2001).

6(see Bujosa, 2000)
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Component
AR and RW

αj = 0; 0 < βj ≤ 1
SRW and IRW

0 ≤ αj ≤ 1; βj = 1
Trend T AR(1) AR(2)
Nyquist s2 AR(1) AR(2)

Cyclical or
seasonal spj

s4 (ωj = π/2): AR(2)
Remaining
components

: ARMA(2,1)
ARMA(4,2)

Table 1: Summary of ARMA models of the components.

and defined optimum, so improving the estimation of the hyper-parameters;
hence, the original algorithm uses a non-linear objective function. Second,
when minimizing the objective functions in (6) and (7), we need to avoid
the regions around the poles7. Our proposal is to estimate the NV R hyper-
parameters in the frequency domain by minimizing a linear objective func-
tion. To do so, a linear algebraic transformation of (6) capable of eliminating
the poles in fdhr (ω,σ2) and fy(ω) it is needed.

3.1 A linear algebraic transformation

In the optimization processes we seek the vector σ2 that minimizes8

min
[�2]∈RR+1

∥∥fy(ω)− fdhr
(
ω,σ2

)∥∥ . (13)

It has been shown that the DHR components follow non-stationary ARMA
processes; therefore, fdhr (ω,σ2) has poles. In order to find a solution of
Equation (13) we need to eliminate the AR roots on the unit circle (AR unit
roots). Using the ARMA representation of the DHR components s

pj
t we have

s
pj
t =

θj(L)
ϕj(L)

Iξjt−1 , {ξjt t} ∼ w.n. N(0, σ2
ξjt

).

Substituting s
pj
t in Equation (2) we obtain an alternative expression of the

DHR model

ydhrt =
R∑
j=1

θj(L)
ϕj(L)

Iξjt−1 + et.

7Since the DHR models are non-stationary, their spectral peaks are poles. Roughly
speaking, a pole is a point in the real line, say ω0, such that f(ω) approaches infinity as ω
approaches ω0.

8Young et al. (1999) simplify the problem using the residual variance σ̂2 from the
fitted AR model, as estimation of σ2

e , and then dividing by σ̂2, so they seek the vector
NVR = [1, NV R0, . . . , NV RR], where NV Rj = σ2

j /σ̂
2.
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Therefore, the pseudo-spectrum of the DHR model is given by

fdhr
(
ω,σ2

)
=

R∑
j=1

σ2
j

θj(e
−iω)θj(e

iω)

ϕj(e−iω)ϕj(eiω)
+ σ2

e ; (14)

and Sj(ω) =
θj(e

−iω)θj(e
iω)

ϕj(e−iω)ϕj(eiω)
.

Young et al. (1999) suggest the use of an AR spectrum as the estimation
for fy(ω). Then, if By(L) denotes the AR polynomial fitted to the observed
time series, fy(ω) can be substituted by

σ̂2

By(e−iω)By(eiω)
,

where σ̂2 is the residual variance of the AR model. Hence, minimizing (13)
is equivalent to

min
[�2]∈RR+1

∥∥∥∥∥
σ̂2

By(e−iω)By(eiω)
−
[

R∑
j=0

σ2
j

θj(e
−iω)θj(e

iω)

ϕj(e−iω)ϕj(eiω)
+ σ2

e

]∥∥∥∥∥ . (15)

In order to align the spectral peaks of the DHR components with those
of the estimated AR spectrum fy(ω), the components can be chosen so that
the full DHR model has all the unit roots of By(L). Then, we can split each
polynomial ϕj(z) in ϕj(z) = φj(z) ∗ Φj(z), where Φj(z) has the unit roots
and φj(z) has the remaining roots. Multiplying (15) by

Ψ(ω) =
∏R

h=0
Φh(e

−iω)Φh(e
iω),

we have

min
[�2]∈RR+1

∥∥∥∥∥
bσ2Ψ(ω)

By(e−iω)By(eiω)
−

R∑
j=0

σ2
j

θj(e
−iω)θj(e

iω)
Q
j 6=h

Φh(e−iω)Φh(eiω)

φj(e
−iω)φj(e

iω)
− σ2

eΨ(ω)

∥∥∥∥∥ (16)

(cf. Bell, 1984, equations 1.4, 1.5 y 1.6).
Hence, the new proposed algorithm minimizes

min
�2∈RR+2

∥∥Ψ(ω) · [fy(ω)− fdhr
(
ω,σ2

)]∥∥ . (17)

This objective function is linear and can be evaluated in the whole range
[−π, π] because (Ψ(ω) · fy(ω)) and (Ψ(ω) · fdhr (ω,σ2)) do not have poles.
Moreover, Equation (17) can be minimized by Ordinary Least Squares (OLS)
to obtain the estimation of σ2 = [σ2

dhr, σ
2
e ]
′, so simplifying the estimation

algorithm.
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3.2 Improving the spectral fitting

If the order p of By(L) is large enough, By(L) has additional roots that are not
included in the DHR model. These additional roots produce additional spec-
tral peaks in the AR spectrum, fy(ω), but these peaks are not associated with
any spectral peak of the pseudo-spectrum of the DHR model, fdhr (ω,σ2).

Because the pseudo-spectra are semidefinite positive functions, they are
non-orthogonal functions. Therefore the additional spectral peaks affect the
spectral fitting of the DHR components. The magnitude of this influence de-
pends on the modulus of each additional root and on the location of the addi-
tional spectral peak. For example, when Young et al. (1999) add a medium-
term into the DHR model and use an AR(54) spectrum they find that: “The
main problem with this high-order AR(54) spectrum is that . . . it injects ob-
viously spurious peaks and distortions . . . making estimation of the NVR pa-
rameters more difficult . . . ”. In order to overcome the problem, Young et al.
(1999) concatenate a low-order spectrum with a high-order spectrum, “using
the higher-order AR spectrum to define the lower-frequency cyclical band of
the spectrum, and the lower-order spectrum to specify the higher-frequency
seasonal behavior”.

Here we propose a different approach. In order to avoid the effect of
the additional peaks in the spectral fitting of the DHR model, we fit these
spurious peaks with additional components. By fitting the spurious peaks
we isolate the spectral fitting of the DHR model from the distortions due to
the spurious peaks. Therefore, a two stage procedure is proposed.

3.2.1 First stage

In the first stage, the vector of variances σ2
dhr is estimated using additional

components. For each additional peak an additional component is included
(the models for this additional components are explained in the next section).

Let fac(ω,σ
2
ac) be the pseudo-spectrum of the sum of the additional com-

ponents:

fac(ω,σ
2
ac) =

k∑
h=R+1

σ2
hSh(ω), (18)

σ2
ac =

[
σ2
R+1, σ

2
R+2, . . . , σ

2
k

]
, (19)

where σ2
hSh(ω) is the pseudo-spectrum of the hth additional component ; σ2

ac

is the vector of the variances of the innovations of the additional components ;
and k + 1 is the number of spectral peaks of fy(ω).
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In the first stage,

min
[�2
dhr,�2

ac]∈Rk+1

∥∥∥∥∥Ψ(ω) ·
[
fy(ω)−

R∑
j=0

σ2
jSj(ω)− fac(ω,σ2

ac)

]∥∥∥∥∥ (20)

is minimized by OLS, and the estimated variances of the innovations of the
DHR components σ̂2

dhr are obtained.

3.2.2 Second stage

In the second stage, the variance of the irregular component σ2
e is estimated

by minimizing

min
σ2
e∈R

∥∥∥∥∥Ψ(ω) ·
[
fy(ω)−

R∑
j=0

σ̂2
jSj(ω)− σ2

e

]∥∥∥∥∥ (21)

by OLS, using the estimated values σ̂2
dhr from the first stage. Finally, we

compute σ̂2 = [σ̂2
dhr, σ̂

2
e ]
′, and NVR′ = σ̂2

dhr/σ̂
2
e . Note that the two stage

algorithm described above is linear and does no require skipping any region
around the poles.

4 Identification algorithm

With the new algorithm described above the variances and the NVR hyper-
parameters are estimated by unrestricted OLS. Then, if the identification of
the DHR model is incorrect, the new estimation algorithm might provide
negative values for the estimated variances! For this reason we need a good
DHR model specification. A good specification should provide a DHR model
with an spectrum of similar shape as the shape of the spectrum of the ob-
served time series9. In this section we propose a simultaneous identification
and estimation algorithm.

4.1 Selecting the DHR components from By(L)

Our identification procedure consists of two steps: firstly, we identify the
AR roots of By(L) associated with the frequencies of the components to

9Although it is possible to obtain the structural model whose spectrum equals the AR-
spectrum expanding 1/By(L) with partial fractions, in most cases these partial fractions
do no belong to the family of ARMA models of Table 2, so this would imply to move away
from the DHR framework.
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Figure 1: Airline Passenger (AP) series.

be estimated with the DHR model (usually the trend, and the seasonal);
and secondly, for each frequency, we choose the DHR model whose α and β
parameters are equal to the modulus of the AR roots of By(L) associated
to that frequency. We will illustrate this procedure using the famous Airline
Passenger (AP) series from Box & Jenkins (1970).

4.1.1 First step

This monthly series shows a clear trend and seasonal patterns. For this
reason, the “a priori” DHR model should have DHR components associ-
ated to the frequencies ωj = 0, 2π/12, 2π/6, 2π/4, 2π/3, 2π/2.4, 2π/2,
so the model should explain the oscillation of the time series around Pj =
∞, 12, 6, 4, 3, 2.4, 2 periodicities.

An AR(16) model is fitted to the AP series10. The roots of the AR
polynomial By(L) fitted to the series appear in Table 3. Some of them are
close to the Pj periodicities (e.g., 2.39, 5.97, 4.02,. . . , ∞). These are the AR
roots associated with the DHR components.

In order to decide whether or not an AR root is associated with the
jth DHR component of periodicity Pj we use a simple criterion. We fix a
range of frequencies ±ε radians around each ωj = 2π/Pj. If the frequency ω
associated with the AR root lies inside any range, i.e., if |ωj − ω| ≤ ε, then the
AR root is associated with the jth DHR component. The default (heuristic)
value ε, used in our program for the seasonal components is 2π/125 = 0.05

10The procedure of how to choose this AR(16) order it is explained in the next Subsec-
tion.

12



Roots Period minj |ωj − ω| Norm DHR Component model
−0.77 ±0.12i 2.101 0.150 0.78 —
−0.85 ±0.49i 2.397 0.003 0.98 RW
−0.50 ±0.87i 3.008 0.006 1.01 RW

0.01 ±1.00i 4.025 0.010 1.00 RW
0.10 ±0.24i 5.349 0.127 0.26 —
0.50 ±0.87i 5.974 0.004 1.01 RW
0.88 ±0.50i 12.038 0.002 1.01 RW
1.01 ∞ 0 1.01

}
SRW (α = 0.86)0.86 ∞ 0 0.86

Table 3: Roots of the AR(16) polynomial By(L) fitted to the AP series.

s2

s2.4

s3
s4

s6

s12

T
0.1 0.91

Figure 2: AR-roots.

radians, and for the trend ε = 2π/36 = 0.17 radians. The range for the trend
component is wider in order to incorporate the roots associated with cyclical
periods11 in the trend. This allow us to estimate trend-cyclical components.

The cases where the condition is fulfilled appear in bold in the third
column of Table 3; and correspond to the roots that lie inside the regions
around each ωj in Figure 2. In this example, there are no AR roots associated
to the Nyquist component (s2), there are two AR roots associated with the
trend (T ), and there is one pair of conjugated AR roots associated with
each one of the remaining DHR components. There are also two pairs of
conjugated AR roots that are not associated with any DHR component.
Therefore, the DHR model for the AP series includes the T, s12, s6, s4, s3

and s2.4 components as Young et al. (1999) suggest.

11Longer than three years for monthly data.
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Figure 3: Spectral fitting of the DHR model (dotted) to the AR(16)-spectrum
of the AP series (solid).

4.1.2 Second step

The most powerful spectral peaks of fy(ω) are due to the AR roots whose
modulus are close to one. If we use DHR models with the same AR roots, the
pseudo-spectrum of the DHR model should have a similar shape that the AR-
spectrum. Therefore, given the DHR components of the model (step one),
the GRW processes for each component are chosen so that their αj and βj
parameters are equal to the inverse of the modulus12 of the AR roots of By(L).
For the spurious peaks we use as additional models the corresponding partial
fractions from the expansions of 1/By(L). The spectral fitting achieved with
this procedure is shown in Figure 3.

Young et al. (1999) suggest IRW models for the trend and the seasonal
components of the AP series. With the new identification criterion we identify
a SRW (α = 0, 86) model for the trend, and RW models for the seasonal
components (see Table 3).

4.2 Selecting the order of the AR-spectrum.

The identification procedure of the DHR model depends on the estimated AR
polynomial By(L). Young et al. (1999) use the Akaike’s Information Criterion
to identify the order p of By(L). Since our estimation procedure is very fast, it
is possible to use a wide range of orders p and identify and estimate one DHR

12When these modulus are close to one, an αj and/or βj parameters equal to one can
be imposed.
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BGF Captain

DHR model Trend: SRW (α = 0.86)
Seasonals: RW

Trend: IRW
Seasonals: IRW

AR(16) AR(14)
Mega-Flops 0.1033 0.3447

N̂V R

T = 0.0203415
s12 = 0.0667478
s6 = 0.0212145
s4 = 0.0086650
s3 = 0.0058846
s2.4 = 0.0487536

T = 0.0033760
s12 = 0.0000275
s6 = 0.0000041
s4 = 0.0000036
s3 = 0.0000027
s2.4 = 0.0000017

σ̂2

σ̂2
e = 26.03930
σ̂2
T = 0.52968
σ̂2
s12 = 1.73807
σ̂2
s6 = 0.55241
σ̂2
s4 = 0.22563
σ̂2
s3 = 0.15323
σ̂2
s2.4 = 1.26951

σ̂2
e = 106.80761
σ̂2
T = 0.36058
σ̂2
s12 = 0.00294
σ̂2
s6 = 0.00044
σ̂2
s4 = 0.00039
σ̂2
s3 = 0.00029
σ̂2
s2.4 = 0.00018

Table 4: Estimation results for the AP series with the Captain and the BGF
algorithms.

model for each AR polynomial By(L). Among the alternative DHR models
it is possible to select one of them under certain criteria. A criterion that
provides good results with minimum numerical cost is to choose the DHR
model whose residual spectrum, i.e., the transformed difference between the
AR-spectrum and the sum of pseudo-spectra of the DHR components

Ψ(ω) · fy(ω)−Ψ(ω) ·
∑R

j=0
σ̂2
jSj(ω),

has the shape closest to the shape of a transformed white noise spectrum
Ψ(ω). The results for the AP series example have been obtained following the
last criterion. The results obtained with the Captain and the BGF algorithms
are shown in Table 4. Note the differences in the identification process. In
order to compare the number of millions of floating point operations (Mega-
Flops), we have counted only the estimation of the parameters, given the
order of the AR polynomial By(L). The estimated DHR components are
shown in Figure 4.

As as second empirical example we have used the Spanish Industrial Pro-
duction Index (IPI) series13. The BGF algorithm selects an AR(24) polyno-
mial for the log of the series. The roots associated with DHR components are

13The Spanish IPI data, from January 1975 to March 2001 period, have been obtained
from the Instituto Nacional de Estad́ıstica.
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Figure 4: The estimated unobserved components for the AP series with the
BGF algorithm.
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Roots Period minj |ωj − ω| Norm DHR Component model
−1.00 2.00 0 1.00 RW
−0.86 ±0.50i 2.40 0.0004 1.00 RW
−0.50 ±0.86i 3.00 0.0008 1.00 RW

±1.00i 4.00 0.0003 1.00 RW
0.50 ±0.86i 6.00 0.0006 1.00 RW
0.86 ±0.50i 12.03 0.0013 1.00 RW
0.95 ±0.14i 42.85 0.1466 0.96

}
IRW1.00 ∞ 0 1.00

Table 5: Some roots of the AR(24) polynomial By(L) fitted to the log of the
Spanish IPI series associated to the DHR components.

shown in Table 5. Note that there are one pair of complex roots associated
with cycles of period 42.8 (longer than three years), and therefore, this pair
is associated to the trend (or trend-cycle) component suggesting an IRW pro-
cesses. Consequently, the identification process suggest a DHR model with
an IRW trend and RW seasonal components14. We should remark that the
only input information used by the BGF algorithm in both examples is the
raw time series data and the periodicity of the time series, i.e., monthly,
quarterly, etc.

In order to compare the results we have estimated the same DHR models
with both the Captain and the BGF algorithms. The results are shown in
Table 6. Note that the main observed difference is in the estimated variance
of the irregular component σ̂2

e . Some preliminary Montecarlo experiments
have shown that the variance of the residual white noise from an AR model
overestimates σ2

e . Therefore, the estimated Noise Variance Ratio (NVR)s
with the BGF algorithm tend to be bigger than the estimated values with
Captain. The estimated DHR components with BGF algorithm are shown
in Figure 5.

5 Conclusions

Among the available stochastic Unobserved Components alternatives, the
Dynamic Harmonic Regression (DHR) model has been used extensively over
the past years in different areas of research such as business cycle analysis,
environmental issues, industrial turning points predictions, forecasting eco-
nomic sectorial demand, etc. Additionally, the DHR model is a powerful

14This is exactly the same specification found in Garćıa-Ferrer & Bujosa-Brun (2000)
for this variable using a similar data set.
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Figure 5: The estimated unobserved components for the log of the Spanish
IPI series, 1975.1–2001.3.
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BGF Captain

DHR model Trend: IRW
Seasonals: RW

Trend: IRW
Seasonals: RW

AR(24) AR(32)
Mega-Flops 1.5972 1.8119

N̂V R

T = 0.0087524
s12 = 0.0333327
s6 = 0.0108833
s4 = 0.0276207
s3 = 0.0744102
s2.4 = 0.0238528
s2 = 0.0174329

T = 0.0023893
s12 = 0.0053092
s6 = 0.0058329
s4 = 0.0072667
s3 = 0.0239450
s2.4 = 0.0151660
s2 = 0.0046043

σ̂2

σ̂2
e = 3.4411e-04
σ̂2
T = 3.0118e-06
σ̂2
s12 = 1.1470e-05
σ̂2
s6 = 3.7451e-06
σ̂2
s4 = 9.5047e-06
σ̂2
s3 = 2.5606e-05
σ̂2
s2.4 = 8.2080e-06
σ̂2
s2 = 5.9989e-06

σ̂2
e = 1.0936e-03
σ̂2
T = 2.6130e-06
σ̂2
s12 = 5.8062e-06
σ̂2
s6 = 6.3789e-06
σ̂2
s4 = 7.9469e-06
σ̂2
s3 = 2.6186e-05
σ̂2
s2.4 = 1.6586e-05
σ̂2
s2 = 5.0353e-06

Table 6: Estimation results for log of the Spanish IPI series with the Captain
and the BGF algorithms.

signal extraction alternative that can compete well with the best known
techniques. The oscillations of each DHR component are modulated by
stochastic time varying parameters within the family of Generalized Random
Walk (GRW) models suggested by Young many years ago. Interestingly, by
restricting certain values in the matrices of the state space representation,
the GRW model comprises a large number of characterizations found in the
signal extraction literature.

In the first part of this paper we have shown that each DHR component
has an AutoRegressive Moving Average (ARMA) representation. In partic-
ular, we have shown that for each cyclical and seasonal component there is a
sequence such as its Extended Fourier Transform is the pseudo-spectrum of
the component. We have also shown the existence of an ARMA model whose
pseudo-covariance generating function is, precisely, the aforementioned se-
quence. The consequence of the previous results is that we can write the
DHR model as a sum of certain ARMA models plus a white noise process.

In the second part of the paper we propose an alternative algorithm to
estimate the model hyper-parameters that makes uses of a linear algebraic
transformation in order to eliminate the poles in the original objective func-
tion. Once we remove this problem, Ordinary Least Squares can be used.
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The algorithm provides simultaneous identification (GRW model for trend
and seasonal components) and estimation of the hyper-parameters . It is
worth nothing that the only input information required by the BGF algo-
rithm is the raw time series data and information about its periodicity, i.e.,
monthly, quarterly, etc. This is a real advantage over existing alternatives,
that requires additional input information from the researcher’s side.

Two final comments regarding future developments. First, we have not
tried yet to analyze the forecasting performance of the new algorithm. So
far, given the similarities with other DHR models used in the past, we should
not expect large differences in forecasting. Only when trend models differ
considerably should we expect the prediction results to be different. Second,
our results can be easily extended to some other well known alternatives
mentioned earlier as far as they can be treated as special cases of Generalized
Random Walk specifications. These, should be logical lines of future research.

Appendix

A Inverse (b)−1I

Because we deal with non-stationary models it is necessary to use an inverse
of the sequences that provides a well defined pseudo-covariance generating
function, ΛT (z). Should we define the cograde of a non-null sequence b as
the biggest integer index that verify j < cograde(b)⇒ bj = 0, we can define
the inverse sequence of a non-null sequence b with cograde(b) = k as

(bj)
−1I ≡

(
1
b
I
)

j

≡




0 if j < −k
1
bk

if j = −k
−1
bk

∑j−1
r=−k arbj+k−r if j > −k

(for more details see Bujosa et al., 2001).

B Propositions

Proposition B.1. For each 0 < ωj < π, there is a sequence Λspj (L) ∈
C(z) whose extended Fourier transform is the pseudo-spectrum fspj (ω) of
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Equation (12),

Λspj (z) =

σ2
j
{1+2αjβj+α2

j+β2
j+α2

j β
2
j}−{αj+βj+αjβ

2
j+α2

j βj cos(ωj)}(z+z−1)+{αjβj cos(2ωj)}(z2+z−2)
ϕj(z) ∗ ϕj(z−1)

I,

(22)
where

ϕj(z)=[1−{2(αj+βj) cosωj}z+{α2
j+β

2
j+4αjβj cos2(ωj)}z2−{2(αjβ

2
j+α2

jβj) cos(ωj)}z3+{α2
jβ

2
j }z4].

(23)

Proof. We proceed backwards. Substituting 2 cos x by eix + e−ix in (12),
factorizing, and then substituting e−ix by z, we obtain the sequence Λspj (L)

Λspj (z) = σ2
j/2 ·[

1−αje
iωj 1

z

][
1−βje

iωj 1
z

][
1−αje

iωj z

][
1−βje

iωj z

]
+

[
1−αje

iωj 1
z

][
1−βje

iωj 1
z

][
1−αje

iωj z

][
1−βje

iωj z

]
[

1−αje
iωj 1

z

][
1−βje

iωj 1
z

][
1−αje

iωj z

][
1−βje

iωj z

][
1−αje

iωj 1
z

][
1−βje

iωj 1
z

][
1−αje

iωj z

][
1−βje

iωj z

] I.
(24)

Operating and substituting eix + e−ix by 2 cos x, we finally obtain Equa-
tion (22).

Proposition B.2. For each 0 < ωj < π, there is an ARMA model whose
pseudo-covariance generating function is the sequence Λspj (L) ∈ C(z) from
Equation (22) of Proposition B.1.

Proof. The proof for the AR part is straight forward from Equation (23)
and is simply

ϕj(L) = φαj (L) ∗ φβj (L), (25)

where

φαj (L) = [1− 2αj cos(ωj)L+ α2
jL

2] = [1− αjeiωjL][1− αje−iωjL]

φβj (L) = [1− 2βj cos(ωj)L+ β2
jL

2] = [1− βjeiωjL][1− βje−iωjL]
.

The proof for the moving average part is much more tedious. We search
the Moving Average (MA) polynomial θj(L) such that θj(z)θj(z

−1) equals
the numerator in (24). Substituting z by L, 1

z
by F , and operating on the

numerator in (24) we can obtain the expresion

(1− α−1
j eiωjL)(1− β−1

j eiωjL)(1− αjeiωjL)(1− βjeiωjL)(αjβje
2iωj)F 2+

(1− α−1
j eiωjL)(1− β−1

j eiωjL)(1− αjeiωjL)(1− βjeiωjL)(αjβje
2iωj)F 2

.

(26)
It is not difficult to prove that if x is a root of (26) then, 1/x is also a root.
It follows that θj(z)θj(z

−1) can be divided by

(1− γL)(1− γ−1L)(1− ηL)(1− η−1L).
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Some caracteristics of γ and η are known. Because the pseudo-spectra of the
DHR models are positive definite none of the MA roots has unit modulus;
and because θj(z) is real, if γ is not real and |γ| 6= 1, then η = γ. So, two
scenarios are possible. In the first one, there are two real roots with modulus
greater than one and their inverses, in the second one, there are four complex
roots, and for each one of them there are its inverse, its complex pair, and
the inverse of its complex pair.

We need to find the constant λ and the coeficients γ and η that verify
that θj(L)θj(F ) equals (26), and

θj(L)θj(F ) = λF 2 (1− γL)(1− γ−1L)(1− ηL)(1− η−1L). (27)

Therefore, the general form of the MA should be

θj(L) =
√
λ (1− γ?jL)(1− η?jL), (28)

where γ?j and η?j are inside the unit circle; and λ is a constant.
On the one hand; ignoring λF 2 in (27), and operating, it can be obtain

the polynomial

(L2 − (γ + γ−1)L+ 1)(L2 − (η + η−1)L+ 1),

or (L2 + δL + 1)(L2 + ρL + 1), where δ = −(γ + γ−1) and ρ = −(η + η−1).
This polynomial is equivalent to:

L4 + (δ + ρ)L3 + (δρ+ 2)L2 + (δ + ρ)L+ 1,

where δ and ρ verify

γ2 + δγ + 1 = 0; η2 + ρη + 1 = 0. (29)

If the fourth order polynomial aL4 + bL3 + cL2 + dL + e is divided by
L4 + (δ + ρ)L3 + (δρ+ 2)L2 + (δ + ρ)L+ 1 we obtained:

aL4+ bL3+ cL2+ dL+ e L4+ (δ+ρ)L3+ (δρ+2)L2+ (δ+ρ)L+ 1

aL4+ a(δ+ρ)L3+ a(δρ+2)L2+ a(δ+ρ)L+ a a

r3L3+ r2L2+ r1L+ r0

,

where r3 = b− a(δ + ρ); r2 = c− a(δρ+ 2); r1 = d− a(δ + ρ); r0 = e− a.
Since a necessary condition for the remainer to be zero is

0 = r3 = b− a(δ + ρ)
0 = r2 = c− a(δρ+ 2)

,
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δ and ρ should verify

δ =
−b±

√
b2 + 4a(2a− c)
−2a

; ρ =
b

a
− δ. (30)

On the other hand, the roots of Equation (26) are the roots of

e−2iωj − (A+B)e−iωjL+ (2 + A ·B)L2 − (A+B)eiωjL3 + e2iωjL4 +
e2iωj − (A+B)eiωjL+ (2 + A ·B)L2 − (A+B)e−iωjL3 + e−2iωjL4,

where A = αj + α−1
j y B = βj + β−1

j .
If we substitute eiωj + e−iωj by Ωj we can find that

(Ω2
j − 2)︸ ︷︷ ︸
e

− (A+B)Ωj︸ ︷︷ ︸
d

L+(4 + 2AB)︸ ︷︷ ︸
c

L2− (A+B)Ωj︸ ︷︷ ︸
b

L3 +(Ω2
j − 2)︸ ︷︷ ︸
a

L4. (31)

Therefore, 2a−c = 2(Ω2
j−2)−4−2AB, and −b = −(A+B)Ωj, Substituting

in (30) we find that

δ =
(A+B)Ωj ±

√
(A+B)2Ω2

j + 8(Ω2
j − 2)(Ω2

j − 4− 2(AB))

−2(Ω2
j − 2)

.

Finally, using Equation (29), we have found that:

γ =
−δ ±√δ2 − 4

2
; η =

−ρ±
√
ρ2 − 4

2
. (32)

So, given the values of αj, βj y ωj, it is posible to calculate γ and η. The
constant λ is

λ =
αjβj cos(2ωj)

γ?j η
?
j

, (33)

where γ?j and η?j are the roots inside the unit circle (see Equation (28)).

Combining equations (23), (28), (32), and (33) we can write the equivalent
ARMA model for the s

pj
t component as

ϕj(L)spj t =

(√
αjβj cos(2ωj)

γ?j η
?
j

)
(1−θ1

jL−θ2
jL

2)ξjt−1, {ξjt} ∼ w.n. N(0, σ2
ξj

).

(34)

Corollary. The pseudo-covariance generating function of each cyclical or
seasonal component s

pj
t is given by

Λspj (z) =

(
σ2
j

αjβj cos(2ωj)

γ?j η
?
j

)
[1 −θ1

jz −θ2
j z

2][1 −θ1
jz
−1 −θ2

jz
−2]

ϕj(z) ∗ ϕj(z−1)
I

(35)
where θ1

j , θ
2
j , γ

?
j , y η?j are given in Equation (28), and ϕj(z) is provided by

Equation (23).
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